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Proteomic profiling of non-obese type 2 diabetic skeletal muscle
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Abstract. Abnormal glucose handling has emerged as a
major clinical problem in millions of diabetic patients
worldwide. Insulin resistance affects especially one of the
main target organs of this hormone, the skeletal musculature,
making impaired glucose metabolism in contractile fibres a
major feature of type 2 diabetes. High levels of circulating
free fatty acids, an increased intramyocellular lipid content,
impaired insulin-mediated glucose uptake, diminished mito-
chondrial functioning and an overall weakened metabolic
flexibility are pathobiochemical hallmarks of diabetic skeletal
muscles. In order to increase our cellular understanding of
the molecular mechanisms that underlie this complex diabetes-
associated skeletal muscle pathology, we initiated herein
a mass spectrometry-based proteomic analysis of skeletal
muscle preparations from the non-obese Goto-Kakizaki rat
model of type 2 diabetes. Following staining of high-resolution
two-dimensional gels with colloidal Coomassie Blue, 929
protein spots were detected, whereby 21 proteins showed a
moderate differential expression pattern. Decreased proteins
included carbonic anhydrase, 3-hydroxyisobutyrate dehydro-
genase and enolase. Increased proteins were identified as
monoglyceride lipase, adenylate kinase, Cu/Zn superoxide
dismutase, phosphoglucomutase, aldolase, isocitrate dehydro-
genase, cytochrome ¢ oxidase, small heat shock Hsp27/B1,
actin and 3-mercaptopyruvate sulfurtransferase. These
proteomic findings suggest that the diabetic phenotype is
associated with a generally perturbed protein expression
pattern, affecting especially glucose, fatty acid, nucleotide and
amino acid metabolism, as well as the contractile apparatus,
the cellular stress response, the anti-oxidant defense system
and detoxification mechanisms. The altered expression levels
of distinct skeletal muscle proteins, as documented in this
study, might be helpful for the future establishment of a
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comprehensive biomarker signature of type 2 diabetes. Reliable
markers could be used for improving diagnostics, monitoring
of disease progression and therapeutic evaluations.

Introduction

The number of diabetic patients suffering from severe
metabolic disturbances and glucotoxic complications is
rapidly increasing worldwide and the incidence of diabetes is
approaching endemic proportions (1). Type 2 diabetes mellitus
represents a highly complex and heterogeneous disease that
is influenced by both genetic and environmental factors (2).
A modern sedentary lifestyle and obesity-associated meta-
bolic complications clearly play an essential role in disease
progression (3). The principal features of type 2 diabetes are
an abnormal sensitivity of peripheral tissues to insulin and
decreased levels of hormone secretion. Insulin resistance
affects especially skeletal muscles, since contractile fibres are
responsible for most of the insulin-triggered whole body
glucose disposal. This makes impaired insulin signaling and
disturbed glucose metabolism in muscle tissues a striking
feature of type 2 diabetes (4).

In contrast to the well-established cardiomyopathic patho-
logy of diabetes (5), it is poorly understood how abnormal
tissue sensitivity to insulin causes decreased skeletal muscle
strength (6), especially in older individuals with type 2 diabetes
(7). Besides impaired insulin-mediated glucose uptake, fatty
acid metabolism also has a profound influence on diabetic
side effects. Type 2 diabetes is associated with high levels of
circulating free fatty acids, an increased intramyocellular lipid
content, diminished mitochondrial functioning and an overall
weakened metabolic flexibility in the skeletal musculature,
as reviewed by Phielix and Mensink (8). Lipid deposition in
non-adipose tissues, such as skeletal muscle, has been shown
to be related to insulin resistance, whereby possibly the
accumulation of triacylglycerol does not directly influence
insulin signaling but indirectly via its lipid metabolites (9).

