
Abstract. Uncoupling proteins (UCPs) belong to a superfamily
of mitochondrial transporters that uncouple ATP synthesis from
electron transport. We have previously shown that uncoupling
protein 4 (UCP4) is differentially expressed in omental adipose
tissue in diet-induced obese and normal rats. Overexpression
of UCP4 promotes proliferation and inhibits apoptosis and
differentiation of preadipocytes. In this work, we further
characterized the effect of UCP4 on mitochondrial function in
mature 3T3-L1 adipocytes. Transmission electron microscopy
(TEM) showed that adipocytes overexpressing UCP4 displayed
condensed mitochondria with twisted, condensed, and unclear
cristae. Moreover, the loss of the mitochondrial membrane
potential and intramitochondrial calcium was found. The
adipocytes overexpressing UCP4 also showed decreased
mitochondrial copy number (mtDNA) and lower mRNA
expression of key factors in mitochondrial biogenesis,
including PGC-1· and mtTFA. NRF-1 and ERRß levels were
down-regulated, while NRF-2 levels were upregulated. In
addition, UCP4 overexpression impaired mitochondrial
fusion and fission, as indicated by decreased mitofusin mfn1,
mfn2, and mitofission DRP1. When it came to total adipo-
cytes, the UCP4 overexpressing adipocytes showed higher
production reactive oxygen species and diminished levels of
intracellular ATP. Furthermore, overexpression of UCP4
brought about impaired insulin sensitivity in adipocytes.
UCP4 plays an important role in mitochondrial function and

adipocyte insulin resistance. Its function deserves further
attention. 

Introduction

In line with the increasing prevalence of obesity, the incidence
of type 2 diabetes mellitus has increased dramatically. Central
to the etiology of type 2 diabetes is insulin resistance, an early
detectable characteristic preceding the development of type 2
diabetes. Insulin resistance indicates a state of reduced
responsiveness of insulin-sensitive tissues to circulatory levels
of insulin, i.e., there is reduced glucose disposal and impaired
inhibition of hepatic glucose output at a given concentration of
insulin (1). Evidence gathered in recent decades has pointed
towards an important role for mitochondrial dysfunction in the
development of insulin resistance, especially for mitochondrial
oxidative capacity in the etiology of type 2 diabetes (2-4).
Mitochondria are the major source of reactive oxygen species
(ROS) in cells and cumulated evidence points towards a causal
role for ROS in the development of insulin resistance (5). ROS
and oxidative stress lead to the activation of multiple serine/
threonine kinase signaling cascades (6) including an increase in
serine phosphorylation, which decreases the extent of activating
tyrosine phosphorylation (7,8). The kinases that are activated by
oxidative stress include JNK, p38 MAPK, and IKKB (9-12). 

Mitochondrial uncoupling proteins (UCPs) are a subfamily
of the mitochondrial transporter family, which are located in
the inner mitochondrial membrane and uncouple electron
transport from ATP synthesis. Uncoupling protein 4 (UCP4),
one of five members recently described, possesses features
characteristic of mitochondrial transporter proteins, and its
ectopic expression in mammalian cells reduces mitochondrial
membrane potential (MMP) (13). PC12 cells expressing
UCP4 have attenuated mitochondrial oxidative stress and
regulated Ca2+ homeostasis (14). The higher UCP4 levels
observed in aged female rats led to better oxidative homeo-
stasis maintenance in the females (15). UCP4 overexpression
also remarkably protected neurons against MPP+-induced cell
death via the preservation of ATP levels and MMP, and the
suppression of oxidative stress (16). While UCP4 is mainly
expressed in the brain, we previously showed that UCP4 is
differentially expressed in omental adipose tissue in diet-
induced obese and normal rats and that overexpression of
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UCP4 can promote proliferation and inhibit apoptosis and
differentiation of preadipocytes (17). Although UCP4 plays a
protective role in neurons, little information has been collected
on UCP4 function and its effect on mitochondrial function in
adipocytes. Thus, further studies are still necessary.

The aim of this study was to determine whether over-
expression of UCP4 in 3T3-L1 adipocytes affects adipocyte
mitochondrial function parameters, including mitochondrial
morphology, mitochondrial DNA (mtDNA) copy number,
mitochondrial biogenesis, intracellular ROS levels and ATP
levels, intramitochondrial Ca2+ concentration, MMP, and the
insulin sensitivity of adipocytes.

