
Abstract. The present study is the first to evaluate the
expression and activity of MnSOD, Cu/ZnSOD and catalase in
human gastric samples, since ROS play a significant role in
the pathogenesis of different forms of malignancy inducing
mutations and various diseases such as gastric cancer. Biopsies
and surgical samples from 53 patients (male/female 22/31,
mean age 56.5±15.8 years) consisted of 15 healthy, 12 auto-
immune atrophic gastritis, 10 Helicobacter pylori (HP)
infection, 8 HP-negative chronic gastritis (CG) and 8 adeno-
carcinoma cases. Enzyme activity and expression were
evaluated by spectrophotometry and immunoblotting after
specific extraction in phosphate buffer. We found that
MnSOD activity was increased in adenocarcinoma, CG and
HP tissues (p<0.05-0.001), while Cu/ZnSOD was signifi-
cantly lower in adenocarcinoma and HP tissues (p<0.001)
when compared to the healthy control. MnSOD and
Cu/ZnSOD were expressed to a significantly higher degree in
adenocarcinoma and HP tissues (p<0.05 and <0.001
respectively) and to a significantly lower degree in CG tissues
with respect to the healthy patients (p<0.05 and <0.001). A
significant decrease in CAT activity in adenocarcinoma and
HP tissues was observed (p<0.01 and <0.05). Gastric human
neoplasms showed significant changes in antioxidant enzymes,
that represent the first line in antioxidant protection against
radical attack. The difficulties in correlating the antioxidant
enzyme with the neoplasms was related to the complexity of
the biochemical pathways that regulate the cellular redox
balance. Our results are important in enhancing the under-
standing of the role that these enzymes play in the promotion/
suppression of the carcinogenesis cascade in human gastric
mucosa.

Introduction

Gastric carcinogenesis is a complex, multistep and multi-
factorial event (1). Helicobacter pylori (H. pylori) (HP)
infection, the major etiopathogenic factor for chronic antral
gastritis and duodenal ulcer, has been found to play a role in
gastric carcinogenesis (2,3).

Gastric carcinoma of the intestinal type originates in the
dysplastic epithelium, which develops in the milieu of atrophic
gastritis and intestinal metaplasia. Cancer may also develop
from gastric adenomatous polyps, which involves dysplastic
epithelium arising in the lesions (4).

Chronic atrophic gastritis and gastric atrophy are auto-
immune diseases caused by pernicious anemia or chronic HP
infection, respectively. In the first condition, there is severe
atrophy of the corpus (oxyntic mucosa) with a speared antrum.
In contrast, chronic atrophic gastritis, resulting from HP
infection, is a multifocal pangastritis, involving independent
foci in the stomach corpus and antrum (5). These clinical
conditions are predominantly silent; with both forms of
chronic atrophic gastritis manifesting themselves only through
cobalamin (vitamin B12) deficiency. In the case of the auto-
immune gastritis of pernicious anemia, cobalamin deficiency
results from the absence of intrinsic factor (6). When cobalamin
deficiency occurs in patients with HP-related gastritis, these
patients have hypochlorhydria and are are unable to release
cobalamin from its bound form in food (7).

Current knowledge of the biological mechanisms
underlying the lesions induced by this microorganism is still
incomplete. The damage may be caused directly by HP,
through the release of cytotoxins, lipase, or phospholipase,
or the urease-mediated release of toxic ammonia (8).
Alternatively, the damage may be due to the inflammatory
reaction elicited by the microorganisms (9). In the latter case,
tissue damage and cell destruction by reactive oxygen
species (ROS) released by polymorphonuclear leukocytes
may be involved (10). This mechanism may also be important
in terms of carcinogenesis, as free radical production may
play a role in the multistep pathogenesis of both chronic
gastric lesions and cancer (10).

Cancer is characterized by the uncontrolled growth and
spread of abnormal cells and is one of the major causes of
death in humans. Carcinogenesis is generally divided into
three stages: initiation, promotion and progression. ROS are
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postulated to be involved in these processes, especially in the
stages of initiation and promotion (11).

ROS are low molecular weight metabolites sufficiently
reactive to damage essential biological molecules, including
nucleic acids (10). Indeed, many observations indicate that
ROS have a causative role in carcinogenesis. During this
process, ROS are known to interact directly with genomic
DNA damaging-specific genes that control cell growth and
differentiation during the initiation/promotion phase (12),
increasing the activity of carcinogenic xenobiotics (13) and
resulting in a wide range of sugar modification products (14).

