
Abstract. Cord blood (CB) is a source of hematopoietic stem
cells (HSCs) and is an alternative to bone marrow for allogenic
transplantation in patients with hematological disorders. The
improvement of HSC in vitro expansion is one of the main
challenges in cell therapy. Stromal components and soluble
factors, such as cytokines, can be useful to induce in vitro
cell expansion. Hence, we investigated whether feeder-layers
from new stromal cell lines and different exogenous cytokine
cocktails induce HSC expansion in middle-term cultures. CB
HSC middle-term expansion was carried out in co-cultures on
different feeder-layers exposed to three different cytokine
cocktails. CB HSC expansion was also carried out in stroma-
free cultures in the presence of different cytokine cocktails.
Clonogenic tests were performed, and cell growth levels were
evaluated. Moreover, the presence of VCAM-1 mRNA was
assessed, and the mesenchymal cell-like phenotype expression
was detected. All feeder-layers were able to induce a signifi-
cant clonogenic growth with respect to the control culture,
and all of the cytokine cocktails induced a significant increase
in CB cell expansion indexes, even though no potential
variation dependent on their composition was noted. The
modulative effects of the different cocktails, exerted on each
cell line used, was dependent on their composition. Finally,
all cell lines were positive for CD73, CD117 and CD309,
similar to mesenchymal stem cells present in adult bone
marrow and in other human tissues, and negative for the
hematopoietic markers. These data indicate that our cell lines
have, not only a stromal cell-like phenotype, but also a
mesenchymal cell-like phenotype, and they have the potential
to support in vitro expansion of CB HSCs. Moreover,

exogenous cytokines can be used in synergism with feeder-
layers to improve the expansion levels of CB HSCs in
preparation for their clinical use in allogenic transplantation.

Introduction

In the past decade important knowledge of hematopoietic
system biology has been acquired. It is known that bone
marrow contains a pluripotent stem cell population capable
of self renewal and generation, by different maturation path-
ways; several subsets characterized by functional hierarchy
(1,2). The balance between two opposite fates seems to
depend on a complex network of homeostatic signals, largely
still unknown, arising from the bone marrow micro-
environment (3). Several studies suggest that proliferation
and differentiation of hematopoietic stem cells (HSCs) result
from direct cell interaction with stromal components,
including stromal cells or extracellular matrix (4-7), and from
the inductive action of paracrine/autocrine soluble factors,
such as interleukins or cytokines (8,9).

Co-culture with stromal feeder-layers, which creates an
artificial microenvironment favoring cell growth, is one of
the most promising in vitro approaches to enhance the
expansion of hematopoietic cells (10-13). In fact, stromal
feeder-layers, not only produce several cytokines, but also
synthesize proteoglycans, which can adsorb growth factors,
thereby modulating their presentation rate to hematopoietic
cells and enhancing their biological efficiency (14-16).

Identification, cloning, and production of human
recombinant cytokines have greatly improved in vitro HSC
manipulation by middle- or long-term expansion methods
using culture media supplemented with cytokine cocktails
(17,18). Nevertheless, the optimal cytokine combinations for
in vitro expansion of hematopoietic stem/progenitor cells
have not yet been determined, nor has any definitive
continuous expansion method been standardized. Moreover,
HSCs and progenitor cells derived from different sources
(bone marrow, cord blood and peripheral blood mobilized
cells) seem to be differentially responsive to these growth
factors (19-21).

It is known that cord blood (CB) is a source of HSCs as
an alternative to bone marrow for allogenic transplantation
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in patients with hematological disorders (22-24). There is
evidence for a direct positive correlation between the number
of reinfused CB cells and the percentage of success of
transplantation (22,25). However, CB HSCs are very naïve,
and the number available in a single CB unit is much too
limited to ensure a rapid, stable and lasting medullary
repopulation in patients with a body weight exceeding 40 kg
(23,24). Therefore, improvement of the in vitro expansion of
CB HSCs represents one of the main challenges of cell therapy.

Preclinical and clinical studies on CB have highlighted
different cytokine cocktails (22,26), novel molecules (27,28)
and sophisticated culture systems to better perform expansion
of CB HSCs (30,31).