We show that overexpression of UCP4 in 3T3-L1 adipo-
cytes induced obvious mitochondrial dysfunction and insulin
resistance. Upon UCP4 expression, mitochondrial morphology,
biogenesis, and mtDNA copy number were all altered. Increased
levels of intracellular ROS, loss of MMP, and intramitochondrial
calcium may have contributed to mitochondrial dysfunction.

Materials and methods

Antibodies. Primary rabbit polyclonal nuclear respiratory
factor-1 and -2 (NRF-1 and -2) and mfn2 antibodies were
purchased from Abcam (Abcam, MA, USA). Rabbit polyclonal
PGC-1ß antibodies were purchased from Lifespan Biosciences.
DRP1, SIRT1, and Mfn1 were purchased from Santa Cruz
Biotechnology (Santa Cruz, CA, USA). Primary rabbit poly-
clonal estrogen-related receptor ß (ERRß) antibodies were
purchased from lifespan biosciences (Seattle, WA, USA).
ß-actin antibody was purchased from Cell Signaling Technology
(Danvers, MA, USA). Peroxidase-conjugated AffiniPure goat
anti-rabbit secondary antibodies were from Zhongshan Gold
Bridge Biotechnology (Beijing, China). 

Cell culture and UCP4 transfection. The mouse preadipocyte
fibroblast line 3T3-L1 (ATCCCL173) was cultured in
Dulbecco's modified Eagle's medium (DMEM) (Gibco BRL,
Grand Island, NY, USA) containing 10% fetal bovine serum
(FBS) (Gibco BRL), 100 U/ml penicillin, and 0.1 mg/ml
streptomycin (Amresco, OH, USA) in 5% CO2 at 37˚C. Full-
length rat UCP4 cDNAs were amplified by reverse transcriptase
PCR (RT-PCR) using mRNAs isolated from white adipose
tissues. Primer sequences were, forward, 5'-CGC GGA TCC
GCC ACC ATG CCT ATC GCG AG-3', and reverse, 5'-CCC

AAG CTTAAATGG GCT GAC TCC-3', and contained
BamHI and HindIII sites, respectively. The PCR products were
then subcloned into pcDNA3.1a(-)/His expression vectors.
The UCP4 constructs and pcDNA3.1a(-)/His vectors were
each transfected separately into 3T3-L1 preadipocytes using
Fugene 6 (Roche Molecular Biochemicals, Indianapolis, IN,
USA). After 24 h, cells were cultured in selective medium
containing 800 μg/ml G418 (Sigma, St. Louis, MO, USA) for
the selection of resistant colonies. Cells were fed with selective
medium every 3 days until resistant colonies could be identified.
These resistant foci were selected, expanded, tested for
expression, and frozen for future experiments. To induce
differentiation, 3T3-L1 preadipocytes were grown to confluence
for 2 days. Two days later, cells were induced to differentiate
(day 0) with the addition of a standard differentiation-inducing
mix. Insulin (100 nM), dexamethasone (0.25 μM) and isobutyl-
methylxanthine (0.5 mM) (Sigma) were added to the medium
for the first 48 h. From days 2 to 4, the full medium was only
supplemented with 100 nM of insulin. Cells were then switched
to DMEM containing only 10% FBS for the remaining days.
Cultures were replenished every 2 days.

Glucose uptake. 2-Deoxy-D-[3H] glucose (CIC, Beijing, China)
uptake was assayed as described previously but with minor
modifications (18). Cells were cultured in six-well plates and
induced to differentiate into mature adipocytes. Before the
experiment, cells were serum starved for 3 h in DMEM
containing 0.5% FBS. The cells were then washed twice with
phosphate-buffered saline (PBS) and incubated in KRP-
HEPES buffer (30 mM HEPES pH 7.4), 10 mM NaHCO3,
120 mM NaCl, 4 Mm KH2PO4, 1 mM MgSO4, and 1 mM
CaCl2) in the presence or absence of 100 nM insulin for 30 min
at 37˚C. Labeled 2-deoxy-D-[3H] glucose was added to a
final concentration of 2 μCi/ml. After 10 min at 37˚C, the
reaction was terminated by washing 3 times with ice-cold PBS
supplemented with 10 mM D-glucose. Cells were solubilized
by the addition of 200 μl of 1 M NaOH to each well, and
aliquots of cell lysates were transferred to scintillation vials for
radioactivity counting. The remainder of the lysate was used
for the protein assay.

