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Abstract. Angiogenesis is an important hallmark of cancer 
serving a key role in tumor growth and metastasis. Therefore, 
tumor angiogenesis has become an attractive target for 
development of novel drug therapies. An increased amount 
of anti‑angiogenic compounds is currently in preclinical and 
clinical development for personalized therapies. However, 
resistance to current angiogenesis inhibitors is emerging, 
indicating that there is a need to identify novel anti‑angiogenic 
agents. In the last decade, the field of microRNA biology 
has exploded revealing unsuspected functions in tumor 
angiogenesis. These small non‑coding RNAs, which have 
been dubbed as angiomiRs, may target regulatory molecules 
driving angiogenesis, such as cytokines, metalloproteinases 
and growth factors, including vascular endothelial growth 
factor, platelet‑derived growth factor, fibroblast growth factor, 
epidermal growth factor, hypoxia inducible factor‑1, as well as 
mitogen‑activated protein kinase, phosphoinositide 3‑kinase 
and transforming growth factor signaling pathways. The 
present review discusses the current progress towards under-
standing the functions of miRNAs in tumor angiogenesis 
regulation in diverse types of human cancer. Furthermore, 
the potential clinical application of angiomiRs towards 
anti‑angiogenic tumor therapy was explored.
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1. Introduction

Angiogenesis is a complex cellular mechanism required for the 
formation of new blood vessels from the existing vasculature 
or from bone marrow‑derived endothelial progenitors, allowing 
tumor growth and development at early stages of carcinogen-
esis (1). Neovascularization is a prerequisite for tumorigenesis 
when oxygen and nutrient levels are insufficient to sustain cell 
proliferation and tumor growth. During neovascularization, 
the tumor microenvironment produces stimulatory signals 
that induce changes in diverse cell types (Fig. 1). Pericytes 
detach from pre‑existing vasculature disrupting the integrity 
of mature blood vessels. Platelets are activated and release 
stores of stimulatory factors into the tumor microenviron-
ment. In addition, new vascular branches may be stimulated 
by bone marrow‑derived endothelial progenitor cells (EPCs). 
Tumor cells also participate in the formation of new vessels 
through vascular mimicry, a novel angiogenesis‑independent 
mechanism in which highly aggressive and metastatic epithe-
lial tumor cells form vascular 3D channel‑like structures 
resembling classical endothelial blood vessels (2). All these 
cellular types secrete soluble factors in the tumor microenvi-
ronment enhancing extracellular matrix (ECM) remodeling 
and inducing the production of tortuous blood vessels (neovas-
cularization). Notably, this environment makes the tumor cells 
more invasive, allowing them to intravasate into the vasculature 
and to disseminate to distant tissues, resulting in metastasis. 

The angiogenic switch that governs the tumor neovas-
cularization requires a change in the balance between 
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pro‑ and anti‑angiogenic factors. Hypoxia is an important 
factor required for activation of the angiogenesis program, 
as it activates the expression of pro‑angiogenic proteins from 
tumor and stroma cells, such as vascular endothelial growth 
factor (VEGF), transforming growth factor (TGF) α, fibro-
blast growth factor (FGF), and platelet‑derived growth factor 
(PDGF) among others. Hypoxia inducible factor 1 (HIF1) acts 
a master regulator of the genetic program leading to angiogen-
esis, mainly through activation of VEGF. The HIF1 protein 
complex is a heterodimer consisting of the HIF1α and HIF1β 
subunits  (3). Under normoxia conditions, HIF1α is rapidly 
hydroxylated on conserved prolyl residues located within 
the oxygen‑dependent degradation domain, and then it binds 
to von Hippel‑Lindau protein (pVHL), which in turn targets 
HIF‑1α for degradation through the ubiquitin‑proteasome 
pathway. By contrast, hypoxia inhibits the hydroxylation of 
HIF1α prolyl residues 402 and 564, which in turn inhibits 
both binding to pVHL and protein degradation. The HIF1 
complex recognizes and binds to the hypoxia response 
sequence element (5'‑CGTG‑3') on the promoter regions of 
pro‑angiogenic genes, such as VEGF, PDGF, and TGF‑α, 
activating them and resulting in blood vessel remodeling and 
angiogenesis. In addition, growth factors, cytokines and onco-
genes, which stimulate the mitogen‑activated protein kinase 
(MAPK) and phosphoinositide 3‑kinase (PI3K) pathways, 
enhance HIF‑1α activity. Notably, the genes responsible for the 
angiogenic switch may be regulated at the post‑transcriptional 
level by microRNAs (miRNAs). Understanding the role of 
miRNAs is particularly relevant in aberrant angiogenesis in 
human cancers. Thus, the crucial role of neovascularization 
to tumor progression has rendered angiogenesis a particularly 
interesting research field of drug development, as it provides 
opportunities for clinical intervention.

2. Biogenesis and processing of microRNAs

miRNAs are conserved small non‑coding RNAs of 21‑25 nucle-
otides in length, which act as negative regulators of gene 
expression. The canonical biogenesis of miRNAs initiates with 
transcription of genes located in intergenic regions by RNA 
polymerase II (RNA pol II) to generate hairpin‑shaped long 
transcripts, called primary miRNAs (pri‑miRNA), with 5'‑cap 
and 3'‑end poly(A) tail (4). Subsequently, these molecules are 
recognized by the DiGeorge syndrome critical region protein 
8 (DGCR8) which associates with the RNAse III enzyme 
Drosha in a microprocessor complex that cleaves pri‑miRNA 
and liberates stem‑loop structures, known as precursor 
miRNAs (pre‑miRNA) (5). Alternatively, pre‑miRNAs can be 
generated by the mRNA splicing machinery from introns or 
pseudo‑genes, without the participation of the microprocessor 
complex (6). Pre‑miRNA molecules have a 3' end two‑nucle-
otide overhang that is recognized by the Ran‑GTP dependent 
export factor exportin 5 that facilitates their translocation 
to the cytoplasm. In this cellular compartment, the RNAse 
III enzyme Dicer interacting with the double‑stranded (ds) 
RNA‑binding protein TRBP2 eliminates the loop, to produce 
an imperfect dsRNA duplex. Although the transient strand 
miRNA* has previously been considered as irrelevant, recent 
studies suggest that it is as functional as the guide strand. These 
19‑25 bp RNA molecules, together with Argonaute proteins, 

can be incorporated into the silencing complex induced by 
RNA‑induced silencing complex (RISC), to promote recog-
nition of the complementary sequence; predominantly in the 
3' untranslated region (3'‑UTR) of target mRNAs (7). The fate 
of targeted transcripts depends on the degree of complemen-
tarity between miRNA and mRNA. A perfect interaction leads 
to messenger degradation, while imperfect complementary 
binding induces translational repression (8). Both events occur 
in cytoplasmic foci denoted as mRNA processing bodies 
(P‑bodies), which represent mRNA processing centers where 
non‑translating transcripts are stored, silenced or degraded (9).