To achieve this goal, the co-culture of CB HSCs with
feeder-layers composed of stromal cells seems to be an
attractive approach. We previously isolated and characterized
two human embryo liver cell lines: one stabilized (BAEP2W)
and one immortalized (BAEP2SV40) by retroviral trans-
duction with SV40 large T antigen (32). Moreover, conditioned
media from these new human stromal immortalized cell
lines, derived from bone marrow (HM1SV40 and HM2SV40
cell lines) and umbilical cord tissue (HCB1SV40 cell line),
were able to enhance clonal growth of human CB HSCs (33).

Hence, it seemed worthwhile to characterize these cellular
lines and to investigate whether i) feeder-layers of these cell
lines induce the expansion of cord blood HSCs/committed
progenitors in middle-term culture and ii) whether different
exogenous cytokine cocktails enhance the inductive effect of
these feeder-layers.

Materials and methods

Mononucleated (MN) cell isolation. Cord blood (CB) units
were obtained at the end of full-term deliveries according to
the Foundation for the Accreditation of Cell Therapy (FACT)
protocols and after obtaining informed consent. Samples
were processed within 48 h of collection. After the clamping
and cutting of the cord, blood samples were drained into
sterile collection bags containing the anticoagulant citrate-
phosphate dextrose. After blood centrifugation at 2,500 rpm
for 20 min at 20˚C, the low-density MN cell fraction of the
CB unit was obtained by collecting the cells located at the
interface of a one-step Ficoll-Histoprep (1.077 g/ml) gradient
(34). Cells were washed three times in citrate-phosphate
buffered salt (PBS) solution, and resuspended in Stemline
Hematopoietic Stem Cell Expansion Medium (Sigma)
containing 4 mM glutamine (Sigma), 100 U/ml penicillin
(Sigma), 100 μg/ml streptomycin (Sigma), 2.5 μg/ml
amphotericin B (Life Technologies) and 0.20 U/ml
deoxyribonuclease I (Sigma) (DNase Complete Stemline II
Haematopoietic Stem Cell Expansion Medium). The number
of MN cells was determined using a hematocytometric
method. Cells were then frozen in culture medium containing
10% DMSO (Sigma). For the experiments, MN cells were
thawed and washed in RPMI-1640 medium (Gibco) with
10% human albumin. Cells were then resuspended in DNase
Complete Stemline Medium.

Cell line cultures and feeder-layer preparation. Human bone
marrow-derived HM1SV40 and HM2SV40, umbilical cord-

derived HCB1SV40, and fetal liver-derived BAEP2SV40
and BAEP2W cell lines were obtained as previously described
(32,33). The BAEP2W cell line was obtained by successive
serial passages of the secondary cultures, while the other cell
lines were immortalized by retroviral transduction of
secondary cultures with SV40 large T antigen gene encoding
a sensitive temperature protein (32,33). 

Cells were cultured in TBF1 medium composed of
DMEM supplemented with 10% FBS, 10% HS, 1 mM sodium
pyruvate, 10 ng/ml EGF, 1 ng/ml FGF, 0.33 Ul/ml heparin,
100 U/ml penicillin, 100 μg/ml streptomycin, 100 μg/ml
kanamycin and 2.5 μg/ml amphotericin B.

The M2-10B4 murine fibroblast cell line transfected
with hIL-3 and hG-CSF cytokine coding genes (35), was
used as the control and was cultured in LTC-IC medium (4)
consisting of DMEM supplemented with 12.5% FBS, 12.5%
HS, 0.1 mM 2-ß mercaptoethanol, 0.016 mM folic acid,
0.16 mM inositol, 100 U/ml penicillin, 100 μg/ml
streptomycin, 100 μg/ml kanamycin and 2.5 μg/ml
amphotericin B.

To obtain a feeder-layer, 1x105 cells/well were plated in
24-well Beal plates, previously treated for 2 h at 39˚C with
1% bovine gelatine. After an overnight incubation at 37˚C,
the cultures were treated for 4 h with 1 μg/ml mitomycin C.
After washing, feeder-layers were cultured with Stemline II
Hematopoietic Stem Cell Expansion Medium (Sigma) supple-
mented with 4 mM glutamine, 100 U/ml penicillin, 100 μg/
ml streptomycin, 100 μg/ml kanamycin and 2.5 μg/ml
amphotericin B (Complete Stemline II Hematopoietic Stem
Cell Expansion Medium). The mitomycin C treatment was
repeated 2-fold for each cell line, except for the BAEP2W
cell line which was treated only once with 0.5 μg/ml
mitomycin C.