Real-time RT-PCR for mitochondrial DNA. Relative amounts
of nuclear DNA and mtDNA were determined by quantitative
real-time PCR. The ratio of mtDNA to nuclear DNA reflects
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Table 1. Oligonucleotide sequences for primer/probe sets used in TaqMan analysis.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Gene Forward primer (5'-3') Reverse primer (5'-3') Probe
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Cyt B TTTTATCTGCATC CCACTTCATCTTAC AGCAATCGTTCACCT

TGAGTTTAATCCT CATTTATTATCGC CCTCTTCCTCCAC
28s GTGGCGGCCAA AGGCGTTCAGTCA TGGTAGCTTCGCC

GCGTTCATAG TAATCCCACAG CCATTGGCTCCT
PGC-1· CGGAAATCATA TGAGGACCGCT

TCCAACCAG AGCAAGTTTG
mtTFA GGAATGTGGA TGCTGGAAAAAC

GCGTGCTAAAA ACTTCGGAATA
ß-actin CCTGAGGCTC TAGAGGTCTTTAC

TTTTCCAGCC GGATGTCAACGT
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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the tissue concentration of mitochondria per cell. For this
purpose, a 120-nucleotide-long mtDNA fragment within the
CYTB gene was selected for the quantification of mtDNA
according to He et al (19). 

Quantitative real-time RT-PCR. Total RNA from adipocytes
was extracted using Trizol reagent (Invitrogen). First-strand
cDNA was generated with random primers using a reverse
transcription kit (Invitrogen). Real-time analysis was performed
on an ABI 7300 RT-PCR system (Foster City, CA, USA)
with the SYBR Green kit (Applied Biosystems). Each sample
was assayed in duplicate in a 25 μl reaction volume containing
2.5 μl cDNA, 12.5 μl SYBR Green master mix (Applied
Biosystems), and 0.58 μmol/l of each primer. Negative controls
(no template or selected untranscribed RNA) were run to
ensure the absence of contamination. Analysis was performed
according to the ΔCt method using ß-actin as the housekeeping
gene. Specific primers for each gene were designed to amplify
a single product (see Table I), as confirmed by regular PCR and
dissociation curve analysis post-real-time PCR. The primer
sequences are available upon request. 

Electromicrograph morphometry. The adipocytes were
collected after trypsin digestion, dissected, and fixed in a
mixture of 2.5% glutaraldehyde, 1.25% paraformaldehyde, and
0.03% picric acid in 0.1 M sodium cacodylate buffer (pH 7.4).
Cells were then washed in 0.1 M cacodylate buffer, post-
fixed with 1% osmium tetroxide/1.5% potassium ferrocyanide
for 1 h, washed in water, and stained in 1% aqueous uranyl
acetate for 30 min, followed by dehydration in different
concentrations of alcohol (5 min in 70, 90 and 100% alcohol).
The samples were then infiltrated and embedded in TAAB
Epon (Marivac Canada Inc., St. Laurent, Canada). Ultrathin
sections (~60 nm) were cut on a Reichert Ultracut-S microtome,
placed onto copper grids stained with uranyl acetate and lead
citrate, and examined in a JEOL 1200EX. 

Western blotting. Treated cells were washed with ice-cold
PBS and lysed in protein lysis buffer (50 mM Tris, 150 mM
NaCl, 10 mM EDTA, 1% Triton X-100, 200 mM sodium
fluoride, 4 mM sodium orthovanadate-containing protease
inhibitors, pH 7.5) for 1 h on ice. Protein concentration was
measured by the Bradford method. Proteins were separated
by 10% sodium dodecyl sulfate-polyacrylamide electro-
phoresis (SDS-PAGE) and transferred to nitrocellulose
membranes. Membranes were blocked with 5% bovine serum
albumin (BSA) in TBST (50 mM Tris, pH 7.5, 150 mM NaCl,
0.05% Tween-20). The membrane was incubated at 4˚C
overnight in 5% BSA in TBST containing one of the following
primary antibodies: DRP1, 1:200; SIRT1, 1:250; Mfn1,
1:1000; Mfn2, 1:200; NRF-1, 1:500; NRF-2, 1:250; ERRß,
1:1000; or ß-Actin, 1:1,000. The membrane was washed 5 times
with PBST, for 5 min each wash. After washing, the membrane
was incubated with horseradish peroxidase-conjugated
secondary antibodies for 1 h at room temperature, washed
with PBST, and developed with an enhanced chemiluminescence
(ECL) kit (Amersham, Piscataway, NJ, USA).

ATP production. The ATP content of the adipocytes was
measured with ATP lite-glo, a luciferase-based luminescence
assay kit (PerkinElmer). Briefly, treated cells were mixed

with the detection reagent for 5 min and luminescence was
measured with a VERITAS™ Microplate Luminometer
(Turner Biosystems).