In order to further our molecular understanding of diabetes-
related abnormalities in skeletal muscles, mass spectrometry-
based proteomics suggests itself as an ideal analytical tool for
performing global screening approaches to determine potential
alterations in protein expression levels (10). As recently
reviewed by Sundsten and Ortsaeter (11), numerous proteomic
programmes have been initiated to unravel the complex patho-
biochemical mechanisms that underlie diabetes, focusing
especially on the pancreas, blood, adipose tissue and the
liver. In analogy, here we carried out the proteomic profiling
of crude skeletal muscle extracts from the Goto-Kakizaki
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(GK) rat model of type 2 diabetes (12). GK rats are spontan-
eously diabetic animals that exhibit chronically impaired
insulin signaling (13,14), which usually occurs by 4 weeks
of age (15). They are characterized by increased blood
glucose levels without significant alterations in non-fasting
plasma insulin levels (16). Diabetic GK skeletal muscles are
characterized by a diminished recruitment of the glucose
transporter isoform GLUT4 (17), membrane cytoskeletal
defects in the dystrophin-dystroglycan complex (17,18), an
inhibition of insulin receptor auto-phosphorylation (19),
impaired activities of insulin signaling intermediates (20),
abnormal mitochondrial functioning (21) and a reduced
percentage of oxidative fibres (22). Since diabetic GK rats
are non-obese, fundamental mechanisms of type 2 diabetes
can be investigated without potentially complicating obesity-
related factors.

The proteomic analysis of normal versus non-obese
diabetic skeletal muscles presented herein has revealed a
moderate differential expression pattern for 21 proteins,
whereby 7 proteins were found to be reduced and 14 proteins
to be increased in their abundance in GK tissue. With respect
to neuromuscular disorders, the mass spectrometric cataloguing
of normal muscle and the profiling of genetic and physio-
logical animal models over the last few years have established
large proteomic maps (23). Databanks of biomarkers that are
implicated in muscular atrophy, fibre transformation, muscular
dystrophy or age-related muscle wasting are now available
for comparative biochemical studies (24). In this respect, the
proteomic findings of this study agree with the idea that
diabetes mellitus is associated with a generally perturbed
protein expression pattern. Insulin resistance appears to be
closely related to abnormalities in glucose, fatty acid,
nucleotide and amino acid metabolism, as well as changes in
the contractile apparatus, the anti-oxidant defense system,
detoxification mechanisms and the cellular stress response.

Materials and methods

Materials. For the comparative gel electrophoretic analysis of
normal versus diabetic muscle proteins, Imobiline pH gradient
IPG dry strips, ampholytes, cover fluid and acetonitrile were
purchased from Amersham Bioscience/GE Healthcare (Little
Chalfont, Bucks, UK). Ultrapure Protogel acrylamide stock
solutions were obtained from National Diagnostics (Atlanta,
GA, USA). Gel electrophoretic buffer systems, protein
molecular weight ladders and protein assay reagents were
purchased from BioRad Laboratories (Hemel-Hempstead,
Hertfordshire, UK). For the peptide mass spectrometric identi-
fication of muscle proteins, sequencing grade-modified
trypsin was purchased from Promega (Madison, WI, USA).
LC-MS Chromasolv water and formic acid were from Fluka
(Milwaukee, WI, USA). For the visualization of gel electro-
horetically separated proteins, Coomassie Brilliant Blue G-250
dye was purchased from Thermo Fisher Scientific (Waltham,
MA, USA). Protease inhibitors were from Roche Diagnostics
(Mannheim, Germany). All other analytical-grade chemicals
were purchased from Sigma Chemical Company (Dorset, UK).

Animal model. As an internationally established animal model
of type 2 diabetes, the spontaneous diabetic GK rat (12) was
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used in this study. In obesity-related diabetes, high levels of
circulating free fatty acids and an extensive intramyocellular
accumulation of triacylglycerol probably play a key role in
causing decreased tissue sensitivity for insulin. However,
since the GK rat is non-obese, the analysis presented herein
eliminates to a large extent complicating factors due to excess
lipids in muscle fibres and focuses instead on the core defects
in a spontaneous form of type 2 diabetes. Rats were purchased
from M&B Taconic Ltd. Animal Suppliers (Ry, Denmark). For
comparative proteomic studies, the accessible protein comp-
lement was extracted from freshly dissected gastrocnemius
muscles from 9-week-old normal Wistar rats and age-matched
GK rats. The validation of the diabetic status of the cohort of
GK rats used in this study has previously been documented
(17). Non-fasting blood samples from GK rats showed a
significant increase in glucose levels as compared to Wistar
rats, but plasma insulin levels were relatively comparable
between both rat strains. The average body weight of diabetic
animals was found to be slightly below that of normal rats.