Detection of vascular cell adhesion molecule (VCAM)-1.
VCAM-1 expression in the cell lines was detected by reverse
transcription (RT)-polymerase chain reaction (PCR). Cell
lines were cultured at 33, 37 or 39˚C, and at confluence, they
were incubated for 24 h in serum-free DMEM. Total RNA
was extracted from 1x107 cells using the RNAzol B Kit
(Boehringer), and reverse transcribed to cDNA as previously
described (36). Using a specific primer, expression of
VCAM-1 was assayed by PCR (32). Briefly, in a DNA
Thermal Cycler 480 (Perkin Elmer) a denaturation step at
94˚C for 1 min, annealing for 2 min and an extension step at
72˚C for 3 min for a total of 40 cycles were carried out. The
primer sequence, annealing temperature and predicted size of
the PCR products were respectively: sense 5'-AGAATATA
GAGTTTTTGGAGGATAC-3'; antisense 5'-CTTCTTTTCT
GCTTCTTCCA-3', 52˚C and 432 bp.

Controls for PCR included reactions without cDNA
(H2O) or prior RT of the RNA, as well as mRNA detection of
the housekeeping gene ß-actin. The amplification products
were separated by 2% agarose gel electrophoresis and
visualized with ethidium bromide staining in a Molecular
Analyst Bio-Rad apparatus (BioRad).

Immunocytochemistry (ICC). Samples were prepared by
cytocentrifugation and fixed in a methanol 40 vol-5% H2O2

solution for 10 min. Samples were labelled using the avidin-
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biotin amplified immunoperoxidase method, using the Large
Volume Dako LSAB+ Peroxidase Kit (Dako, Glostrup,
Denmark). The primary antibodies and their dilutions are
shown in Table I. Positive and negative controls were carried
out as previously described (27,32).

Middle-term expansion and clonogenic assay. MN cells
(7x105/well) were placed on feeder-layers previously treated
with mitomycin C with or without the following cytokine
cocktails (CKTs): i) CKT A: IL-3 (2 ng/ml), IL-6 (2 ng/ml),
SCF (0.5 ng/ml), Flt 3 (0.5 ng/ml); ii) CKT B: IL-3 (2 ng/
ml), IL-6 (2 ng/ml), SCF (0.5 ng/ml), Flt 3 (0.5 ng/ml), TPO
(0.5 ng/ ml); iii) CKT C: IL-3 (2 ng/ml), IL-6 (2 ng/ml), SCF
(0.5 ng/ ml), Flt 3 (0.5 ng/ml), TPO (0.5 ng/ml), IL-1ß (400 pg/
ml), GM-CSF (0.5 ng/ml), G-CSF (0.5 ng/ml), EPO (3 U/ml).

MN cell cultures without feeder layers and/or treated with
cytokines were used as controls. The cultures were grown in
Stemline II Hematopoietic Stem Cell Expansion Medium for
14 days at 37˚C in a 95% air-5% CO2 atmosphere. Cultures
were observed daily using an inverted Axiovert 100 micro-
scope (Zeiss, Germany). At the end of the incubation period,
both non-adherent and adherent cells were collected from

each well; after washing with 2 mM CaCl2 in 0.9% NaCl, the
latter ones were incubated for 30 min at 37˚C with 2.4 U/ml
Dispase II and scraped with plastic Pasteur pipettes. Cells
were then centrifuged for 10 min at 4˚C at 1800 rpm, and the
pellets were resuspended in Stemline II Hematopoietic Stem
Cell Expansion Medium. Clonogenic tests were carried out
according to the Miller and Lai method (37). Aliquots of a
100-μl cell suspension were seeded in 24-well Beal plates in
previously distributed Methocult GF H4435 semi-solid
medium (StemCell Technologies), composed of Iscove's
MDM supplemented with 1% methylcellulose, 30% FBS, 1%
BSA, HS, 10-4 M 2-ß mercaptoethanol, 2 mM L-glutamine,
50 ng/ml rhSCF, 20 ng/ml rhGM-CSF, 20 ng/ml rhIL-3, 20 ng/
ml rhIL-6, 20 ng/ml rhG-CSF and 3 U/ml rhEPO. After a 14-
day incubation period at 37˚C, the cultures were observed
using an inverted Axiovert 100 microscope to count the
colony forming units (CFUs) (38).