MMP. Adipocytes were incubated with 150 nM of Mitotracker,
a red mitochondria-specific cationic fluorescent dye (Molecular
Probes, Invitrogen), for 30 min at 37˚C, and then washed
3 times with pre-warmed phosphate-buffered saline (PBS). The
spectral characteristics of the harvested cells were analyzed by
fluorescence assisted cell sorting (FACS; excitation at 579 nm,
emission at 644 nm). The fluorescence intensity reflects the
MMP. 

Measurement of intramitochondrial Ca2+. Intramitochondrial
calcium [Ca2+]m in adipocytes was measured using a rhod-2
fluorescence imaging system. Mitochondrial Ca2+ levels can be
monitored using anionic, membrane-permeable fluorescent
molecules like Rhod-2-AM (20). This compound freely passes
through the plasma membrane of the cell due to its acetoxy-
methyl (AM) esters, which are cleaved by intracellular esterases.
Adipocytes were first washed several times with phosphate-
buffered saline (PBS). Before measuring [Ca2+]m, adipocytes
were incubated in serum-free medium for 2 h and then rinsed
with PBS. Adipocytes were incubated with 10 mM rhod-2
acetoxymethyl ester (AM) (Molecular Probes, Invitrogen) in
the same buffer in the dark for 1 h at 37˚C. The adipocytes
were then rinsed three times with PBS to remove extracellular
dye and washed three times with pre-warmed PBS. The
spectral characteristics of harvested cells were analyzed by
fluorescence assisted cell sorting (FACS; excitation at 543 nm,
emission at 615 nm). The fluorescence intensity reflects the
intramitochondrial [Ca2+]m.

Determination of intracellular ROS content. Intracellular
ROS generation was assessed using 6-carboxy-2,7-dichloro-
dihydrofluorescein diacetate (H2-DCFDA) as previously
described (21). Cells were washed twice in KRP buffer,
incubated in pre-warmed KRP containing 25 mM glucose and
5 μM H2-DCFDA (Sigma), and placed at 37˚C. After 30 min,
cells were washed twice with KRP, and fluorescence was
immediately measured in a plate reader using FACS (excitation
at 488 nm, emission at 525 nm).

Statistical analysis. All data are expressed as means ±SEM.
Statistical analysis was performed using one-way ANOVA
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Figure 1. Expression of UCP4 in 3T3-L1 preadipocyte cells transfected with
pcDNA3.1-UCP4. (A) Expression of UCP4 mRNA. Total RNA was extracted
from stable lines transfected with pcDNA3.1 or pcDNA3.1-UCP4 constructs.
Real-time PCR was performed using the primers indicated in Table I. Lane 1,
vector (pcDNA3.1); 2, pcDNA3.1-UCP4. (B) Expression of UCP4 protein.
Total proteins were isolated from stable cell lines and analyzed by Western
blotting using a mouse anti-6His antibody. Lane 1, vector (pcDNA3.1); 2,
pcDNA3.1-UCP4. Values represent the means ±SD from 3 independent
experiments. *P<0.05 vs.vector adipocytes.
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with the SPSS 10.0 statistical software package (SPSS Inc.,
Chicago, IL, USA). The threshold of significance was defined
as P<0.05.

Results

Stable expression of UCP4. A 3T3-L1 cell line stably expressing
a transfected UCP4 plasmid was established and maintained
in DMEM containing 200 μg/ml G418. Expression of UCP4
was verified by real-time PCR (Fig. 1A) and Western blotting
(Fig. 1B).

MMP and mitochondrial morphology are altered in adipocytes
overexpressing UCP4. UCPs are located on the mitochondrial
inner membrane and function as proton transporters. To
determine whether UCP4 overexpression has an effect on
mitochondria, we monitored MMP and assessed the ultra-
structure of mitochondria in adipocytes after the stable trans-
fection of UCP4. We found that UCP4 overexpression resulted
in a drop in MMP (Fig. 2A), as shown by the potential
dependent fluorescence probe. Additionally, UCP4-forced
cells displayed condensed mitochondria with twisted and
condensed cristae (Fig. 2B). The vector adipocytes, however,
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Figure 2. Mitochondrial membrane potential and mitochondria morphology are altered in adipocyte forced expression of UCP4. (A and B) Mitochondrial membrane
potential. 3T3-L1 preadipocytes transfected with UCP4 or the empty vector (pcDNA3.1Myc/His B) were induced to differentiate. Mitochondrial membrane
potential was displayed by mitotracker-red fluorescence probe. (A) 1, vector; 2, UCP4. *P<0.05 vs.vector adipocytes. The mitochondrial membrane potential
in adipocytes were also displayed with fluorescence microscope. a, vector; b, UCP4 (B). T-values represent the means ±SD from 3 independent experiments.
(C) The morphological features of mitochondrial 3T3-L1 preadipocytes transfected with UCP4 or the empty vector (pcDNA3.1Myc/His B) were induced to
differentiate. Ultra-structural analysis of mitochondrial adipocytes were visualized by transmission electron microscopy. a, vector; b UCP4, (x 50,000).