Preparation of total gastrocnemius muscle extracts. Muscle
samples with a wet weight of 200 mg were quick-frozen in
liquid nitrogen and ground into a fine powder using a mortar
and pestle. The muscle powder was subsequently placed into
1 ml lysis buffer (7 M urea, 2 M thiourea, 4% (w/v) CHAPS,
100 mM DTT and 2% (v/v) pH 3-10 ampholytes), which was
supplemented with a protease inhibitor cocktail (25). Following
incubation at room temperature for 3 h, the suspension was
centrifuged at 14,000 x g for 20 min at 4°C. The total protein
complement extracted from normal and diabetic tissues was
quantified by the Bradford method (26).

Two-dimensional gel electrophoresis. Total muscle extracts
from normal and diabetic muscle tissues were separated in
the first dimension by isoelectric focusing and in the second
dimension by sodium dodecyl sulphate polyacrylamide gel
electrophoresis, as previously described (27,28). For the com-
parative proteomic analysis, 4 biological repeats of normal
and 4 biological repeats of diabetic samples was used. Iso-
electric focusing strips were rehydrated in rehydration buffer
[7 M urea, 2 M thiourea, 4% (w/v) CHAPS, 1.2% deStreak
and 2% (v/v) pH 3-10 ampholytes] and 700 mg of muscle
protein sample for 12 h. First-dimension protein separation was
carried out on an Amersham IPGphor IEF system, following
the manufacturer's recommendations and the optimized
protocol of our laboratory for the separation of skeletal muscle
proteins (28). Following chemical reduction and alkylation
by a standardized protocol (25), first-dimension strips were
carefully placed on top of 12.5% (w/v) slab gels and electro-
phoresed in an Amersham Ettan DALT-Twelve system at
1.5 W per gel until the bromophenol blue dye front had just
ran off the gel. The protein separation pattern on two-
dimensional gels was visualized by colloidal Coomassie Blue
(29), silver (30) or fluorescent RuBPs (31) staining. High-
resolution gel images where analysed with the Progensis
software programme from Non-Linear Dynamics (Newcastle
upon Tyne, UK).

Mass spectrometric identification of muscle proteins. In order
to unequivocally identify proteins of interest, the peptide mass
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Figure 1. Comparative two-dimensional gel electrophoretic analysis of normal versus diabetic rat skeletal muscle. Crude total muscle extracts from normal
and Goto-Kakizaki (GK) muscle tissue were separated in the first dimension by isolelectric focusing and in the second dimension by sodium dodecyl sulfate
polyacrylamide gel electrophoresis. Shown are colloidal Coomassie Blue (CCB; A and B), silver (C and D) or fluorescent Ruthenium II bathophenanthroline
disulfonate chelate (RuBPs; E and F) stained gels of normal (A, C and E) versus diabetic GK muscle (B, D and F). The pH-values of the first dimension gel
system and molecular mass standards (in kDa) of the second dimension are indicated on the top and on the left of panels, respectively.

spectrometric analysis of muscle proteins with a changed
abundance in diabetic muscle tissue was carried out on a
Model 6430 Ion Trap LC/MS apparatus from Agilent Tech-
nologies (Santa Clara, CA, USA). Excision, washing,
destaining and treatment with trypsin were performed by a
previously optimised method (28). Trypsin-generated peptides
were obtained by removing supernatants from digested gel
plugs. Further recovery was achieved by adding 30% aceto-
nitrile/0.2% trifluoroacetic acid to the gel plugs for 10 min at
37°C with gentle agitation. Resulting supernatants were pooled
with the initially recovered cohort of peptides following trypsin
digestion.

Further peptide recovery was achieved through the addition
of 60% acetonitrile/0.2% trifluoric acid to each plug for 10 min
at 37°C with gentle agitation. Supernatants were added to the
peptide pool. The sample was dried through vacuum centri-
fugation and the concentrated peptide fractions were then
resuspended in mass spectrometry-grade distilled water and

0.1% formic acid for identification by ion trap LC-MS analysis.
Separation of peptides was performed with a nanoflow Agilent
1200 series system, equipped with a Zorbax 300SB C18 5 um,
4 mm 40 nl pre-column and an Zorbax 300SB C18 5 ym,
43 mm x 75 ym analytical reversed phase column using the
HPLC-Chip technology (32).