Statistical analysis. Clonogenic test data, obtained from 10
experiments and expressed as mean values ± SD, were first
subjected to Curtosi, Sweknees and Barlett statistical tests.
Then, to compare the different experimental groups, the non-
parametric tests for paired data, Friedman and Dunn's multiple
comparison tests, were performed by assuming p<0.05
(GraphPad Prism 4.0).

The expansion indexes (E.I.s) used to evaluate the growth
levels in the cultures with the cytokine cocktails and in the
co-cultures were calculated as follows:

E.I. = CFU mean number of screening cultures,
CFU mean number of control cultures

where screening cultures were the cultures treated with
cytokine cocktails and co-cultures with or without cytokines.

The relative expansion indexes (E.I.R.s) used to analyze
the interaction between the cytokine cocktails and the
stromal feeder-layers were calculated as follows: 

E.I.R.FL = CFU mean number of co-cultures treated with cytokines
CFU mean number of no treated co-cultures

E.I.R.CKT = CFU mean number of co-cultures treated with cytokines
CFU mean number of cultures treated with cytokines

Moreover, in order to evaluate the expansion with respect
to the M2-10B4 cell line, the relative expansion indexes were
calculated as follows: 

E.I.R.M2-10B4 = CFU mean number of co-cultures treated with cytokines
CFU mean number of M2-10B4 co-cultures

Results

RT-PCR was used to demonstrate the expression of adhesion
factor VCAM-1 in HM1SV40, HM2SV40 and HCB1SV4O
cell lines as previously described for immortalized embryo
liver BAEP2SV40 cells (data not shown) (32). 

As shown in Table II, ICC revealed that all cell lines used
for feeder-layers were positive for FGF, FGF receptor (FGF-R),
CD73, Thy1, ACTR-1, FLK-1, c-kit (except for HCB1SV40),
laminin, collagen type I, AM, RAMP2 (AM receptor) and
ET-1. ET receptors (ETAR and ETBR) were expressed only
in the fetal liver and in HM2SV40 derived cell lines.
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Table I. Primary antibodies and their dilution.
–––––––––––––––––––––––––––––––––––––––––––––––––
Antibody Dilution in

PBS:BSA
–––––––––––––––––––––––––––––––––––––––––––––––––
Anti-EGF polyclonal rabbit IgG 1:2
Anti-EGF-R clone 29.1 1:5
Anti-FGF clone 3H3 1:2
Anti-FGF-R clone VBS-7 1:2
Anti-AM polyclonal goat IgG 1:5
Anti-RAMP2 polyclonal goat IgG 1:5
Anti-ET-1 1:50
Anti-ETAR polyclonal goat IgG 1:5
Anti-ETBR polyclonal goat IgG 1:50
Anti-CD14 monoclonal 1:50
Anti-CD15 monoclonal 1:50
Anti-CD33 clone WM53 1:50
Anti-CD34 monoclonal 1:50
Anti CD42b clone AK2 1:50
Anti-CD71 monoclonal 1:50
Anti-5'-nucleotidase polyclonal rabbit IgG 1:50
Anti-Thy polyclonal rabbit IgG 1:50
Anti-CD105 (anti-endoglin monoclonal) 1:50
Anti-ACTR-1 polyclonal goat IgG 1:50
Anti-c-kit polyclonal rabbit IgG 1:50
Anti-HLA-DR monoclonal 1:50
Anti-Flk-1 monoclonal 1:50
Anti-STRO-1 clone 1:50
Anti-collagen type I polyclonal goat IgG 1:50
Anti-·-actin clone 1A4 1:25
Anti-desmin clone D33 1:100
Anti-fibronectin clone FN-3E2 1:400
Anti-laminin clone LAM-89 1:1000
–––––––––––––––––––––––––––––––––––––––––––––––––
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MN cultures were treated with each CKT with the stromal
feeder-layers, and the CFU number was evaluated. Cytokine
supplementation significantly (p<0.05) enhanced the number
of CFUs in comparison with that determined in cultures
grown with medium alone (Fig. 1). The E.I.s were 31 for CKT
A and B and 49 for CKT C. Hence, the increase in CFUs
induced by CKT C was higher than the increases observed
using other CKTs. Stromal feeder layers significantly
(p<0.05) enhanced the number of CFUs in comparison with
the number determined in cultures grown in medium alone
(Fig. 2). Among the various cultural conditions, co-cultures
with M2-10B4 and HCB1SV40 cells were more effective. In
fact, the E.I.s of fetal liver- and bone marrow-derived cell
lines ranged from 3 to 7, while the E.I.s of M2-10B4 and
HCB1SV40 cells were 28 and 36, respectively.