A number of base modifications characteristic of hydroxyl
radical injury have been identified, including thymine glycol,
thymidine glycol (15), 5-hydroxylmethyluracil (16) and
8-hydroxydeoxyguanosine (8OHdG) (17). All of these may
cause point mutations in DNA by base substitution and can
accumulate, but 8OHdG is considered to be the main DNA
modification produced by ROS (18) and consequently is used
as an index of damage to the base sequence of DNA (19).
HP-related gastritis is characterized by increased free radical
production and peroxidative damage (20).

ROS are constantly produced in the mitochondrial
respiratory chain, via the cyclo-oxygenase pathway and by
cellular enzymes (21). Low levels of ROS are necessary in
several processes such as intracellular messaging, immunity
and defence against microorganisms. However, high levels or
a deficiency in ROS elimination determine oxidative stress
(22). Oxidative stress favors cell transformation and contri-
butes to the development of a variety of human malignant
diseases, including cancer. In addition, chronic inflammatory
stress, in which the local oxidant burst is increased, is known
to be associated with increased cancer risk, and oxidative
stress may contribute to cancer risk through mechanisms
independent of genotoxicity (23).  

Furthermore, several environmental carcinogens are
capable of directly generating free radicals and activating
inflammatory cells to produce ROS in vivo (24). ROS are
mutagenic compounds with a role in the pathogenesis of
many forms of malignancies, and superoxide dismutase (SOD)
is the only enzyme dismuting superoxide anions (O2

•-).
Antioxidants are agents that scavenge ROS, prevent their

formation, or repair the damage that they cause (24). This
complex system consists of antioxidant enzymes (superoxide
dismutases, catalase), glutathione and ancillary metal-binding
proteins (25). Of the antioxidant enzymes, SOD catalyses the
conversion of two superoxide anions to hydrogen peroxide
and oxygen, and hydrogen peroxide is mainly eliminated by
catalase (CAT) and glutathione peroxidase. There are three
types of SODs present in tissues: MnSOD located in the
mitochondrial matrix (26); Cu/ZnSOD present in the cyto-
plasm, nucleus and, to a lesser extent, in the peroxisomes of
all cells (26); and extracellular SOD (ECSOD). All SODs
differ by their location and protein structure. Catalase is
localized mainly in peroxisomes, in cytoplasm and
mitochondria (26).

For the past 20 years, MnSOD activity has been postulated
to be low in malignant tumors (27). The lower antioxidant
power and the oxidant-antioxidant imbalance have been
thought to play a role in multistage carcinogenesis (28). The
levels of the other antioxidant enzymes are highly variable,

while the Cu/ZnSOD and CAT activity levels are often low
(27).

Many human tumors display significant changes in SOD
and CAT which may correlate with clinicopathological
parameters for the prognosis of human carcinoma. Expression
levels of antioxidant enzymes in cancer are highly unpre-
dictable, and the role of MnSOD in particular may be more
complicated than previously suggested (29,30). The direct link
known to occur between SOD and CAT can be considered
the starting point for the present study. 

The aim of the present research was to detect, for the first
time in a single study, the activity and expression of MnSOD,
CuZnSOD and CAT in human gastric mucosa tissues of
healthy subjects and in patients with autoimmune atrophic
gastritis (AAG), HP infection, HP-negative chronic gastritis
(CG) and adenocarcinoma.

Materials and methods

Sample collection. The sample population consisted of 53
patients (male/female 22/31, mean age 56.5±15.8 years): 15
healthy subjects (male/female 6/9, mean age 51.8±16.6
years); 12 with AAG (male/female 5/7, mean age 61.4±13.2
years); 10 with HP infection (male/female 3/7, mean age
52.4±14.2 years); 8 with CG (male/female 4/4, mean age
50.7±19.3 years) and 8 with adenocarcinoma (male/female
4/4, mean age 68.7±9.6 years). Twelve biopsies (antrum/
gastric body), 2 for histologic evaluation and 10 for bio-
chemical investigations, were taken from each subject during
endoscopy. The specimens (biopsy and surgical samples) in
patients with gastric cancer were obtained exclusively from
the carcinoma site, assuring the absence of any contaminants.
The gastric samples were immediately frozen in liquid
nitrogen and stored at -85˚C until subsequent processing.

Demographical, clinical, and pathological data were
collected, evaluated, and registered by a physician. The design
was single-blinded for the biochemical evaluation. 

