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Integrative genomic analyses of WNT11:
Transcriptional mechanisms based on canonical
WNT signals and GATA transcription factors
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Abstract. We and others previously cloned and characterized
vertebrate WNT ] orthologs, which are involved in gastrulation,
neurulation, cardiogenesis, nephrogenesis, and chondrogenesis
during fetal development. WNT11 orthologs activate both
canonical and non-canonical WNT signaling cascades
depending on the expression profile of WNT receptors, such
as Frizzled family members, LRP6, ROR2, and RYK. Human
WNT11 is expressed in breast cancer, gastric cancer, esophageal
cancer, colorectal cancer, neuroblastoma, Ewing sarcoma, and
prostate cancer. Canonical WNT signals and GATA family
members are involved in WNT1 transcription during embryo-
genesis of model animals; however, precise mechanisms of
WNT11 expression remain unclear. Here, refined integrative
genomic analyses of WNT/I are carried out to elucidate the
mechanisms of WNTII transcription. The WNT11 gene was
found to encode two isoforms by using alternative first exons.
WNTI11 isoform A (NM_004626.2 RefSeq) consists of
exons 2, 3,4, 5 and 6, whereas WNT11 isoform B consists of
exons 1, 2, 3, 4,5 and 6. We identified double TCF/LEF-
binding sites within the proximal promoter regions (-48-bp
position from the TSS of human WNT1 isoform B and -43-bp
position from the TSS of human WNT11 isoform A), and also
double GATA-binding sites within intron 2 of human WNT11
gene (+933-bp and +5001-bp positions from TSS of human
WNT11 isoform A). Double TCF/LEF- and double GATA-
binding sites within the regulatory regions of human WNT/]
gene were conserved in other mammalian WNT/1 orthologs.
These facts indicate that canonical WNT signals and GATA
family members directly upregulate WNTI] transcription.
Canonical WNT-induced WNT11 activates non-canonical
WNT signaling cascades to induce cellular movement, and also
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activates the Ca**-MAP3K7-NLK signaling cascade to break
the canonical WNT signaling. Canonical WNT-to-WNT11
signaling loop is involved in cellular migration during embryo-
genesis as well as tumor invasion during carcinogenesis.

Introduction

WNT family members are secreted proteins with glycolipid
modifications, which are involved in embryogenesis, adult-
tissue homeostasis, and carcinogenesis (1-5). WNT1, WNT2,
WNT2B, WNT3, WNT3A, WNT4, WNT5A, WNT5B, WNT6,
WNT7A, WNT7B, WNTS8A, WNTSB, WNT9A, WNT9YB,
WNTI10A, WNT10B, WNT11, and WNT16 genes are conserved
in the mammalian genomes (6), whereas additional wnt family
genes other than the conserved 19 genes exist in the non-
mammalian vertebrate genomes.

There is growing evidence that WNT signals are trans-
duced to the canonical and non-canonical WNT signaling
cascades in a context-dependent manner (7-10). LRPS, LRP6,
and Frizzled family members are involved in the canonical
WNT signaling cascade to activate the transcription of target
genes based on the B-catenin-TCF/LEF complex, whereas
RORI1, ROR2, RYK, and Frizzled family members are
involved in the non-canonical WNT signaling cascades,
including DVL-RhoA-ROCK, DVL-RhoB-Rab4, DVL-Rac-
JNK, DVL-aPKC, Ca2?-Calcineurin-NFAT, Ca**-MAP3K7-
NLK, Ca>**-MAP3K7-NF-kB, and DAG-PKC signaling
cascades (1-5,11-17).

We and other groups have cloned and characterized
vertebrate WNT11 orthologs (18-23). WNT11-related gene,
wntl Ir, exists in the zebrafish, Xenopus, and chicken genomes,
but not in the mammalian genomes (24-26). WNT11 orthologs
activate both canonical and non-canonical WNT signaling
cascades depending on the expression profile of WNT
receptors, such as Frizzled family members, LRP6, and RYK
(27-34). Vertebrate WNT11 homologs are involved in fetal
development, especially in gastrulation (23,35-37), neural
crest migration (26,38), cardiogenesis (39-43), nephrogenesis
(44 45), and chondrogenesis (46,47).