3. AngiomiRs: microRNAs modulating angiogenesis in 
human cancers

Altered expression of miRNAs has been reported in diverse 
types of human cancer, where they regulate the expression 
of oncogenes and tumor suppressor genes, thus they have 
been dubbed as oncomiRs. In many cases, aberrant expres-
sion of miRNAs correlates with worst prognosis, low overall 
survival and resistance to chemotherapy (10). Diverse studies, 
focused on miRNA profiles impacting angiogenesis, have 
been described in almost all human cancers (11,12). miRNAs 
controlling the angiogenic mechanisms are collectively known 
as angiomiRs, as they regulate this specialized process in 
both physiological and pathological conditions (Fig. 2 and 
Table I) (13,14). The biological relevance of miRNAs in angio-
genesis was first uncovered by loss of function studies in which 
Dicer, an endonuclease required for miRNA maturation, was 
disrupted. Generation of Dicer1‑deficient mice resulted in 
early embryonic lethality and stem cell loss (15). In addition, 
mice carrying a deletion corresponding to the first and second 
exons of the Dicer gene exhibited severe vascular defects and 
had altered expression of angiogenic regulators (16). Since 
complete abrogation of Dicer in mice was embryonic lethal, 
the specific role of miRNAs in angiogenesis was addressed 
by generating endothelial‑specific Dicer knockouts (17). The 
cell‑specific inactivation of Dicer resulted in the reduction 
of endothelial miRNAs and reduced postnatal angiogenic 
response to exogenous VEGF, tumors, limb ischemia, and 
wound healing. Furthermore, VEGF regulated the expression 
of oncogenic miRNAs of the cluster miR‑17‑92. These data 
indicated that endothelial miRNAs regulate postnatal angio-
genesis and VEGF upregulated the expression of miRNAs 
implicated in the angiogenic response. Different laboratories 
have also demonstrated that silencing Dicer in epithelial cells 
inhibits cell proliferation, migration, and capillary sprouting 
under basal conditions and in response to angiogenic 
factors (18,19). According to Kuehbacher et al (18), depleting 
Dicer and Drosha using siRNAs in endothelial cells reduced 
lef‑7f and mir‑27b expression. In addition, inhibitors of let‑7f 
and mir‑27b reduced sprout formation indicating that let‑7f 
and mir‑27b promote angiogenesis by targeting antiangiogenic 
genes (18). By contrast, the knockdown of Dicer in endothelial 
cells also altered the expression of regulators of angiogenesis, 
including TEK receptor tyrosine kinase (also known as Tie2), 
VEGFR2, Tie1, endothelial nitric oxide synthase and inter-
leukin (IL) 8. The global profiling of miRNAs revealed 25 
upregulated miRNAs in endothelial cells and using miRNA 
mimicry, miR‑222/221 regulated nitric oxide synthase 
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following Dicer silencing (19). Although these studies support 
the idea of miRNAs controlling vascular function and angio-
genesis, the contribution of additional non‑canonical functions 
of Dicer to the angiogenic process cannot be excluded.

Further support for a role of miRNAs in the vasculature 
came from studies that identified endothelial miRNAs using 
microarrays (20‑23). An early report identified 27 miRNAs 
highly expressed in human umbilical vein endothelial cells 
(HUVECs), many of which had angiogenic factor receptors 
as their predicted mRNA targets. Authors demonstrated that 
both miR‑221 and miR‑222 specifically regulate stem cell 
factor (SCF)‑induced angiogenesis by targeting c‑KIT (19). 
Likewise, McCall et al (22) described a miRNAs signature 
whose expression levels are generally consistent across epithe-
lial cells form different vascular locations with the exception 
of miR‑99b, miR‑20b and let‑7b. To date, close to 200 endo-
thelial miRNAs have been described, though <20% of them 
have been consistently found across different studies  (22). 
Endothelial miRNA expression profiles are also known to 
be modified in response to a wide array of stimuli including 
hypoxia, VEGF and angiotensin II, providing evidence of 
the plasticity of this system in fine‑tuning vascular function. 
For instance, miR‑126, miR‑210 and the miR17/92 cluster, a 
polycistronic miRNA gene that encodes for miR‑17, miR‑18a, 
miR‑19a, miR‑20a, miR‑19b‑1 and miR‑92a, are an example of 
miRNAs essential for maintaining vascular structure in vivo; 
but many more have emerged as regulators of endothelial cell 
survival, migration, proliferation and angiogenic signaling 

pathways (22,23). Therefore, angiomiRs may be promising 
targets and they may contribute to anti‑angiogenesis‑based 
combined treatments of cancer (24).

AngiomiRs in breast cancer. Breast cancer is one of the 
most frequent carcinomas and ranks second as a cause of 
cancer‑related mortality in women  (25). Several research 
groups have identified distinct miRNA expression profiles 
and individual miRNAs relevant for angiogenesis, metastasis 
and overall survival in breast cancer patients. For instance, the 
endothelial miR‑126, derived from the intron 7 of the EGF‑like 
domain 7 (EGFL7) (26), was found downregulated in breast 
tumors and associated with poor overall metastasis‑free 
survival  (27). Zhu  et  al  (28) demonstrated that miR‑126 
inhibits VEGF/PI3K/AKT signaling by targeting VEGFA 
and PI3K regulatory subunit 2 (PIK3R2). Ectopic expression 
of miR‑126 suppressed the expression of CD97, a G‑coupled 
receptor that promotes cell invasion and angiogenesis through 
integrin signaling (29). miR‑126 and miR‑126* both influence 
breast cancer metastasis by cell autonomous and non‑cell 
autonomous mechanisms involving angiogenesis  (30). Of 
note, miR‑126/miR‑126* also inhibited lung metastasis of 
breast cancer cells by suppressing the recruitment of mesen-
chymal stem cells and inflammatory monocytes into the 
tumor microenvironment in a stromal cell‑derived factor 1 α 
(SDF1A)‑dependent manner. Another study demonstrated that 
miR‑126 regulates angiogenesis and metastasis by targeting 
the pro‑angiogenic insulin‑like growth factor binding protein 2 

Figure 1. Overview of the mechanisms of angiogenesis. The three different mechanisms of angiogenesis are illustrated: (1) sprouting angiogenesis, (2) vascu-
logenesis de novo from stem cells, and (3) vascular mimicry. The release of pro‑angiogenic factors from tumor cells interacting with their cognate receptors is 
indicated in the plasmatic membrane of endothelial cells (paracrine regulation) and tumor cells (autocrine regulation). FGF, fibroblast growth factor; ANGPT1, 
angiopoietin 1; VEGF, vascular endothelial growth factor; PDGF, platelet‑derived growth factor; R, receptor; Tie2, TEK receptor tyrosine kinase.
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(IGFBP2), phosphatidylinositol transfer protein cytoplasmic 1 
and c‑Mer tyrosine kinase genes (31). 