The study was approved by the local ethics committee.
All patients received detailed information regarding the
procedure, and written informed consent was obtained from
all participants.

Tissue preparation. The homogenates were prepared
from 50-100 mg wet tissue samples in 20 volumes of 50 mM
phosphate buffer (pH 7.8) with 0.1 mM EDTA and 5 μl/
100 mg of tissue of inhibitory cocktail for the proteases. The
tissues were homogenized for 2 min (14,000 rpm) on ice in
UltraTurrax, sonicated for a few seconds, and centrifuged at
10,000 x g for 10 min at 4˚C. After centrifugation, deter-
mination of the SOD activity and expression was carried out
on the supernatants.

Electrophoresis and Western blotting. SDS-PAGE of tissue
extracts was performed in an Invitrogen Xcell SureLock
Mini-Cell using minigels (Bis-Tris gels) consisting of 12%
running gel with MES running buffer, pH 7.3, under
reducing conditions. Samples were added to LDS buffer and
reducing agent (0.5 M DTT) and heated for 10 min at 70˚C.
The apparent molecular weights of immunopositive bands
were determined by comparison with pre-stained molecular
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weight markers. Cu/ZnSOD from bovine erythrocytes was
loaded in the gels as a standard to identify the SOD isoforms.
Cytosolic extracts were loaded in the gel in volumes corre-
sponding to the protein content of 30 μg/lane.

After electrophoresis, the proteins were transferred for 1 h
to PVDF membranes in an Invitrogen Xcell SureLock Blot
Modul using transfer buffer, pH 7.2. Following blotting, the
PVDF membranes were treated with the chromogenic Western
blot immunodetection kit. The blots were blocked with
concentrated casein solution in buffered saline solution and
then incubated with the diluted primary specific antibody for
1 h.

Polyclonal rabbit anti-human Cu/ZnSOD diluted 1:7000,
and polyclonal rabbit anti-rat MnSOD diluted 1:5000 were
used to identify the SOD isoforms. The membranes were
washed with a specific antibody wash solution (concentrated
buffered saline solution containing detergent; Invitrogen) and
incubated with the secondary antibody solution consisting of
alkaline phosphatase-conjugated anti-rabbit IgG for 45 min.
The blots were subsequently visualized using a chromogenic
substrate containing 5-bromo-4-chloro-3-indolyl-1-phosphate
(BCIP) and nitro blue tetrazolium (NBT). Immunopositive
bands were semi-quantified by Quantity One Software
(Bio-Rad), and the results were expressed in arbitrary units.

Superoxide dismutase and catalase activity assays. SOD and
CAT activity levels were measured using a UV/Vis Uvikon
941 spectrophotometer (Kontron Instruments) which was
temperature controlled to 25±1˚C, and the assay was
performed in quadruplicate.

SOD activity was determined with the xanthine oxidase-
cytochrome c method. The cytochrome c reduction by super-
oxide anions generated by xanthine oxidase/hypoxanthine
reaction was detected at 550 nm. Activity values were
expressed in unit per mg of protein, where one unit of SOD
was defined as the quantity of sample producing 50%
inhibition under assay conditions. The Cu/Zn-containing
form of SOD was assayed using the inhibitory effect of KCN
on SOD activity.

CAT activity was measured by decreasing the H2O2

concentration at 240 nm activity. Decays in absorbance were
recorded over 30 sec in 50 mM sodium phosphate buffer,
pH 7.0, containing 20 mM H2O2 and the enzyme extract. CAT
values were expressed as Bergmeyer units (B.U.) per mg
protein. One unit of CAT (according to Bergmeyer) is the
amount of enzyme which liberates half the peroxide oxygen
from the H2O2 solution of any concentration in 100 sec at
25˚C.

Protein assay. Total soluble protein concentrations in sample
extracts were measured using the Qubit™ Quantitation
System with a Quant-iT™ Protein Assay kit and the Qubit™
fluorometer (Invitrogen). Values were reported as mg protein
per ml and were used to normalize enzyme activity and
expression.

Statistical analyses. SOD activity values were expressed as
the means ± standard error of the mean (SEM) as were data
from densitometric analyses of immunopositive bands. All
data were checked for normal distribution before statistical
analyses were carried out. The differences were analyzed by
applying a Student's t-test for independent samples.

Paired-sample t-tests were performed to compare the
median of and values for each group of patients studied where
p<0.05 was considered statistically significant. Data were
analyzed using SPSS software (SPSS Inc., Chicago, IL,
USA).