The addition of all cytokine combinations to the co-
cultures significantly (p<0.05) increased the clonogenic
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Table II. Immunocytochemical data for BAEP2-WILD, BAEP2SV40, HM1SV40, HM2SV40 and HCB1SV40 cell lines.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Antibody BAEP2-WILD BAEP2SV40 HM1SV40 HM2SV40 HCB1SV40
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Anti-EGF polyclonal rabbit IgG 2+ Ho 1+ Ho - 1+ R 1+ He
Anti-EGF-R clone 29.1 2+ Ho - - -
Anti-FGF clone 3H3 3+ Ho 3+ Ho 2+ Ho 3+ Ho 3+ Ho
Anti-FGF-R clone VBS-7 3+ Ho 2+ Ho 2+ Ho 3+ Ho 3+ He
Anti-AM polyclonal goat IgG 3+ Ho 2+ Ho 2+ Ho 2+ Ho 2+ Ho
Anti-RAMP2 polyclonal goat IgG 3+ Ho 2+ Ho 2+ Ho 3+ Ho 2+ Ho
Anti-ET-1 3+ Ho 3+ Ho 3+ Ho 3+ Ho 3+ Ho
Anti-ETAR polyclonal goat IgG 1+ He 1+ He - 2+ Ho -
Anti-ETBR polyclonal goat IgG 2+ He 2+ Ho - 2+ Ho -
Anti-CD14 monoclonal - NE - - -
Anti-CD15 monoclonal - - - - -
Anti-CD33 clone WM53 - - - - 1+ He
Anti-CD34 monoclonal - - - - -
Anti-CD42b clone AK2 - - - 1+ He -
Anti-CD71 monoclonal - - - - -
Anti-5'-nucleotidase polyclonal rabbit IgG 2+ Ho 3+ Ho 2+ Ho 2+ Ho 2+ Ho
Anti-Thy polyclonal rabbit IgG 2+ Ho NE 1+ He 3+ Ho 3+ Ho
Anti-CD105 (anti-endoglin monoclonal) - - - - -
Anti-ACTR-1 polyclonal goat IgG 3+ Ho 3+ Ho 2+ Ho 3+ Ho 2+ Ho
Anti-c-kit polyclonal rabbit IgG 2+ Ho NE 2+ Ho 2+ He -
Anti-HLA-DR monoclonal - - - - -
Anti-Flk-1 monoclonal 2+ Ho 2+ Ho 1+ He 3+ Ho 1+ Ho
Anti-STRO-1 clone - - - - -
Anti-collagen type I polyclonal goat IgG 2+ Ho 3+ Ho 2+ Ho 1+ R -
Anti-·-actin clone 1A4 1+ R 2+ R - 1+ R 2+ He
Anti-desmin clone D33 - - - - -
Anti-fibronectin clone FN-3E2 - 2+ Ho - - 2+ R
Anti-laminin clone LAM-89 2+ Ho 2+ Ho - 3+ Ho 3+ Ho
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
The intensity of stained cell positivity was evaluated by assigning a score between 1+ and 3+. Samples were defined as not executed (NE),
‘homogeneous’ (Ho), ‘heterogeneous’ (He) or with ‘rare positive cells’ (R) when the number of positive cells was between 81 and 100%,
between 20 and 80% and <20% of total cells, respectively.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Figure 1. Effects of CKT treatment on MN clonal growth with respect to
MN control cultures. Bars are means ± SD (n=10). *p<0.05; Friedman and
Dunn's multiple comparison tests.
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growth of the MN cells when compared to those determined
in cultures grown in medium alone (Fig. 3). Higher increases
were noted in feeder-layers composed of HCB1SV40 cells;
E.I.s in the co-cultures ranged from 16 to 27 with fetal liver
feeder-layers, from 32 to 53 with bone marrow feeder-layers,
from 45 to 49 with mouse feeder-layers and from 67 to 83
with cord blood feeder-layers.