On the other hand, miR‑497 reduces tumor growth and 
angiogenesis in a mouse xenograft model (32). In addition, 
conditioned media derived from miR‑497‑expressing cells, 
suppress endothelial cell tube formation in vitro and reduce 
VEGF and HIF1α protein levels. Tu et al (33) reported that 
overexpression of miR‑497 in 4T1 cells significantly inhibited 
breast tumor growth, angiogenesis and VEGFR2 expression 
when subcutaneously implanted in VEGFR2‑luc transgenic 
mice. In addition, miR‑497 expression in HUVECs induces 
apoptosis and inhibits cell proliferation by targeting AKT and 
extracellular signal‑regulated kinase (ERK) signaling path-
ways in a VEGFR2‑dependent way.

Tumors respond to low oxygen tension by activation of 
HIF1α‑dependent and hypoxia‑induced genetic program 
involving miRNAs (34). For instance, recent studies reported 
that miR‑155, miR‑578 and miR‑573 have key roles in 

HIF1α‑mediated angiogenesis, and their expression was differ-
entially modulated in BRCA1/2‑related breast cancer (35,36). 
Kong et al (37) demonstrated that miR‑155 overexpression in 
tumor cells promotes angiogenesis, proliferation and proinflam-
matory cell recruitment in a mammary fat pad xenotransplant 
model. In addition, miR‑155 levels are inversely correlated 
with von Hippel‑Lindau (VHL), an E3 ubiquitin ligase that 
targets HIF1 family members; this finding suggests that 
miR‑155 expression decreases HIF1α‑mediated angiogenesis 
by targeting VHL in breast tumors. By contrast, miR‑578 and 
miR‑573 are downregulated in BRCA1/2‑related breast cancer 
and appear to control angiogenesis by modifying VEGFA, 
focal adhesion kinase (FAK), angiopoietin 2 (ANGPT2) 
and HIF1α expression through an indirect mechanism, since 
they failed to bind to the 3' UTR of the aforementioned 
genes  (38). Additionally, miR‑210, a hypoxia‑inducible 
miRNA, is involved in tumor growth, angiogenesis and 
activation of VEGF signaling in breast cancer patients (39). 

Figure 2. AngiomiRs and their targets in tumor and endothelial cells. The diagram illustrates the main genes and signaling pathways targeted by diverse 
angiomiRs deregulated in human tumors. TGFBR2, transforming growth factor β receptor 2; HIF, hypoxia‑inducible factor; Timp3, tissue inhibitor of metal-
loproteinases‑3; COX‑2, cyclooxygenase‑2; MMP, matrix metallopeptidase; ANGPT, angiopoietin; BNDF, brain‑derived neurotrophic factor; FGF, fibroblast 
growth factor; VEGF, vascular endothelial growth factor; R, receptor; Tie2, TEK receptor tyrosine kinase; TrkB, tropomyosin receptor kinase B; PI3K, 
phosphoinositide 3‑kinase; PTEN, phosphatase and tensin homolog; MEK, mitogen‑activated protein kinase kinase; ERK, extracellular signal‑regulated 
kinase; Alk4, activin A receptor type 1B; Spred‑1, sprouty related EVH1 domain containing 1; Spry1, sprout homolog 1.
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Table I. microRNAs and gene targets involved in angiogenesis in diverse types of cancer.

Author, year	 microRNA	 Gene targets	 (Refs.)

Meister et al, 2010; 	 Breast cancer miR‑126	 PIK3R2, VEGFA, CD97, IGFBP2	 (27‑29,31)
Zhu et al, 2011; Lu et al, 2014;	
Png et al, 2011
Wu et al, 2016; Tu et al, 2015; 	 miR‑497, miR‑21	 HIF‑1α, VEGF, VEGFR2	 (32,33,41)
Zhao et al, 2013
Kong et al, 2016	 miR‑155	 VHL	 (37)
Kong et al, 2014	 miR‑57, miR‑573	 VEGFA, FAK, ANGPT2, HIF‑1α	 (38)
Mathsyaraja et al, 2015;	 miR‑542‑3p	 Angiopoietin‑2, CEBPB, POU2F1	 (42-44)
He et al, 2014; He et al, 2015
Flores‑Pérez et al, 2016; 	 miR‑204	 ANGPT1, TGFBR2, PI3K, Src	 (47,48)
Salinas‑Vera et al, 2018
Kadera et al, 2013; 	 Pancreatic cancer miR‑21, 	 HIF‑1α, VEGF	 (59,62)
Chan et al, 2012	 miR‑199
Zhao et al, 2010	 miR‑34a	 SIRT1	 (68)
Liu et al, 2009	 Lung cancer miR‑126,	 VEGFA	 (75)
	 let‑7b
Tejero et al, 2014	 miR‑128	 VEGFC	 (82)
Mao et al, 2015	 miR‑494	 PTEN	 (86)
Pesta et al, 2011	 miR‑210	 VEGFR2	 (93)
	 Colorectal cancer		
Zhang et al, 2013; 	 miR‑126	 VEGF, VEGFR2	 (97‑99)
Hansen et al, 2011; 
Hansen et al, 2013
Nagao et al, 2012	 miR‑21	 PTEN, TIMP3, TPM1	 (103)
Bridge et al, 2012	 miR‑30	 DLL4	 (105)
Amodeo et al, 2013	 miR‑18a, miR‑19	 EGR1	 (110)
Sundaram et al, 2011; 	 miR‑194	 p53	 (112,113)
Braun et al, 2008
Dai et al, 2016; Fang et al, 2016	 miR‑15‑16	 FGF2, CCNB1	 (115,116)
Wang et al, 2014; 	 miR‑29b	 TCF7L2, SNAIL, BCL9L, 	 (118,119,121)
Subramanian et al, 2014;		  MMP2, TIAM1
Colangelo et al, 2013
Urbich et al, 2012; 	 miR‑27a, miR‑27b	 DLL4, SPRY2, VEGFC, SGPP1, SMAD2	 (123,124,128)
Veliceasa et al, 2015; 
Bao et al, 2014
Geng et al, 2014	 miR‑192	 BCL2, ZEB2, VEGFA	 (130)
Yin et al, 2013; Xu et al, 2012	 miR‑145	 AKT, N‑RAS, IRS1,VEGF, p70S6K1	 (131,132)
Qian et al, 2013	 miR‑143	 AKT, HIF‑1α, VEGF	 (134)
Zhang et al, 2011	 miR‑23b	 7FZD7, MAP3K1	 (135)
	 Ovarian cancer		
Xu et al, 2012; He et al, 2013 	 miR‑199a, miR‑125b, 	 HIF‑1α, VEGF, p70S6K	 (132,142)
	 miR‑145
Vecchione et al, 2013; 	 miR‑484, miR‑642, 	 VEGF, VEGFR2, COX2, SP1	 (11,145)
Lai et al, 2013	 miR‑217, miR‑27a
Korpal et al, 2008; Pecot et al, 2013	 miR‑200 family	 ZEB1, ZEB2, IL8, CXCL1	 (146,147)
Imam et al, 2012	 miR‑204	 BDNF	 (148)