C
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showed clear and oriented cristae that were normal in
shape. The abnormal MMP and the morphology of these
mitochondria motivated us to track other mitochondria
related events.

Mitochondrial fusion and fission are impaired and
mitobiogenesis is reduced upon overexpression of UCP4. To
further clarify the mechanisms underlying the effects of UCP4
on mitochondrial morphology, we examined the levels of the
mitochondrial fusion and fission proteins mfn1, mfn2, and
Drp1 (Fig. 3A). These proteins mediate the main fusion and
fission processes in mammals, and ultimately determine the
shape of the mitochondria. Compared to control vector
adipocytes, mfn1 protein levels were considerably reduced in
adipocytes upon UCP4 expression, while a slight diminishment
of mfn2 was observed. Mfn1 and Mfn2 share >70% sequence
similarity (22). In the present study, levels of mfn1 were
markedly altered, indicating that it plays a more central role in
mitochondrial deformation. Levels of the fission protein Drp1
were strikingly decreased upon UCP4 expression. Altogether,
the mitochondria size displayed was the same as vector
adipocytes, which may be attributed to the simultaneous
impairment of mitofusin and mitofission. 

We also examined the expression levels of the mitochondrial
biogenesis-related factors PGC-1· and PGC-1ß. The expression
of PGC-1· mRNA (Fig. 3B) was drastically decreased after
UCP4 overexpression. The level of PGC-1ß protein maintained
no alteration. PGC-1ß protein located between 39 and 51 kDa
with double presence, this was consistent with the antibody
directions provided by the manufacturer. To further explore
the changes in mitochondrial biogenesis, we also assessed the
levels of NRF-1, NRF-2, ERRß, SIRT1, and mtTFA. NRF-1
and ERRß protein levels were greatly decreased after UCP4
expression. ERRß protein located between 38 and 59 kDa
with double presence, this was consistent with the antibody
directions provided by the manufacturer. However, levels of
NRF-2 were dramatically elevated after UCP4 expression.
Levels of SIRT1, which deacetylates and then activates
PGC-1·, were the same in both vector and UCP4 adipocytes.
mRNA expression of mtTFA (Fig. 3B), a key factor in mito-
chondrial biogenesis, was reduced upon UCP4 expression.
These data indicate that mitochondrial biogenesis is greatly
altered by UCP4 overexpression.

mtDNA and ROS production are affected by UCP4 expression.
Since mitochondrial biogenesis was drastically affected by
UCP4 overexpression, we next investigated whether UCP4
overexpression affected mtDNA copy number and ROS
production (Fig. 4A). By real-time PCR, we revealed that
mtDNA levels decreased significantly upon UCP4 over-
expression. We know that mtDNA only encodes for two
ribosomal RNAs, the 22 transfer RNA and the 13 messenger
RNA, which are exclusively involved in the translation of the
subunits of complexes I, III, IV and V of the mitochondrial
respiratory chain (MRC). Since the activity of the MRC is
closely related to ROS production, we next sought to determine
whether UCP4 overexpression affected ROS production.
ROS levels in UCP4 overexpressing adipocytes were strikingly
enhanced, as indicated by greater fluorescence in the presence
of the compound DFCDA (Fig. 4B and C).

Intracellular ATP and intramitochondrial Ca2+ concentration
are decreased in adipocytes upon overexpression of UCP4. It
is well known that uncoupling proteins dissipate the
mitochondrial proton gradient, thus uncoupling oxidative
phosphorylation and allowing stored energy to be expended
as heat. We next assessed intracellular ATP concentration
(Fig. 5A). As we expected, the intracellular ATP concentration
was decreased upon UCP4 overexpression. UCP4 over-
expression led to a large reduction in intramitochondrial
calcium concentration in mature adipocytes (Fig. 5B and C).
These results clearly demonstrate that UCP4 overexpression
induces mitochondrial dysfunction in adipocytes.