The E.I.s of co-cultures treated with the different cytokine
combinations with respect to the MN cultures established in
the presence of the same cocktails (R.E.I.CKT) are provided in
Table III. Higher increases were induced in the cytokine-
treated feeder-layers composed of HCB1SV40 cells (ranging
from 1.7 to 2.3). Feeder-layers of human bone marrow- and
murine fibroblastic-derived cells induced a similar effect
(R.E.I.CKT ranging from 1.1 to 1.6). Instead, clonogenic
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Figure 2. Effects of stromal feeder-layers on MN cell clonal growth with respect to MN control cultures. Bars are means ± SD (n=10). *p<0.05; Friedman and
Dunn's multiple comparison tests.

Figure 3. Effects of stromal feeder-layers and CKT treatment on MN cell clonal growth with respect to MN control cultures. Bars are means ± SD (n=10).
*p<0.05; Friedman and Dunn's multiple comparison tests.

Table III. Relative expansion indexes of co-cultures treated
with different cytokine combinations (FL-CKTs) with
respect to MN cultures established in the presence of the
same cocktails (R.E.I.CKT).
–––––––––––––––––––––––––––––––––––––––––––––––––

R.E.I.CKT
––––––––––––––––––––––––––––––––––
FL+CKT A FL+CKT B FL+CKT C

–––––––––––––––––––––––––––––––––––––––––––––––––
M210B4 1.5 1.6 0.9
HM1SV40 1.4 1.3 1.1
HM2SV40 1.2 1.1 0.8
HCB1SV40 2.3 2.2 1.7
BAEP2W 0.9 0.6 0.5
BAEP2SV40 0.5 0.6 0.4
–––––––––––––––––––––––––––––––––––––––––––––––––

837-845.qxd  14/10/2009  12:23 ÌÌ  Page 841



growth of MN cells cultured on fetal liver-derived cells in the
presence of CKTs did not reach the levels observed using
cytokine combinations alone. A similar trend was observed
using HM2SV40 cells and CKT C.

The E.I.s of co-cultures treated with the different cytokine
combinations with respect to the co-cultures established in
the absence of cytokines (R.E.I.FL) are provided in Table IV.
All CKTs enhanced the clonogenic growth of MN cells
(R.E.I.FL ranging from 1.6 to 8.9), with CKT C inducing the
highest effect on all co-cultures (except for M2-10B4 and
BAEP2W). Higher increases (ranging from 2.9 to 8.9) were
noted in the feeder layers composed of human bone marrow-
and fetal liver-derived cells, while using HCB1SV40 or M2-
10B4 cells as feeder-layers the improvement was ~2 and 1.5,
respectively.

The CFU mean values determined in all co-cultures
supplemented with CKTs are shown in Fig. 4. The clono-
genic growth induced by HCB1SV40 feeder-layers was
significantly (p<0.05) higher with respect to the growth
observed in all of the other co-cultures. Although all CKT
treatments induced a significant (p<0.05) enhancement in the
CFU values in comparison with values determined in co-
cultures grown in medium alone, no significant variations
were revealed among the various CKT supplementations. In
order to analyze the expansion indexes of co-cultures with
respect to M2-10B4, used as the control cell line, the
R.E.I.sM2-10B4 were calculated. In the co-culture without CKT
treatment, the R.E.I.sM2-10B4 ranged from 0.1 to 0.3, with the
exception of the HCB1SV40 cell line (R.E.I.M2-10B4 =1.3). A
similar trend was observed considering the R.E.I.M2-10B4 of the
co-cultures supplemented with CKTs: the values observed
ranged from 0.3 to 0.9 with the exception of the HCB1SV40
cell line (1.3-1.8).