miR, microRNA.
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Oncogenic miR‑21 has been identified as a potential molecular 
prognostic marker for breast cancer progression, as its over-
expression correlates with advanced tumor stage, lymph node 
metastasis and poor patient survival (40). In a VEGFR2‑luc 
mouse model of breast tumorigenesis, a miR‑21 antagomir 
effectively suppressed tumor growth and angiogenesis by 
targeting the VEGF/VEGFR2/HIF1α axis  (41). Notably, 
miR‑21 and miR‑29a expression in macrophages promoted 
CD31+ vessel growth in matrigel plugs and reduced the expres-
sion of anti‑angiogenic genes, such as collagen type IV α2 
(COL4A2), sprouty homolog 1 (SPRY1) and tissue inhibitor 
of metalloproteinases‑3 (TIMP3). These findings suggest that 
miR‑21 and miR‑29a facilitate a pro‑angiogenic phenotype in 
tumor‑associated myeloid cells, which contributes to tumor 
progression (42). In addition, key modulators of angiogenesis 
and extracellular matrix remodeling, like VEGFA, angio-
poietin‑like 4, PDGF, lysyl oxidase (LOX), metallopeptidase 
(MMP) 2 and MMP9, contain functional miR‑29b‑specific 
binding sites located in their 3'UTRs, suggesting that miR‑29b 
may act as a multi‑target non‑coding RNA to suppress metas-
tasis of cancer cells. 

miR‑542‑3p levels inversely correlate with clinical 
progression of breast cancer in patients with advanced stage 
disease (43). Ectopic expression of miR‑542‑3p reduced tumor 
growth, angiogenesis and metastasis in a breast cancer mouse 
model (44). He et al (44) proposed a novel tumor‑endothelial 
cell‑signaling pathway to explain the angiogenic inhibition 
induced by miR‑542‑3p. In their model, tumor cell‑derived 
angiogenin was demonstrated to downregulate miR‑542‑3p in 
endothelial cells by suppressing the CCAAT/enhancer‑binding 
protein β (CEBPβ) and POU class 2 homeobox 1 (POU2F1) 
transcription factors, while increasing the expression of 
ANGPT2 protein (44). 

miR‑568 has been reported as a circulating breast 
cancer‑specific miRNA (45). miR‑568 expression was low in 
metastatic breast cancer cells as a result of epigenetic silencing 
by the non‑coding lncRNA Hotair, a known promoter of 
metastasis in various human cancers, which alters gene expres-
sion profiles through chromosomal silencing (46). Evidence 
suggests that low miR‑568 results in a more sustained expres-
sion of its target nuclear factor of activated T‑cells 5 (NFAT5), 
a pro‑angiogenic and metastatic transcriptional activator of 
VEGFC and S100A4 proteins (46).

miR‑204 is a novel multi‑target angiomiR in breast 
cancer. Recently, we analyzed the miRNome of locally 
advanced breast tumors and found a consistent and dramatic 
suppression of miR‑204 in patient tumors and breast cancer 
cell lines  (47). Ectopic expression of miR‑204 inhibited 
cell proliferation, anchorage‑independent growth, migra-
tion, and invasion. In vivo vascularization and angiogenesis 
were also suppressed by miR‑204 in a nu/nu mice model. 
Transcriptome profiling of MDA‑MB‑231 cells expressing 
miR‑204 indicated that expression of pro‑angiogenic 
ANGPT1 and TGFβR2 proteins was suppressed by miR‑204. 
Functional analysis confirmed that ANGPT1 and TGFβR2 
are novel targets of miR‑204. In agreement, an inverse corre-
lation between miR‑204 and ANGPT1/TGFβR2 expression 
was evidenced in breast tumors, revealing a novel role for the 
miR‑204/ANGPT1/TGFβR2 axis in tumor angiogenesis (47). 
Recently, our group also reported that miR‑204 has a pivotal 

role in the formation of 3D capillary‑like networks by tumor 
cells, a cellular mechanism denoted as vasculogenic mimicry 
(VM) in cancer cells. This phenomenon was first described 
in melanoma cells as a novel blood and oxygen supply event 
in which tumors can feed themselves. Of note, VM operates 
simultaneously with angiogenesis. During VM, tumor cells 
form patterned 3D channel‑like structures which combine 
with blood vessels (mosaic pattern), challenging the initial 
assumption that angiogenesis is the only mechanism by 
which tumors acquire nutrients and oxygen. These pseudo‑3D 
channels contain plasm, erythrocytes and blood flow with 
a hemodynamics resembling angiogenesis  (48). miR‑204 
targets multiple signaling transducers involved in VM and 
angiogenesis in invasive triple negative MDA‑MB‑231 
and Hs‑578T breast cancer cells. Ectopic restoration of 
miR‑204 in MDA‑MB‑231 cells leads to a potent inhibition 
of hypoxia‑induced VM and reduction of number of branch 
points and capillary tubes (49). Finally, miR‑204 reduces the 
expression and phosphorylation of 13 proteins involved in 
PI3K/AKT, RAF1/MAPK, VEGF, and FAK/SRC signaling. 
Functional studies confirmed that miR‑204 targets PI3Kα 
and c‑SRC transducers, indicating that miR‑204 exerts a 
fine‑tuning regulation of the PI3K/AKT/FAK axis critical in 
VM formation and angiogenesis (49).

AngiomiRs in pancreatic cancer. Pancreatic cancer repre-
sents the fourth leading cause of cancer‑related deaths in the 
United States, and with a 5‑year survival rate of only 7%, it 
has the worst outcome for cancer patients  (50). Pancreatic 
ductal adenocarcinomas (PDACs) arise from the exocrine 
pancreas, represent 75% of pancreatic tumors, and are usually 
diagnosed at advanced stages (51). The vasculature of these 
tumors appears to be highly disorganized and hypoxic as a 
result of a characteristic desmoplasia, in which excessive 
proliferation of activated fibroblasts and overproduction 
of extracellular matrix proteins increase interstitial pres-
sure and cause vascular disruption (52). Hypoxia‑associated 
angiomiRs, such as miR‑21, miR‑200c and miR‑199, are 
known to be dysregulated in PDACs (53). Hypoxia promotes 
pancreatic cancer cell migration, invasion and angiogenesis 
in vitro, and also induces miR‑21 expression  (54). miR‑21 
overexpression has been reported in pancreatic carcinoma 
cell lines and tumors (55‑57). Clinical studies have associ-
ated miR‑21 with poor clinical outcomes and resistance to 
chemotherapy; miR‑21 plasma levels also seem to correlate 
with advanced stage, metastasis and shorter survival in 
patients with PDAC (57). Bao et al (58) recently reported that 
transfection of a miR‑21 antagomiR resulted in an increase 
of phosphatase and tensin homolog (PTEN) expression in 
pancreatic cancer cells, a potent suppression of AKT and 
ERK signaling pathways, and a reduction of angiogenesis, as a 
result of HIF1α and VEGF downregulation. Pancreatic cancer 
cells induce tumor‑associated fibroblasts to express miR‑21 as 
a mechanism to enhance their own invasiveness; and higher 
expression of stromal miR‑21 correlates with metastasis in 
PDAC patients (59). Increased levels of HIF1α are associated 
with advanced tumor stages in PDAC patients (60). Notably, a 
HIF‑1α single‑nucleotide polymorphism (SNPs), rs2057482, 
was reported as an important genetic variant for PDAC risk 
and poor prognosis  (61). This SNP was located near the 
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miR‑199a seed‑binding site in the 3' UTR of HIF1α; and 
the presence of a CC genotype decreased miR‑199a‑induced 
repression of HIF‑1α. Although the specific role of miR‑199a 
in PDAC vasculature is unknown, miR‑199a modulates the 
ETS‑1/MMP1 pathway in ECs and has been described as an 
important regulator of angiogenic processes (62).