Insulin sensitivity was impaired upon UCP4 overexpression.
An association between mitochondrial dysfunction and reduced
insulin sensitivity has been observed in cross-sectional
studies (23). We next investigated the insulin sensitivity after
UCP4 forced expression. As shown in Fig. 6, insulin stimulated
2-Deoxy-D-[3H] glucose uptake was greatly lessened when
compared with vector adipocytes. In other words, the adipo-
cytes became insulin resistant after UCP4 overexpression.
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Figure 3. Effects of UCP4 on mitochondrial biogenesis. 3T3-L1 preadipocytes
transfected with UCP4 or the empty vector (pcDNA3.1Myc/His B) were
induced to differentiate. Cell lysates were analyzed by SDS-PAGE, blotted
onto a membrane, and then probed with corresponding antibodies, ß-actin as
an internal control (A). The RNA was extracted and relative expression of
PGC-1· and mtTFA mRNA was examined by real-time RT-PCR (B). ß-actin
mRNA as internal control. Values are shown as mean ±SD of triplicate; 1,
vector; 2, UCP4; **P<0.01 vs. vector adipocytes.
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Discussion

The major findings of our study are as follows. i) UCP4
overexpression resulted in mitochondrial deformation and
reduced MMP. Mitochondria in UCP4 expressing adipocytes
displayed compact and unclear cristae; ii) Mitochondrial
fusion and fission became imbalanced and mitobiogenesis
was reduced upon overexpression of UCP4. Mitochondrial
biogenesis factors (NRF-1, NRF-2, PGC-1·, mtTFA, and
ERRß) and mitochondrial mtDNA were all changed; iii)
Intracellular ROS levels increased and ATP levels were
reduced, which was accompanied by an attenuated intra-
mitochdrial calcium level; iv) We found that adipocytes
became insensitive to insulin. Apparently, UCP4 expression
in 3T3-L1 has an impact on mitochondrial function.

Mitochondrial morphology is closely related to mito-
chondrial function and metabolic activity (24). Several reports
have described an association between mitochondrial
dysfunction and alterations in mitochondrial morphology
(25,26). The mitochondrial matrix and cristae are the main
sites for metabolism, and condensed mitochondria do not
contain enough space to maintain normal or super metabolic
needs. Moreover, when UCP4 was overexpressed there was
reduced MMP and functional mitochondria were fewer,
which is in line with previously reported data (13). UCPs
have the basal function of uncoupling the electrochemical

proton gradient and oxidative phosphorylation (OxPhos).
UCP4 overexpression resulted in increased proton leakage,
which depolarized the MMP.

To discover the cause for condensed mitochondria, we
investigated the mitochondrial fusion and fission related
proteins. The balance between fusion and fission plays a
central role in controlling mitochondrial morphology (27).
Mfn1 and Mfn2 are mitochondrial GTPases required for
mitochondrial fusion. Mfn1 tethers to mitochondrial membranes
more efficiently than Mfn2 (28). The disruption of mito-
chondrial fusion by knockdown of Mfns leads to mitochondrial
fragmentation (29). While DRP1 mediates mitochondrial
fission, preventing mitochondrial fission by downregulating
expression of Drp1 leads to mitochondrial dysfunction, an
increase in cellular ROS, and a loss of mtDNA, which correlates
with a depletion of cellular ATP, inhibition of cell proliferation,
and autophagy (30). Mitochondria frequently undergo fusion
and fission so that they can effectively exchange power and
content. UCP4 overexpression downregulated mfn1, mfn2,
and DRP1, leading to decreased mitochondrial fusion and
fission, which meant exchange activity slowed down. In
addition, inhibition of mitochondrial fusion has been shown
to reduce the activity of the electron transfer chain (ETC)
(31), and to reduce mitochondrial metabolism (32).