Discussion

One of the greatest challenges to clinical haematology and
tissue engineering is the in vitro expansion of hematopoietic
stem cells (HSCs). One of the problems related to the question
of whether stem cells can be expanded in vitro, is the difficulty
in the assay. To date, several strategies have been used to
achieve HSC in vitro expansion (free culture with recombinant
cytokines, conditioned supernatants, stromal feeder layers),
with different expansive outputs (39-43). The strategy based
on the co-culture of both hematopoietic stem cell candidates
and large numbers of differentiated cells, grown in vitro over
varying periods, has resulted in successful engraftment
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Table IV. Relative expansion indexes of co-cultures treated
with different cytokine combinations (FL-CKTs) with respect
to co-cultures established in the absence of cytokines (R.E.I.FL).
–––––––––––––––––––––––––––––––––––––––––––––––––

R.E.I.FL
––––––––––––––––––––––––––––––––––
FL+CKT A FL+CKT B FL+CKT C

–––––––––––––––––––––––––––––––––––––––––––––––––
M210B4 1.7 1.76 1.6
HM1SV40 6.1 5.40 7.3
HM2SV40 8.5 7.60 8.9
HCB1SV40 2.0 1.90 2.3
BAEP2W 4.3 2.90 3.8
BAEP2SV40 5.8 6.50 6.2
–––––––––––––––––––––––––––––––––––––––––––––––––

Figure 4. Effects of stromal feeder-layers and CKT treatment on MN cell clonal growth with respect to MN control co-cultures. Bars are means ± SD (n=10).
*,‡p<0.05 with respect to *M2-10B4 or ‡HCB1SV40; Friedman and Dunn's multiple comparison tests.
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(22,44-47). Several studies have, in fact, documented an
improved frequency of expansion of long-term culture-
initiating cells, colony-forming unit blast cells, and long-term
repopulating cells in vivo by the co-culture of sorted HSC
candidates, with either clonal cell lines derived from the bone
marrow stromal microenvironment, or fresh cultures of
stromal cells (48-50). Moreover, stromal cell lines have been
proven to be an invaluable tool for the elucidation of the
molecular mechanisms involved in the differentiation and
self-renewal of hematopoietic cells (27,51). Several studies
have demonstrated the different inductive capacities of stromal
(liver, spleen, bone marrow and fetal liver) feeder-layers to
support and maintain hematopoietic proliferation (52,53).

Besides the cellular microenvironment, an important role
in HSC expansion seems to be played by molecular signaling
and in particular by the presence of cytokines in the culture
medium. However, one cytokine might have different effects
on different types of cells, depending on the target cells, its
concentration, and the presence of other cytokines. Hence the
right cytokine, or cocktail of cytokines, for HSC expansion is
still a critical issue (54).

In this study, we evaluated, in a middle-term culture of
HSCs, the expansive effect of different cytokine cocktails
(CKTs) and of self-made stromal cell lines, used alone or in
combination with CKTs, for detecting the best culture
condition(s) which can improve in vitro hematopoietic stem
cell expansion.

All the cytokine cocktails used induced a significant and
important increase in CB cell expansion indexes, and no
potential variation depending on composition was evident.
Although all cytokine cocktails A, B and C supported in vitro
hematopoietic cord cell expansion, more proliferative effects
were shown in the presence of cocktail C. This result confirm
the potential of IL-1ß, EPO, G-CSF and GM-CSF to increase
CFU numbers (54-57) and was in contrast to other studies in
the literature (41,58), which found that thrombopoietin
(TPO) present in the cytokine cocktail B was not able to
sustain middle-term stem cell proliferation and renewal,
neither by itself nor in combination with other cytokines.

We previously characterized human bone marrow-derived
(HM1SV40 and HM2SV40), umbilical cord-derived
(HCB1SV40) and fetal liver-derived (BAEP2SV40 and
BAEP2W) cell lines, used in this study as feeder-layers, and
we showed that their conditioned supernatants were able to
stimulate clonal growth of CB cells cultured on semi-solid
medium deprived of exogenous growth factors and cytokines
(32,33). Notably, ICC revealed that all cell lines did not only
have a stromal cell-like phenotype, but also a mesenchymal
cell-like phenotype, positive for 5'-nucleotidase (CD73), c-kit
(CD117), and Flk-1 (CD309, KDR, VEGF-R), some of the
mesenchymal markers. These data were confirmed by the
RT-PCR result of VCAM-1 production in the immortalized
cell lines. 