Loss of function of tumor suppressor p53 occurs in 50‑75% 
of PDACs (63). miR‑34a is a direct transcriptional target of 
p53, whose expression is altered in pancreatic cancer (64,65). 
The epigenetic inactivation of miR‑34a by CpG methylation is 
a common event during tumor progression (65). An analysis 
on the methylation status of the miR‑34a gene revealed that, 
in 64% of the pancreatic tumors studied, miR‑34a was methyl-
ated, suggesting that miR‑34a CpG methylation could be an 
alternative mechanism to p53 inactivation in PDAC progres-
sion (66). Of note, miR‑34a has been demonstrated to regulate 
genes involved in angiogenesis, cell‑cycle progression, cellular 
proliferation, apoptosis and DNA repair (67). Additionally, 
miR‑34a expression impairs endothelial progenitor cell 
(EPC)‑mediated angiogenesis by repressing its target, silent 
information regulator 1 (SIRT1), which induces senes-
cence (68). Further studies are needed to understand the role 
of miR‑34a in the regulation of angiogenesis in PDAC. 

AngiomiRs in lung cancer. Lung cancer represents the 
first cause of cancer‑related mortality in men and women. 
Approximately 80% of lung tumors are non‑small cell lung 
cancer (NSCLC) (69). Angiogenic factors are prognostic indi-
cators for tumor aggressiveness and survival in NSCLC, and 
angiogenic inhibitors are currently being used as treatment 
with varying results (70‑72). A recent study by Chen et al (73) 
highlighted the importance of miRNAs in the development and 
maintenance of tumor vasculature by subcutaneously injecting 
Dicer1−/− NSCLC cells into flanks of nude mice. Furthermore, 
several angiomiRs have been reported with altered expres-
sion levels in NSCLC, including miR‑126, miR‑21, miR‑210, 
miR‑106a, miR‑155, miR‑182 and miR‑424 (74). For instance, 
several studies reported that miR‑126 is downregulated in 
NSCLC tumors and lung cancer cell lines, and high miR‑126 
expression has been associated with lymph node status, poor 
survival and high VEGFA expression  (75,76). In addition, 
miR‑126 emerged as part of an angiogenic signature in a cohort 
of 335 NSCLC patients (74). Liu et al (75), demonstrated that 
transducing miR‑126 into A549 tumor cells using a lentiviral 
vector produces smaller tumor nodules through downregula-
tion of its direct target VEGFA and cell arrest induction. A 
possible anti‑angiogenic role of miR‑126 and miRNA let‑7b 
in lung cancer development was suggested by a study in which 
miR‑126 and let‑7b downregulation correlated with higher 
microvessel density (MVD) in tumor and surrounding stroma 
when compared to non‑tumor tissues (77). Notably, members 
from the let‑7 family are known players in hypoxia‑induced 
angiogenesis and their downregulation has also been linked to 
poor survival outcomes of lung cancer patients (78‑80).

Hu  et  al  (81) reported that miR‑128 expression was 
significantly reduced in NSCLC tissues and cancer cells, and 
correlated with NSCLC differentiation, pathological stage 
and lymph node metastasis. Restoring miR‑128 expression 
in A549 cells inhibited angiogenesis, lymphangiogenesis 
and tumorigenicity in nude mice. These effects appear to 

be mediated by direct binding of miR‑128 to the VEGFC 
3'UTR, and by inhibiting the activation of ERK, AKT and p38 
signaling pathways. miR‑141 is another miRNA that indirectly 
modulates VEGFA levels in lung cancer cells through direct 
repression of its target Kruppel‑like factor 6 (KLF6) (82). High 
levels of miR‑141 also correlate with a higher number of blood 
vessels suggesting that miR‑141 promotes angiogenesis in lung 
tumors.

Brain metastasis is common among NSCLC patients (83). 
Analysis of miRNAs expressed in NSCLC patients identified 
miR‑378 as being differentially expressed in patients with or 
without brain metastasis (84). In vivo, miR‑378 overexpressing 
tumors are larger, more vascularized and metastatic (84,85). 

Mao et al (86), reported a pro‑angiogenic mechanism in 
which miR‑494, secreted by lung cancer cells and delivered 
into ECs via microvesicles, increased EC migration and 
angiogenesis. miR‑494 is induced by hypoxia and its inhibi-
tion with antagomiRs blocked angiogenesis and tumor growth 
in A549 xenografts. The angiogenic effect of miR‑494 was 
demonstrated to be mediated by direct targeting of PTEN and 
subsequent activation of the AKT/eNOS pathway. miR‑497 
was also downregulated in NSCLC tumors and cell lines, and 
displayed an inverse correlation with its downstream target 
hepatoma‑derived growth factor (HDGF) (87). In lung cancer 
cells, restoring miR‑497 expression had profound effects on 
cell proliferation and colony formation resulting from HDGF 
modulation. Furthermore, ectopic expression of miR‑497 in a 
mouse xenograft model significantly inhibited tumor growth 
and angiogenesis, highlighting its role as an angiomiR in lung 
cancer.

The cluster miR‑132/212 is located within the same intron 
of a non‑coding gene on human chromosome 17, and its dele-
tion increases angiogenic responses in vivo  (88). miR‑132 
expression is significantly downregulated in NSCLC clinical 
specimens and cell lines, and miR‑212 silencing is frequent 
in lung cancer and closely correlates with stage of disease in 
NSCLC patients (89,90). A study by Luo et al (91) evaluated the 
effect of the miR‑132/212 cluster in subcutaneous xenografts 
of human lung cancer H1299 cells in nude mice. The results 
demonstrated that miR‑132/212 cluster expression inhibited 
tumor growth by increasing p21 expression, downregulating 
CyclinD1, and decreasing MVD. These findings propose an 
important role of miR‑132 and miR‑212 in tumor angiogen-
esis; however the exact mechanisms by which these miRNAs 
reduce MVD remain unknown.