Mitochondrial fusion and fission also determined mito-
chondrial numbers and biogenesis. MtDNA and key factors
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Figure 4. mtDNA and ROS content are affected by UCP4 expression. 3T3-L1 preadipocytes transfected with UCP4 or the empty vector (pcDNA3.1Myc/His B)
were induced to differentiate. Total DNA was extracted and relative expression levels of cytB copynumber were determined by real-time RT-PCR and
normalized with 28s (A). Total cellular ROS levels were measured with DCF fluorescence probe by FCM (B) and the ROS in adipocytes were displayed with
a fluorescence microscope (C). a, vector; b, UCP4. Values represent the means ±SD from 3 independent experiments. **P<0.01 vs.vector adipocytes. 
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of mitochondrial biogenesis, PGC-1· and mtTFA, were reduced
by UCP4 overexpression. We also observed reduced levels of
NRF-1 protein and mtTFA mRNA, both targets of PGC-1.
NRF-1 is a transcription factor that stimulates the transcription
of many nuclear-encoded mitochondrial genes, such as
OXPHOS genes and mtTFA. mtTFA can bind to the D-loop
of the mitochondrial genome and promote transcription of
mitochondrial genes and replication of mitochondrial DNA
(33). However, levels of SIRT1, which deacetylates and then
activates PGC-1·, were the same in UCP4 and vector adipo-
cytes. We saw no change in another key biogenesis factor,
PGC-1ß. An interesting result was that NRF-2 increased upon
UCP4 expression. NRF-1 and NRF-2 have been implicated
in the expression of many respiratory subunits along with key
components of nuclear-encoded mitochondrial gene tran-
scription, replication and biosynthetic machinery (34). Mutation
of the NRF-1-binding site abolished Tfam activation, but
mutation of NRF-2 only slightly affected its activation (35).
In the absence of a certain level of NRF-1, NRF-2 plays only
a marginal role in Tfam in vivo expression (36). Our results
provide further evidence that while NRF-2 level increased
greatly, TFAM mRNA was kept at a low level. ERRß is an
orphan receptor that is reported to exhibit constitutive tran-
scriptional activity. In addition, its function is also regulated
by PGC-1· and PGC-1ß (34,37). Targeted disruption of the
ERRß gene in mice resulted in severely impaired placental

formation, and the embryo died at 10.5 days post-coitum (38).
ERRß overexpressed prostate cancer cell lines displayed more
active mitochondria at high membrane potentials and showed
improved lipid metabolism (39). Recent work has established
that ERRs play a role in regulating energy metabolism and
mitochondrial biogenesis and function (37,40). Our results
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Figure 5. Intracellular ATP and intramitochondrial calcium concentration are decreased in adipocytes upon forced expression of UCP4. 3T3-L1 preadipocytes
transfected with UCP4 or the empty vector (pcDNA3.1Myc/His B) were induced to differentiate. Intracellular ATP was determined by ATPlite-glo, a
luciferase-based luminescence assay kit, according to the manufacturer's direction (A). 1, vector; 2, UCP4. Intramitochondrial calcium levels were performed
by rhod-2 fluoresence probe by FCM (B). The intramitochondrial calcium in adipocytes were also displayed with fluorescence microscope (C), a, vector; b,
UCP4. Values represent the means ±SD from 3 independent experiments. **P<0.01 vs.vector adipocytes.

Figure 6. Effect of UCP4 on glucose uptake. 3T3-L1 preadipocytes transfected
with UCP4 or the empty vector (pcDNA3.1Myc/His B) were induced to
differentiate. After serum starvation for 3 h, cells were incubated with (black
columns) or without (white columns) 100 nmol/l insulin for 30 min,
followed by measurement of the 2-deoxy-D-[3H] glucose uptake. Values
represent the means ±SD from 3 independent experiments. **P=0.001 <0.01
vs. insulin-stimulated control (cells transfected with the empty vector).
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indicated that UCP4 had a profound effect on mitochondrial
energy metabolism and biogenesis, and led to mitochondrial
dysfunction.

Previously, Hackenbrock has shown that isolated rat-liver
mitochondria switch from a condensed to an orthodox state
when [ADP] drops during the conversion from respiratory
state 3 to 4 (41). Mitochondria in intact cells respire between
the extreme energetic states, state 3 (in the presence of ADP)
and state 4 (when ADP has been converted into ATP), as
described by studies on isolated mitochondria (42). Condensed
mitochondria indicate that ATP production had decreased
and this was shown in our study. Our results indicated that
UCP4 overexpressing adipocytes displayed condensed mito-
chondria and reduced ATP production. This structural
transition coincides with increased intracellular production of
ROS. It was reported that mild uncoupling decreased ROS
production. Whereas overexpression of UCP4 (perhaps too
much uncoupling) induced a series of metabolic disorders,
including sequential mitochondrial dysfunction and ROS
accumulation, which did not compensate for the effects of
decreasing ROS production. We also observed that intra-
mitochondrial calcium was lost in UCP4 expressing adipocytes.
The mitochondria are a major Ca2+ storage organelle, and can
take up Ca2+ from the endoplasmic reticulum (ER). Mito-
chondrial Ca2+ regulation is achieved primarily via the mito-
chondrial Ca2+ uniporters, whereby Ca2+ is taken up by means
of a potential difference. Carbonyl cyanide p-trifluoro-
methoxyphenylhydrazone (FCCP)-induced mitochondrial
uncoupling causes depolarization and Ca2+ release from the
ER and mitochondria in brown adipocytes (43). This was
shown in our investigation, since UCP4 overexpression
rendered deplorization and intramitochondrial calcium was
lost. Moreover, studies on cultured mammalian cells have
shown that the formation of a reticular mitochondrial network
is important for proper mitochondrial calcium buffering and
for propagating intramitochondrial Ca2+ waves (44,45). The
interaction between ROS and calcium has also been extensively
investigated (46-48). Calcium signaling is essential for the
production of ROS, and elevated intracellular calcium ([Ca2+]i)
activates ROS-generating enzymes, such as NADPH oxidase
and myeloperoxidase, as well as inducing the formation of free
radicals by the mitochondrial respiratory chain (49). Taken
together, mitochondrial deformation and intramitochondrial
calcium, as well as ROS production, are closely related to
UCP4 overexpression and the loss of MMP.