Results

The demographic, clinical and pathological characteristics of
the population studied are provided in detail in Table I. No
statistical differences with respect to demographic character-
istics were found.

Superoxide dismutase activity. The values of MnSOD activity
represented nearly 50% of the total SOD activity in AAG
and healthy tissues and were 3 and 4 times higher than that
of Cu/ZnSOD in the HP and adenocarcinoma samples,
respectively (Fig. 1). The activity levels of MnSOD were
significantly increased in adenocarcinoma, CG and HP tissues
with respect to the healthy controls (p<0.05, 0.01, 0.001,
respectively) (Fig. 2). On the contrary, Cu/ZnSOD was
significantly lower in the adenocarcinoma and HP tissues
compared with the healthy tissues (p<0.001) (Fig. 3).

Superoxide dismutase expression. After immunoblot detection,
two different immunopositive bands (16 and 23 kDa) were
recognized in the human extracts based upon immuno-
reactivity with specific Cu/ZnSOD and MnSOD polyclonal
antibodies (Figs. 4 and 5). The former band, with an apparent
molecular weight of 16 kDa (Fig. 5), corresponded to
Cu/ZnSOD, which in humans is a homodimer with a molecular
weight of 31.2 kDa. The latter, with an apparent molecular
weight of 23 kDa (Fig. 4), corresponded to the monomeric
form of the MnSOD that exists in humans as a homotetramer
with an individual subunit molecular weight of ~23 kDa.
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Table I. Demographic, clinical and pathological characteristics of the studied population.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Healthy subjects AAG H. pylori CG Gastric cancer
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Number 15 12 10 8 8
Gender (M/F) 6/9 5/7 3/7 4/4 4/4
Age (± SD) (years) 51.8±16.6 61.4±13.2 52.4±14.2 50.7±19.3 68.7±9.6
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
AAG, autoimmune atrophic gastritis; CG, H. pylori-negative chronic gastritis.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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MnSOD and Cu/ZnSOD displayed an identical trend.
Both enzymes were expressed to a greater degree in adeno-
carcinoma and HP tissues (p<0.05 and <0.001, respectively)
and to a significantly lesser extent in CG tissue (p<0.05 and
<0.001, respectively) when compared to the control group

(Figs. 4 and 5). No changes were observed between healthy
and AAG tissues (Figs. 4 and 5).

Catalase activity. A significant decrease in CAT activity in
adenocarcinoma and HP tissues (p<0.01 and <0.05) was
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Figure 2. MnSOD activity in gastric samples. Data are presented as the mean ± SEM. Significant differences with respect to healthy tissue, *p<0.05, **p<0.01
and ***p<0.001. Inset, box plots of the median (bold line in the box) and interquartile range (upper and lower lines of the box). Whiskers indicate the lowest
and highest values.

Figure 3. Cu/ZnSOD activity in gastric samples. Data are presented as the mean ± SEM. Significant differences with respect to healthy tissue, ***p<0.001.
Inset, box plots of  median (bold line in the box) and interquartile range (upper and lower lines of the box). Whiskers indicate the lowest and highest values.

Figure 1. Ratio percentage of MnSOD and Cu/ZnSOD activities to total SOD activity in all gastric samples. Data are presented as the mean ± SEM. The
wicket indicates significant differences between the two SOD isoforms under the same experimental condition (#p<0.001).
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observed when compared to the tissues of the healthy
patients (Fig. 6).

Discussion

This is the first study to evaluate the expression and activity
of SODs, in particular the ratio between MnSOD and
Cu/ZnSOD, and the catalase activity in human gastric tissues
of healthy subjects and patients with autoimmune atrophic
gastritis, H. pylori infection, H. pylori-negative chronic
gastritis and adenocarcinoma.

Data concerning SOD activity showed a prevalence of
MnSOD, with respect to total SOD in CG (60%), HP-related
gastritis (75%) and adenocarcinoma (80%) tissues and an
equal distribution of the two forms of SODs in healthy and
AAG subjects. 

Similar results were observed in our preliminary research
(31), and these data are comparable to other studies in human

colorectal (32) and in esophageal and gastric cancer which
showed also a significant TNF-· increase (33). In this regard,
MnSOD is characterized by low expression levels in cells,
but can be strongly induced both in vivo and in vitro by
multiple stress conditions, such as the presence of cytokines
(such as TNF-· and interleukin-1), changes in cell redox
state and hyperoxia (24). The MnSOD trend recorded in
carcinogenetic gastric tissues, CG and HP gastritis, may be
attributable to a protective mechanism against the superoxide
anions and TNF-· cytotoxicity (33). 