Tissue inhibitor of metalloproteinases‑1 (TIMP1) has 
emerged as a pro‑angiogenic factor responsible for miR‑210 
upregulation in a CD63/PI3K/AKT/HIF1‑dependent pathway 
in lung adenocarcinoma cells (92). Elevated TIMP‑1 levels 
correlate with adverse prognosis in NSCLC patients  (93). 
Cui et al (92) have reported that TIMP‑1 overexpression in 
A549L cells increases angiogenesis in tumor xenografts, 
results in exosomal miR‑210 accumulation, and promotes 
capillary tube formation in HUVECs. Additionally, fibroblast 
growth factor receptor‑like 1 (FGFRL1), E2F transcription 
factor 3 (E2F3), vacuole membrane protein 1 (VMP1), Rad52 
and succinate dehydrogenase complex subunit D (SDHD) are 
miR‑210 downstream targets downregulated in the presence 
of TIMP‑1, suggesting that the pro‑tumorigenic functions of 
TIMP‑1 are partly mediated by miR‑210.
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AngiomiRs in colorectal cancer. Colorectal cancer (CRC) is the 
third most commonly diagnosed cancer (94). Several studies 
based on miRNAs profiling demonstrate that a large number 
of miRNAs are altered in this disease (95). In accordance with 
data from other tumors, miR‑126 is downregulated in primary 
CRC tissues and cell lines (96). Increased promoter methyla-
tion of EGFL7, the miR‑126 host gene, was proposed as the 
mechanism responsible for miR‑126 downregulation in CRC 
cells (97). Restoration of miR‑126 inhibited migration and 
invasion of CRC cells, and reduced angiogenesis by repressing 
VEGF. By contrast, high levels of miRNA‑126 are associated 
with higher MVD accompanied with high VEGFR2 expres-
sion (98). In addition, high levels of miR‑126 in CRC tumors 
were associated with increased progression‑free survival of 
patients in a randomized phase III study (99). 

Several studies have demonstrated that miR‑21 is 
frequently overexpressed in serum and tumor tissues from 
CRC patients (100‑102). Since miR‑21 is a negative regu-
lator of multiple tumor suppressor genes, including PTEN, 
TIMP3, TPM1, maspin and programmed cell death protein 4 
(PCDP4), some research groups have focused on the effects 
of anti‑miR‑21 therapies in CRC (103). Silencing of miR‑21 
in CRC cells using miR‑21 antagomiRs affected cell cycle 
and cell viability and activated apoptosis (104). In addition, 
anti‑miR‑21 treatment also inhibited capillary‑like networks 
formation in vitro. Bridge et al (105) reported a functional 
role for miR‑30 in the regulation of angiogenesis by targeting 
Delta‑like 4 (DLL4), and demonstrated that introduction 
of exogenous miR‑30 in ECs or into zebrafish embryos 
promoted angiogenic sprouting. DLL4 is a membrane‑bound 
ligand from the Notch signaling family, restricted to tip cells, 
which regulates vessel sprouting and branching in response 
to angiogenic factors during vascular development and 
angiogenesis (106).

Thrombospondin 1 (TSP1), a protein mainly expressed in 
tumor stroma, inhibits angiogenesis and tumor growth via the 
TGFβ pathway in CRC (107). Several reports have suggested 
that miR‑182 and miR‑194 (miR‑17‑92 cluster) contribute 
to angiogenesis through a mechanism that represses TSP1 
in CRC. The miR‑17‑92 cluster is upregulated in CRC and 
correlates with progression from colorectal adenoma to 
adenocarcinoma  (108). According to Dews  et  al  (109), 
K‑RAS‑transformed p53‑null mouse colonocytes form poorly 
vascularized tumors, which were reverted to highly vascular-
ized tumors with increased growth when transduced with a 
Myc‑encoding retrovirus. Behind these Myc‑dependent effects 
was the upregulation of miR‑17‑92 cluster, which appears 
to promote angiogenesis through direct repression of TSP1 
and connective tissue growth factor (CTGF) by miR‑18a and 
miR‑19, respectively. In addition, miR‑182 binds to the TSP1 
3'UTR in CRC cells and decreases nuclear translocation of 
early growth response 1 (EGR1) (110). Expression of miR‑194 
is known to be gastrointestinal tract‑specific and p53‑depen-
dent; loss of p53 in HCT116 cells significantly reduces 
miR‑194 levels (111,112). A study by Sundaram et al (112) 
described miR‑194 as intrinsically angiogenic. Furthermore, 
transient overexpression of miR‑194 in HCT116/THBS1 
cells resulted in high angiogenesis in vitro. Likewise, stable 
expression of miR‑194 in RAS‑induced murine colon carci-
nomas, augmented MVD and vessel sizes. Notably, these 

pro‑angiogenic effects of miR‑194 in vivo did not translate 
into increased tumor growth, presumably due to regulation of 
other miR‑194 targets and its co‑expression with miR‑215, a 
known inhibitor of the cell cycle (112,113).

During hypoxia the miR‑15‑16 cluster is repressed by 
c‑Myc, which results in elevated tumor angiogenesis and 
metastasis by inducing the expression of fibroblast growth 
factor 2 (FGF2) protein (113,114). In addition, systemic delivery 
of miR‑15a/16‑1 resulted in a significant reduction of tumor 
growth and angiogenesis in colon cancer xenografts (115). 
Levels of miR‑15a and miR‑16‑1 in CRC cells inversely corre-
late with their target cyclin B1 (CCNB1), a cell cycle regulatory 
protein associated with tumorigenic and metastatic features of 
CRC cells (115,116).

Activation of the β‑catenin/WNT signaling pathway is a 
key event in the development of CRC and has been linked to 
angiogenic processes in the tumor microenvironment (117). 
miR‑29b targets transcription factor 7‑like 2 (TCF7L2), 
SNAIL and B‑cell CLL lymphoma 9‑like protein (BCL9L) 
and it is associated with decreased translocation of β‑catenin 
to nuclei in SW‑480 colorectal adenocarcinoma cells (118,119). 
Ectopic expression of miR‑29b reduces the ability of SW‑480 
to induce tube formation in vitro, suggesting that miR‑29b 
participates in angiogenic processes. Restoring miR‑29b 
expression suppresses CRC tumor invasion and metastasis by 
reversing epithelial‑mesenchymal transition (EMT) and by 
targeting MMP2 and T‑cell lymphoma invasion and metas-
tasis 1 (TIAM1) (118‑120). miR‑130b is another angiomiR 
that is overexpressed in advanced CRCs and promotes tumor 
growth through induction of EMT and angiogenesis  (121). 
Tumors derived from cells that express high levels of 
miR‑130b are highly vascularized. Notably, a direct func-
tional target of miR‑130b is peroxisome proliferator‑activated 
receptor gamma (PPARγ), a CRC‑independent prognostic 
factor involved in cell differentiation and growth that is highly 
expressed in tumor endothelium (121,122).