Mesenchymal stem cells (MSCs), originally isolated from
bone marrow (59), have been successively obtained from
different tissues such as cord blood, adipose tissue, placenta
and amniotic fluid, fetal liver tissue, pulmonary parenchyma
and the pulp of deciduous teeth (60). In past years, researchers
have attempted to define the expression patterns of cell
surface antigen employing different panels of polyclonal and

monoclonal antibodies (61,62). However, similar to other
stem cell types, they failed to detect specific markers for
MSCs, and the precise phenotype of these cells has yet to be
determined. Several phenotypes for cultured human MSCs
have been reported, and these include expression for CD73,
CD117, CD 106 and CD309 (63-67). Therefore, our cell lines
had characteristics similar to MSCs present in adult bone
marrow and in other human tissues and, similar to these cells,
they were non-hematopoietic and CD34-, CD14-, CD15-,
CD42b- (68).

However, the phenotypic profile of our cell lines showed
the expression of ·-actin in the HM2SV40, HBC1SV40,
BAEP2W and BAEP2 SV40 cell lines, and FGF-R in the
HM1SV40, HM2SV40, HBC1SV40 and BAEP2W cell lines
in contrast to previous observations at the moment of their
isolation (32,33). Moreover, the HCB1SV40 cell line was
positive for fibronectin and laminin, while HM1SV40 and
BAEP2SV40 cell lines were negative for laminin and EGF-
R, respectively. The causes of these phenotypical variations
need to be defined. Yet, we hypothesize that long-term culture
(more than one year) or culture temperature (37˚C) or both
culture conditions could be the primary causes. All the cell
lines, with the exception of BAEP2W, were immortalized by
transduction with a retroviral MoMuLV, containing a mutant
temperature-sensitive Simian virus 40 (SV40) large T
antigen. The protein coded by this gene induces cellular
proliferation at the permissive temperature of 33˚C, whereas
it is inactive at the non-permissive temperature of 39˚C,
inducing cellular growth arrest in the G0 phase and cellular
differentiation (69). Hence, the culture temperature used was
sub-optimal to induce either cellular growth and differ-
entiation. As a consequence, it is important to verify whether
an immortalized cell line long-term culture induces expression
of other mesenchymal markers at 33˚C and a stromal
phenotypical profile at 39˚C.

Our results showed that all feeder-layers were able to
induce significant clonogenic growth with respect to the
control cells. In particular, the HCB1SV40 cell line supported
a middle-term culture of cord cells, similar to reference line
M2-10B4, as previously demonstrated by Breems et al (70)
in FBMD-1, L87/4 and L87/5 stromal lines. On the contrary,
bone marrow stromal cells (HM1SV40 and HM2SV40) and
hepatic immortalized stromal lines (BAEP2W and
BAEP2SV40) revealed expansive indexes much lower than
the M210B4 cell line.

Addition of cytokines to the co-cultures clearly increased
the expansive indexes of all the cell lines dependent on the
composition and synergies with used cell lines. In fact CKTs
significantly increased the expansive potential of HCB1SV40
and HM1SV40 cell lines more than the cytokine cocktails
alone. The different synergism between feeder-layers and
cytokine cocktails could be related to previous data which
showed that our cell lines, used for feeder-layers, not only
expressed the mRNA of several growth factors, such as GM-
CSF, G-CSF, IL-6 but also secreted them in the culture
medium (32,33).

In light of these considerations, stromal cell line
HCB1SV40 may be used in co-culture systems as a feeder
layer in combination with cytokines for improving in vitro
expansion of CB HSCs. Nevertheless, the potential of the
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cocktails to increase in vitro expansion of cord hematopoietic
cells requires further detailed study to consider their further
use in developing cellular expansion techniques for allogenic
transplantation. Moreover, further studies are needed to
detect the interactions between stromal and haematopoietic
progenitor cells in this expansion cell culture model.

In conclusion, we investigated the middle-term expansion
of hematopoietic CB cells and found that the cytokine
cocktails and stromal feeder-layers used in this study clearly
increased the in vitro expansion indexes of CB cells. In
particular, CKT C and stromal cell line HCB1SV40 were the
most effective. Moreover, we demonstrated that exogenous
cytokines and stromal feeder-layers may act in synergism in
in vitro hematopoietic progenitor cell expansion.
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