In fact, it has been demonstrated that MnSOD plays a
central role in the mitochondria, the major site of O2

•-

production under hyperoxic conditions (34) and in cellular
differentiation and tumorigenesis (35). 

Overexpression of MnSOD is also related to enhanced
survival in patients with esophageal and gastric cancer (36).

Therefore, it is possible that MnSOD overexpression may
lead to increased ROS and a higher rate of tumor cell kill, or

INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE  24:  693-700,  2009 697

Figure 5. Densitometric analysis of Cu/ZnSOD expressed as relative intensity values (arbitrary units) and representative bands of Western blots of
Cu/ZnSOD. Data are presented as the mean ± SEM. Significant difference with respect to healthy tissue, *p<0.05 and ***p<0.001. Inset, box plots of the
median (bold line in the box) and interquartile range (upper and lower lines of the box). Whiskers indicate the lowest and highest values.

Figure 4. Densitometric analysis of MnSOD expressed as relative intensity values (arbitrary units) and representative bands of Western blots of MnSOD. Data
are presented as the mean ± SEM. Significant differences with respect to healthy tissue, *p<0.05 and ***p<0.001. Inset, box plots of the median (bold line in
the box) and interquartile range (upper and lower lines of the box). Whiskers indicate the lowest and highest values.
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it may be protective of tumor cells. However, the role of
MnSOD in cancer prognosis has yet to be clarified (36).

Moreover, the modification of MnSOD activity may be
due to alterations of the energetic metabolism and ROS
production caused by mitochondrial disorders in carcinoma,
or through its inactivation during tumorigenesis (37). Thus,
ROS imbalance, chemical intermediates, hyperoxia and
cytokines which are characteristic of tumor tissues may
directly induce MnSOD mRNA.

Concerning the other SOD isoforms, it was found that the
activity ratio of Cu/ZnSOD and total SOD was significantly
lower in adenocarcinoma (20%) and in HP-related gastritis
(25%) with respect to healthy tissues (52%) (p<0.001).

Cu/ZnSOD is localized principally in the cytoplasm and
appears to play an essential role in the protection mechanism
of the cell against ROS production (24). Cu/ZnSOD expression
generally is stable and its activity is considered to be an
internal control for Cu/ZnSOD gene expression (31). 

Although several authors have considered this enzyme to
be constitutively expressed, they revealed that its mRNA
levels can be markedly up- and down-regulated by various
physiological conditions such as the presence of hydrogen
peroxide, arachidonic acid and heavy metals (31), as confirmed
in the present study by the increase in Cu/ZnSOD expression
in HP and cancer tissues. In agreement with these data,
Matés and Sánchez-Jiménes (22) obtained similar results in
cancer cells without the present characteristic trend between
SOD isoforms. 

In contrast, no differences in Cu/ZnSOD content were
identified in colorectal cancer tissues when compared with
normal mucosa. Furthermore, low levels of Cu/ZnSOD were
found in undifferentiated colorectal cancer when compared
with moderately or well differentiated carcinomas, without a
specific ratio between MnSOD and Cu/ZnSOD (32). 

For the first time, a complete synergism between the
expression of MnSOD and Cu/ZnSOD, which decreased in
CG tissues and increased in HP-related gastritis and in
adenocarcinoma with respect to healthy controls, was
demonstrated in the present study. 

The incongruence between the activity and expression in
CG samples might be explained by protein modification and/

or associations to certain proteins. Moreover, several factors
involved in the post-translation control of SOD enzyme
biosynthesis must be considered (38,39). 

The employment of a gastroprotector in CG patients may
be responsible for the decrease in SOD expression as a result
of the removal of functional metal enzymes due to drugs. 

The increase in MnSOD activity in HP gastritis tissues
may be related to oxidative stress episodes and to a high level
of superoxide anions due to the presence of HP infection
(40).

In concordance with the present results, Götz et al (41)
reported an increase in MnSOD activity and a slight decrease
in Cu/ZnSOD in the inflamed gastric mucosa in HP-infected
gastric patients, while Bulbuloglu et al (42) highlighted an
increase in total SOD activity in patients with different states
of HP infection, as confirmed by the absence of changes
recorded in our HP-negative CG samples. 