Both miR‑27a and miR‑27b have been described as 
angiogenesis modulators (123,124). The role of miR‑27a in 
CRC has been controversial. miR‑27a has been detected as 
upregulated both in CRC cell lines and clinical tumors, and 
is considered oncogenic in several studies (125,126). miR‑27a 
was also reported as upregulated in adenoma and its expres-
sion increased during progression to adenocarcinoma (127). In 
addition, tumors derived from CRC cells with high expression 
of miR‑27a correlated with low calreticulin expression and 
infiltration of CD8+ T cells, and were associated with distant 
metastasis and poor prognosis. Through a 2DE‑DIGE proteomic 
analysis, miR‑27a was identified as a post‑transcriptional 
regulator of protein‑encoding genes involved in MHC class I 
cell surface exposure which directly repressed calreticulin and 
inhibited cell proliferation and angiogenesis (127). By contrast, 
Bao et al (128) reported that miR‑27a levels were significantly 
reduced in CRC tissues and cell lines. miR‑27b also regulates 
tip cell fate, capillary sprouting and angiogenic mediators like 
semaphorin 6A, DLL4, SPRY2 and VEGFC (123,124). In addi-
tion, the sphingosine‑1‑phosphate phosphatase 1 (SGPP1) and 
SMAD2 genes were reported as two targets of mR‑27a (128). 

miR‑27b expression was found downregulated in CRC tissues 
and in SW620 (CD133+) cancer stem cells suggesting a role in 
stemness (129). Additionally, miR‑27b restoration induced the 
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production of largely necrotic xenografts with fewer capillary 
blood vessels and reduced tumor growth.

miR‑192 inhibited metastasis by repressing key pro‑meta-
static genes, including B‑cell lymphoma 2 (BCL2), zinc finger 
E‑box binding homeobox 2 (ZEB2) and VEGFA in HCC (130). 
Further analysis of tumors from CRC patients revealed an 
inverse correlation between miR‑192 expression and advanced 
tumor stages. miR‑192 expression in models of CRC progres-
sion suppressed liver metastasis through VEGFA repression 
which resulted in reduced vascularization of primary tumors 
in vivo. In addition, VEGF expression and decreased AKT 
activation by miR‑145 have been reported in mouse CRC 
xenograft tumors, and miR‑145 expression inhibited tumor 
growth and angiogenesis (129). Furthermore, in CRC tissues, 
miR‑145 levels inversely correlated with two of its known 
targets: N‑RAS and insulin receptor substrate 1 (IRS1) (131). 
Finally, it was reported that miR‑145 reduced HIF1α and 
VEGF levels, potentially through repression of its upstream 
regulator p70S6K1 (132).

The insulin‑like growth factor 1 receptor (IGFIR) is a 
transmembrane protein that activates downstream effectors 
involved in angiogenesis and tumorigenesis (133). miR‑143 
levels were significantly decreased in plasma samples and 
CRC tissues, and inversely correlated with IGF‑IR levels 
in patients  (134). miR‑143 inhibited IGF‑IR by binding to 
its 3'UTR, and also inactivated AKT, HIF‑1α and VEGF in 
SW1116 cells. Additionally, when these miR‑143‑expressing 
cells were subcutaneously injected into nude mice, they 
produced smaller tumors with reduced VEGF expression. 
Ectopic expression of miR‑143 in SW1116 cells significantly 
suppressed angiogenesis in a chorioallantoic membrane 
system. Similarly, miR‑23b, a repressor of prometastatic 
genes frizzled class receptor (7FZD7) and mitogen‑activated 
protein kinase kinase kinase 1 (MAP3K1, was downregulated 
in CRC. Using a genome‑wide functional screening, miR‑23b 
was identified as an important suppressor of angiogenesis, 
tumor growth and invasion (135).

Activation of TGFβ/SMAD signaling induces EMT, a 
frequent event during cancer progression (136). Two angi-
omiRs, miR‑885‑3p and miR‑1246, both target the SMAD 
pathway in CRC. miR‑885‑3p expression impairs the growth 
of HT‑29 xenografts in nude mice and suppresses angiogenesis 
by disrupting the bone morphogenetic protein receptor type 
1A (BMPR1A) and SMAD/ID1 signaling (137). miR‑1246 
was found in CRC‑derived microvesicles which induce prolif-
eration, migration and tube formation in HUVECs (138). The 
angiogenic identity of these microvesicles was attributed to 
activation of SMAD1/5/8 signaling in HUVECs by miR‑1246 
and TGF‑β. This study suggests that CRC‑derived microvesi-
cles contribute to tumor angiogenesis.

AngiomiRs in ovarian cancer. Ovarian cancer (OC) is the 
second most common and the most fatal gynecologic cancer in 
women (139). Several research groups have identified distinct 
miRNAs involved in angiogenesis, tumorigenesis, metastasis 
and chemoresistance of OC (140‑142). For instance, miR‑199a, 
miR‑125b and miR‑145 have a key role in HIF1α‑mediated 
angiogenesis in OC. He et al (142) demonstrated that miR‑199a 
and miR‑125b were downregulated in epithelial ovarian carci-
noma compared with normal tissues, and that they repressed 

angiogenesis by directly targeting pro‑angiogenic factors 
HIF1α and VEGF, through AKT/p70S6K1/HIF1α signaling. 
Similarly, miR‑145 was downregulated in OC tissues and cell 
lines and inhibited angiogenesis by targeting p70S6K. miR‑145 
inhibited the expression of both HIF1α and VEGF (132). The 
expression of miR‑497 was lower in OC tissues in comparison 
with normal tissues. Restoration of miR‑497 resulted in 
decreased angiogenesis which was associated to suppression 
of VEGFA via PI3K/AKT and MAPK/ERK signaling path-
ways (143). 

Another important mechanism of carcinogenesis mediated 
by hypoxia is the acquisition of resistance to chemotherapy. 
Several miRNAs, such as miR‑484, miR‑642 and miR‑217, 
have been demonstrated to modulate VEGFB and VEGFR2 
and predict tumor chemoresistance and increased angiogenesis 
in ovarian cancer (11). Furthermore, expression of miR‑378 is 
decreased in OC cell lines and tumors compared with normal 
tissues. miR‑378 inhibits the expression of genes associated 
with angiogenesis and apoptosis. Furthermore, the inhibition 
of ALCAM and EHD1 by miR‑378 reduces the expression of 
the multidrug resistance gene (MDR) and is associated with 
progression‑free survival (PFS) in a subgroup of patients who 
received anti‑angiogenic therapy (144). 

miRNAs may also modulate transcriptions factor func-
tion in ovarian cancer. Restoration of miR‑27a represses 
VEGF expression, as well as COX2 and SP1 transcription 
factors  (145). In addition, the miR‑200 family, including 
miR‑200a, b and c, inhibit EMT by downregulating ZEB1 
and ZEB2 in diverse types of cancer, including ovarian 
tumors  (146). Of note, miR‑200 blocks angiogenesis by 
targeting IL8 and CXCL1 secreted by the endothelial cells, 
suggesting that miR‑200  members can have therapeutic 
effects on angiogenesis and EMT‑driven metastasis in ovarian 
cancer (147). Another study by Imam et al (148) demonstrated 
that genomic loci encoding miR‑204 were frequently lost in 
multiple malignancies, including ovarian cancer. The restora-
tion of miR‑204 levels in ovarian cancer cells reduced overall 
tumor growth, cell proliferation and metastasis. In addition, 
the inhibition of brain‑derived neurotrophic factor (BDNF) by 
miR‑204 reduced angiogenesis and invasiveness, indicating 
that it acts as a tumor suppressor (148). 