Finally, overexpression of UCP4 resulted in adipocyte
insulin resistance, indicated by decreased insulin stimulated
glucose uptake. This coincided with the abnormal mitochondria
seen in our results. A growing body of evidence has linked
mitochondrial dysfunction to insulin resistance and type 2
diabetes (50,51). Deformed mitochondria and elevated ROS
maybe the contributors to insulin resistance, and mitochondrial
dysfunction has emerged in UCP4 expressing adipocytes, as
indicated by abnormal mitochondrial biogenesis and decreased
ATP production. However, in other cells, UCP4 overexpression
plays a protective role (16). There are five UCPs being widely
investigated, all of which had been shown to be antioxidants
and cell protectors. For example, ectopic UCP1 expression
stimulated mitochondrial biogenesis in unilocular adipocytes
in vivo (52), and UCP2 may provide cytoprotection upon

hypoxic stress (53) or neuroprotection by inducing mild mito-
chondrial uncoupling, which prevents mitochondrial release
of pro-apoptotic proteins (54). Overexpression of UCP3
prevents glucose-induced transient mitochondrial membrane
hyperpolarization, ROS formation, and induction of PCD (55).
Overexpression of UCP3 in skeletal muscle protects against
fat-induced insulin resistance (56). Knockdown of UCP5
expression affected MMP after MPP+ exposure and induced
apoptosis (57).

Whereas, UCP2 expression was shown to be a factor
leading to necrosis, UCP2-mediated reduction in mitochondrial
function contributes to mitochondrial dysfunction and the
necrotic death of primary cultured mesencephalic cells (MCs)
after exposure to cyanide, a complex IV inhibitor (58). The
targeted suppression of UCP2 expression in fatty liver cells
can alleviate the ischemia/reperfusion injury in ob/ob mice
(59). Overexpression of UCP2 in these cells switched the
response to necrosis, which was related to a greater level of
mitochondrial dysfunction. Similar to these results, UCP4
overexpression in adipocytes induced mitochondrial dysfunction
and ROS production, which could be explained by the moderate
to strong uncoupling, which markedly reduced ATP levels in
cells and induced non-apoptotic cell death (60). Like UCP2,
induction of UCP4 expression may be a double-edged sword;
increased action would reduce the efficiency of ATP synthesis
and reduce ROS generation to decrease the execution of
apoptosis (61). 

We previously showed that overexpression of UCP4 can
inhibit the apoptosis of preadipocytes (17). Although we
have not found evidence for necrosis under TEM, the mito-
chondrial MMP, loss of intramitochondrial calcium, and
decreased ATP levels suggested a disorder induced by UCP4
overexpression. We considered that, i) in our study we used
mature adipocytes, while previous studies used preadipocytes.
Preadipocytes, which are fibroblasts, did not represent the
metabolic state of mature adipocytes; ii) The UCP4 induced
dysfunction had not reached the degree of necrosis and iii)
UCP4 may have different impacts on apoptosis and necrosis
execution programs. Overexpression of UCP2 in HeLa cells
decreased MMP, NADH, and ATP levels, and subsequent
cell death was not prevented by caspase inhibitors (60).
Although UCP4 expression inhibited the apoptosis of pre-
adipocytes, we could not conclude whether UCP4 played a
role in mature adipocyte apoptosis. 

In conclusion, the results of this study demonstrate that
UCP4 overexpression inhibits insulin-stimulated glucose uptake
in mature adipocytes and induces mitochondrial dysfunction.
These disorders, induced by UCP4 overexpression, provide
clues for comprehending mitochondrial dysfunction and insulin
resistance.
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