In fact, HP catalyzes the hydrolysis of urea to ammonia
and carbonic acid; consequently the ammonia production
may neutralize gastric acid and the urease activity may favor
colonization of H. pylori in the acidic environment of the
stomach. Tissue damage results from the cytotoxic effects of
ammonia or the indirect effect of urease-induced stimulation
of the inflammatory response, including recruitment of
leukocytes, induction of proinflammatory cytokines, and
triggering of an oxidative burst of neutrophils (42).

The present study revealed a decrease in CAT in HP-
related gastritis and in adenocarcinoma with respect to the
healthy controls. Dursun et al (43) and Skrzydlewska et al
(44) observed a significant decrease in CAT in patients with
esophageal, gastric and colorectal cancer. Additionally,
Chung-man Ho et al (45) noted that the same trend in CAT
was correlated with an increase in MnSOD in lung cancer,
which confirmed the presence of a synergism between the
two enzymes in antioxidant defense mechanisms (24,26). 

Alterations in antioxidant activities, observed in HP
gastritis and cancer tissues, were attributable to increased
MnSOD and decreased CAT protein levels. Accumulation of
hydrogen peroxide creates an intracellular environment which
favors DNA damage and the promotion of cancer. In fact,
hydrogen peroxide is essential for the signal transduction of
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Figure 6. CAT activity in gastric samples. Data are presented as the mean ± SEM. Significant differences with respect to healthy tissue, *p<0.05 and **p<0.01.
Inset, box plots of the median (bold line in the box) and interquartile range (upper and lower lines of the box). Whiskers indicate the lowest and highest
values.
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mitogen, and together with superoxide radicals is involved in
the control of antioxidant genes in eukaryotes, demonstrating
the crucial role of ROS in signaling tumor growth events
(46,47). In relation to this, parallel changes in antioxidant
activity and the expression of CAT and MnSOD were noted
in carcinoma cell lines exposed to cytokines (TNF-·,
interleukin 1ß, and IFN-Á) (47). 

MnSOD overexpression has been shown to reverse the
malignant phenotype in a variety of tumor cell lines. This
inhibition of proliferation and reversal of the malignant
phenotype has been ascribed to an increase in H2O2 production
as a result of the dismutation reaction (47). The over-
expression of CAT reversed the proliferative and clonogenic
inhibition associated with MnSOD overexpression, blocked
the increase in the steady state levels of H2O2 and increased
protection from the cytotoxicity of H2O2 (47). In addition,
CAT enhances the rate of oxygen consumption through
complex I and II in both control and MnSOD-overexpressing
cell lines and reverses a MnSOD-dependent decrease in net
ATP production (47). Thus, CAT reverses the proliferative
inhibition associated with MnSOD overexpression and may
also play an important role in metabolic regulation (47). 

Alterations in antioxidant activities, observed in HP
gastritis and cancer tissues, were attributable to increased
MnSOD and decreased CAT protein and mRNA expression
in tumors. Thus, inflammation may contribute to high levels
of MnSOD and low CAT activity, which together may lead
to the development of neoplasms. 

Patients with H. pylori infection were observed to have
the same enzymatic and proteic pathway of patients with
adenocarcinoma, whereas a significant decrease in the two
isoforms of SOD expression was found in patients with CG
which may represent the early signs of latent disease advance.
The dynamic balance between cell proliferation and apoptosis
is essential for maintaining normal mucosal integrity. Moss
(48) described an increased rate of cell proliferation of
epithelial cells and a decrease in the apoptotic index in
H. pylori infection, with an increase in ROS and NO (48).

The difficulties in correlating the effects of antioxidant
enzymes with neoplasms relate to the complexity of the
biochemical pathways that regulate the cellular redox balance
(49).

Previous studies have demonstrated that eradication of
H. pylori prior to the development of stable mutations may
significantly prevent the risk of gastric cancer. Indeed, changes
in the DNA sequence are irreversible; at the same time, DNA
methylations, are potentially reversible through elimination
of the triggering agents (50).  

In conclusion, the present study is the first to evaluate the
expression and activity of three important antioxidant enzymes
in human gastric samples. In particular, it has been demon-
strated that both HP-related gastritis and gastric cancer are
characterized by a pronounced increase in the amount and
activity of MnSOD, and by a slight decrease in Cu/ZnSOD
and CAT values, with respect to healthy subjects and AAG
and CG patients.

These results are important in enhancing our understanding
of the role that these enzymes play in the promotion/
suppression of the carcinogenesis cascade in human gastric
mucosa.
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