4. Clinical applications of angiomiRs in cancer therapy

A large number of anti‑angiogenic agents are currently being 
tested for the treatment of diverse types of human malignan-
cies. In the last decade, the Food and Drug Administration 
(FDA) has approved various anti‑angiogenetic agents for 
the treatment of cancer, including monoclonal antibodies 
(e.g. bevacizumab) and tyrosine kinase inhibitors (e.g. suni-
tinib, sorafenib) (149). The anti‑angiogenic activity of these 
drugs and antibodies are derived from their ability to block 
key angiogenic proteins, including VEGFA, VEGFR1/2/3, 
PDGFR1/2, p38, MAPK and FGFR1. 

Currently, other anti‑angiogenic compounds are being tested 
in clinical trials, although their approval might be jeopardized 
by unexpected toxicity, and resistance developing with molec-
ular mechanisms poorly understood. The increasing research 
evidence supports an important role of miRNAs in angiogen-
esis, however this molecular knowledge needs to be properly 
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translated into improvement of clinical management for cancer 
patients. At the pre‑clinical level, several studies showed prom-
ising results in the potential clinical applications of miRNAs 
targeting angiogenesis. For instance, a previous report indicated 
that restoring miR‑26 expression had dramatic effects in terms 
of tumor growth inhibition in a mouse model of hepatocelular 
carcinoma without remarkable toxicity (150). In addition, a 
recent study demonstrated that miR‑204‑expressing breast 
cancer cells suppressed angiogenesis in a nu/nu mice model (47). 
An in vivo analysis also demonstrated that the interplay between 
HMOX1 and miR‑378 significantly modulates NSCLC progres-
sion and angiogenesis; miR‑378‑overexpressing tumors were 
larger, more vascularized and more metastatic, suggesting that 
miR‑378 may serve as a novel therapeutic target (85). These 
and others findings certainly suggest that modulating miRNA 
expression could be a promising anti‑angiogenic strategy 
in mouse models of cancer, however, further evidence is still 
needed to demonstrate successful application and low system 
toxicity in human patients.

At the clinical level, several trials using miRNAs as 
therapeutic agents are under development. For instance, the 
first‑in‑human phase I study called MesomiR‑1 used TargomiRs 
as 2nd or 3rd line treatment for patients with recurrent malig-
nant pleural mesothelioma and non‑small cell lung cancer 
(ClinicalTrials.gov identifier, NCT02369198). TargomiRs are 
novel targeted minicells containing: A miR‑16 mimic (the 
miR‑16 family is a tumour suppressor with key roles in cell 
proliferation, migration and angiogenesis in a multiple cancer 
types); an EnGeneIC delivery vehicle [EDV; nonliving bacterial 
minicell carriers (nanoparticles)]; and a moiety to targets EDVs 
to EGFR‑expressing cancer cells with an anti‑EGFR bispecific 
antibody. For this study, 26 pleural mesothelioma patients were 
recruited at three major cancer centers in Sydney (Australia), 
received at least one Targomir dose (the maximum tolerated 
dose was 5x109 TargomiRs once weekly), the safety profile 
was acceptable, and 1 of 22 patients had an objective response 
that lasted 32 weeks. The results were recently published by 
van Zandwijk et al (151). The authors concluded an accept-
able safety profile and early signs of activity of TargomiRs 
in patients, and highlighted the urgency for additional studies 
of TargomiRs in combination with chemotherapy or immune 
checkpoint inhibitors. Many of the side effects observed in 
this trial consisted of inflammatory reactions, which strongly 
supports the idea of an immunologic effect. In conclusion, 
although TargomiRs‑based therapy was an example of a 
successful first‑in‑human use of a miRNA‑based therapy 
for pleural mesothelioma patients, concerns about toxic and 
immune effects should be fully addressed.

Another study in humans focuses in the assessment of the 
potential therapeutic applications of tumor suppressor miR‑34a, 
a non‑coding RNA that downregulates the expression of multiple 
oncogenes across multiple signaling pathways, as well as genes 
involved in tumor immune evasion, angiogenesis and metas-
tasis in endothelial cells and many malignancies (68,152‑154). 
This first‑in‑human, phase I study assessed the maximum 
tolerated dose (MTD), safety, pharmacokinetics, and clinical 
activity of MRX34, a liposomal miR‑34a mimic, in patients 
with advanced solid tumors (ClinicicalTrials.gov identifier, 
NCT01829971). Adult patients with solid tumors refractory 
to standard treatment were enrolled in a standard 3 + 3 dose 

escalation trial. MRX34 was administered intravenously twice 
weekly for three weeks in 4‑week cycles. Forty‑seven patients 
with various solid tumors, including hepatocellular carcinoma 
were enrolled. The authors concluded that MRX34 treatment 
with dexamethasone premedication was associated with accept-
able safety and exhibited evidence of antitumor activity in a 
subset of patients with refractory advanced solid tumors (155). 

5. Conclusions

Basic research into the roles of miRNAs in tumor angiogen-
esis has been increasing in the last decade. Although definitive 
clinical evidence about the potential therapeutic applications 
of angiomiRs in patients is still lacking, there is no doubt that 
these small RNAs deserve attention as attractive targets for 
development of novel anticancer drugs. An increased amount 
of anti‑angiogenic compounds is currently in preclinical 
and clinical development for personalized cancer therapy. 
However, resistance to angiogenesis inhibitors is real, and 
highlights the need to identify alternative agents. Deciphering 
the molecular mechanisms of angiogenesis inhibition by 
miRNAs is imperative, as the successful translation of novel 
inhibitors to the clinic greatly depends on an in‑depth under-
standing of the biology and function of miRNAs in tumor and 
endothelial cells. As chemotherapy is angiogenesis‑dependent, 
the implementation of angiogenesis inhibitors to conventional 
therapies may have additional advantages. For instance, 
miRNAs targeting endothelial cells may have advantages over 
tumor‑specific therapies, as they can overcome drug resistance 
the least in preclinical models. 

The present review has summarized the current knowledge 
regarding the angiomiRs deregulation and functional mecha-
nisms in diverse types of human cancers, which may provide 
a guide in their potential utilization as therapeutic targets in 
aggressive tumors. Several miRNAs have anti‑angiogenic 
properties by targeting key angiogenic factors, including VEGF, 
HIF1α, PDGF, FGF, EGF, as well as MAPK, PI3K and TGFβ 
signaling, which offers a wide landscape of therapeutic oppor-
tunities. Finally, first‑in‑humans studies derived from controlled 
clinical trials showed an acceptable safety profile and antitumoral 
activity of miRNAs in patients, and highlighted the urgency for 
additional studies prior to potential routine clinical applications. 
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