WNTI1 is expressed in several types of human cancer.
We reported expression of human WNT/! in breast cancer,
gastric cancer, esophageal cancer, and embryonal tumor
(1,19). We also reported upregulation of WNT/1 in some cases
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Figure 1. Integrative genomic analyses of WNT11. Schematic representation of WNT'11 gene at human chromosome 11q13.5 is shown in the upper part. WNT'11
gene encodes two splicing variants by using alternative first exons. Conserved transcription factor-binding sites within WNT 1 regulatory regions are shown in the

lower part. Hs, human; Pt, chimpanzee; Ma, macaque; Mm, mouse; Rn, rat.

of primary colorectal cancer (19). Other groups then reported
expression of human WNT/! in neuroblastoma (48), Ewing
sarcoma (49), and prostate cancer (50). Because precise
mechanisms of WNT11 expression remain unclear, refined
integrative genomic analyses of WNTI1 were carried out to
elucidate the mechanisms of WNT1 1 transcription.

Materials and methods

Comparative genomic analyses. Human genome sequences
corresponding to human WNT11 RefSeq (NM_004626.2)
were searched for by using BLAST programs, as previously
described (51,52). WNT11 expressed sequence tags (ESTs)
were also searched for to identify WNT11 splicing variants,
and also to determine the putative transcription start site (T'SS)
(53,54). Conserved transcription factor-binding sites within
WNT11 promoters were then searched for based on manual
inspection, as previously described (55,56).

Regulatory network analyses. The literature on WNT,
Hedgehog, and Notch signaling molecules and GATA family
transcription factors in PubMed and Medline databases was
critically evaluated to extract knowledge on the regulation of
TCF/ LEF, GLI, FOX, CSL, and GATA transcription factors.
The mechanisms of WNTII transcription were then
investigated based on our data of conserved transcription
factor-binding sites within WNT1 promoters and in-house
knowledgebase of transcription factors regulated by the stem-
cell signaling network.

Results

WNT11 splicing variants transcribed by using alternative
promoters. BLAST programs using NM_004626.2 RefSeq as
a query sequence revealed that human WNT11 gene is located
within human genome sequence AP000785.4, as previously
described (57). BLAST programs using the WNT11 genome
sequence as a query sequence next revealed that 11 ESTs are
transcribed from the same first exon of human WNT1] gene
as NM_004626.2 RefSeq, and that three ESTs are transcribed
from alternative first exon located about 4-kb upstream
position compared with NM_004626.2 RefSeq. DA812463.1,
AW009544.1, and AW294719.1 ESTs transcribed from the
alternative first exon are spliced to the first exon of
NM_004626.2 RefSeq. To distinguish two alternative first
exons of human WNT11 gene, the first exon of NM_004626.2
RefSeq was renamed exon 2, and the alternative first exon
was designated exon 1. WNT11 isoform A (NM_004626.2
RefSeq) consists of exons 2, 3,4, 5 and 6, whereas WNT11
isoform B consists of exons 1,2,3,4,5 and 6 (Fig. 1).

Comparative genomics on mammalian WNTI1 orthologs.
Chimpanzee WNTI1 gene, macaque WNT/I] gene, mouse
Wntll gene, and rat Wntll gene are located within
NW_001222304.1, NW_001100387.1, AC093351.8 and
NW_047561.1 genome sequences, respectively. Comparative
genomic analyses of mammalian WNT1 orthologs revealed
that the WNT11 promoter B region located at the 5'-adjacent
position of exon 1, the WNT11 promoter A region located at
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Figure 2. Canonical WNT-to-WNT11 signaling loop. Canonical WNT signals directly induce WNT11 upregulation. WNT11 activates non-canonical WNT
signaling cascades to induce cellular movement. WNT11 also activates the Ca>*-MAP3K7-NLK signaling cascade to break the canonical WNT signaling.
Canonical WNT-to-WNT11 signaling loop is involved in cellular migration during embryogenesis, and tumor invasion during carcinogenesis.

the 5'-adjacent position of exon 2, and WNT/ intron 2 were
well conserved in mammalian WNT11 orthologs (data not
shown). However, the genome sequence around the WNT11
promoter B region was absent in the NW_001222304.1
chimpanzee genome draft sequence due to sequencing gap,
and the genome sequence corresponding to a part of WNT/1
intron 2 was absent in the NW_001100387.1 macaque genome
draft sequence due to sequencing gap.

Conserved transcription factor-binding sites within WNTI 1
regulatory regions. Based on manual inspection, we identified
TCF/LEF-binding sites within the promoter B region (-48-bp
position from the TSS of human WNT11 isoform B), and also
within the promoter A region (-43-bp position from the TSS
of human WNT11 isoform A). We also found double GATA-
binding sites within intron 2 of human WNT/1 gene (+933-bp
and +5001-bp positions from TSS of human WNTI]
isoform A). Double TCF/LEF- and double GATA-binding
sites within the regulatory regions of human WNTII gene
were conserved in other mammalian WNT' 1 orthologs (Fig. 1).

Canonical WNT signals involved in WNTI1 upregulation.
Lin et al reported that B-catenin is required for Wntl1 up-
regulation in cardiac progenitors based on the observation in
conditional Ctnnbl knockout mice (58). Ueno et al reported
that recombinant Wnt3a protein induces Wntl 1 upregulation
in embryoid bodies derived from mouse embryonic stem (ES)
cells (42). Gros et al reported that electroporation of plasmid
containing activated form of B-catenin cDNA in the lateral

domain of newly formed somites induces Wntl 1 upregulation
in the lateral somites (59). Together these facts indicate that the
canonical WNT signals are involved in WNT11 upregulation
during embryogenesis; however, precise mechanism of WNT//
upregulation by the canonical WNT signals remained unclear.

In this study, we identified conserved TCF/LEF-binding
sites within proximal promoter region of WNT11I orthologs
(Fig. 1). Based on these facts, it was concluded that the
canonical WNT signals directly upregulate WNTI] trans-
cription (Fig. 2).

GATA family members involved in WNTI11 upregulation.
Afouda et al reported that gata4 and gata6 are involved in
wntl I upregulation during Xenopus cardiogenesis (60). Afouda
et al suggested that wntl] is a direct target of gata family
members, because gata-induced wnt/ I upregulation is resistant
to cycloheximide treatment. However, precise mechanism of
WNT11 upregulation by GATA family members remained
unclear.

In this study, we identified conserved GATA-binding sites
within intron2 of WNT11 orthologs (Fig. 1). Based on these
facts, it was concluded that GATA family members directly
upregulate WNT 1 transcription.

Other regulatory signaling cascades. WNT signaling cascades
cross-talk with Hedgehog, Notch, FGF/RTK, and TGFf/
BMP signaling cascades (61-65). There are several reports
that Hedgehog and Notch signaling cascades are involved in
WNT11 upregulation (66-68). GLI and CSL are representative
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transcription factors involved in the regulation of Hedgehog
(69-71) and Notch (72-74) target genes, respectively. However,
conserved GLI- or CSL-binding site was not identified within
the regulatory regions of mammalian WNTI! orthologs
(data not shown). Hedgehog and Notch signaling cascades
might be involved in WNT1I transcription through indirect
mechanisms.

Discussion

Refined integrative genomic analyses of WNT11 were carried
out to elucidate the mechanisms of WNT1! transcription in
this study. The WNT'11 gene at human chromosome 11q13.5
was found to encode two isoforms by using alternative first
exons. WNT11 isoform A consists of exons 2, 3,4, 5 and 6,
whereas WNT11 isoform B consists of exons 1,2,3,4,5and 6
(Fig. 1). Because the open reading frame spans exons 2-6,
two WNT11 isoforms encode an identical WNT11 protein.

Canonical WNT signals and GATA family members are
involved in WNT11 transcription during embryogenesis of
model animals (42,58-60); however, precise mechanisms of
WNT11 transcription remained unclear. TCF/LEF-binding site
within the proximal promoter regions, and double GATA-
binding sites within intron 2 of human WNTI1I gene were
identified in this study (Fig. 1). In addition, these TCF/LEF-
and GATA-binding sites within the regulatory regions of
human WNTI1 gene were conserved in other mammalian
WNT11 orthologs (Fig. 1). Together these facts indicate that
WNT11 transcription is directly upregulated by canonical WNT
signals and GATA family members.

Canonical WNT signals induce WNT11 upregulation, and
then WNT11 activates non-canonical WNT signaling cascades
to induce cellular movement. WNT11 also activates the Ca?*-
MAP3K7-NLK signaling cascade to attenuate the canonical
WNT signaling. Canonical WNT-to-WNT11 signaling loop
is involved in cellular migration during embryogenesis as
well as tumor invasion during carcinogenesis (Fig. 2). The
canonical WNT-to-WNT11 signaling loop is a potent target
of cancer therapeutics, especially for the inhibition of invasion
and metastasis.
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