Mobile phases utilized were A: 0.1% formic acid, B: 50%
acetonitrile and 0.1% formic acid. Samples were loaded into
the enrichment at a capillary flow rate set to 2 xl/min with a
mix of A and B at a ratio 19:1. Tryptic peptide fragments were
eluted with a linear gradient of 10-90% solvent B over 2 ul/
min with a constant nano pump flow of 0.6 ml/min. A 1 min
post-time of solvent A was used to remove sample carry
over. The capillary voltage was set to 1700 V. The flow and
the temperature of the drying gas were 4 I/min and 300°C,
respectively (33). Database searches were carried out with
Mascot MS/MS Ion search (Matrix Science, London, UK;
MSDB database, release 20063108). All p/ values and
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Figure 2. Two-dimensional reference gel of diabetic rat skeletal muscle.
Shown is a colloidal Coomassie Blue stained reference gel of diabetic rat
skeletal muscle, used for the mass spectrometric identification of proteins
with a differential expression profile. The pH-values of the first dimension
gel system and molecular mass standards (in kDa) of the second dimension
are indicated on the top and on the left of the panel, respectively. Identified
muscle proteins are marked by circles and are numbered 1 to 23. See Table I
for a detailed listing of proteins that exhibit a diabetes-associated change in
their abundance.

molecular masses of identified muscle proteins were compared
to the relative position of their corresponding two-dimensional
spots on analytical slab gels.

Results

Comparative gel electrophoretic analysis of normal versus
diabetic skeletal muscle. In order to determine potential
differences in the skeletal muscle proteome from normal
Wistar rats versus diabetic GK rats, crude total tissue extracts
were separated by high-resolution two-dimensional gel
electrophoresis. The gastrocnemius muscle with a mixed fibre
type was chosen for the initial proteomic survey of diabetic
effects on the muscle protein complement, since comparative
data from numerous proteomic studies exist with respect to
this muscle (34-37). Fig. 1 shows representative gels of normal
versus diabetic muscle preparations stained with CCB, silver
or fluorescent RuBPs. The high-resolution gels contained
929, 1236 and 1561 detectable spots in CBB, silver and
RuBPs-labelled gels, respectively. In general, the two-
dimensional spot pattern of the normal muscle protein
complement was found to be in agreement with previously
published studies on the gel electrophoretic separation of
total skeletal muscle extracts (38-40). The protein spot
distribution of normal versus diabetic preparations did not
show extensive differences, but densitometric scanning
revealed moderate alterations in distinct classes of muscle
proteins.
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Densitometric analysis of normal versus diabetic skeletal
muscle. Analytical two-dimensional gels were stained with
colloidal Coomassie Blue and images from normal versus
diabetic preparations compared with the help of a Typhoon
Trio variable imager and Progenesis 2-D analysis software.
Fig. 2 shows a reference gel of diabetic rat skeletal muscle
used for the mass spectrometric identification of proteins
with a differential expression profile. Muscle proteins with a
changed abundance are marked by circles and are numbered
1-23. Protein species with a changed abundance in GK gastro-
cnemius muscle ranged in molecular mass from 15.9 kDa
(Cu/Zn superoxide dismutase) to 67.6 kDa (dihydrolipoamide
s-acetyltransferase of the pyruvate dehydrogenase complex)
and covered a pl-range from p/ 4.9 (ATP synthase) to p/ 8.9
(B-globin). A decreased expression was found in the case of 7
muscle proteins, and 16 proteins were shown to be increased
in their abundance.

Mass spectrometric identification of proteins with a diabetes-
related change in abundance. EST MS analysis was used to
unequivocally identify protein species contained in two-
dimensional spots with an altered density in normal versus
diabetic preparations. A list of the 23 muscle-associated
proteins that exhibited a significantly altered expression level
in GK muscle is shown in Table I. The table summarizes
CCB-stained proteins separated in the pH 3-10 range and
outlines matched peptide sequences, percentage sequence
coverage, Mascot score, the relative molecular mass, p/-value,
protein accession number and fold-change of individual
muscle proteins affected by the diabetic phenotype.

The spot numbers of MS-identified protein species listed
in Table I correlate with the numbering of two-dimensional
spots marked in Fig. 2. The majority of identified muscle
proteins were found to be constituents of various metabolic
pathways. This included enzymes and transporters involved
in glycolysis, the citric acid cycle, oxidative phosphorylation,
lipolytic catabolism, nucleotide metabolism, carbon dioxide
removal, oxygen transportation, and amino acid catabolism.
In addition, components of the contractile apparatus, the
cellular stress response, anti-oxidant defense mechanisms
and formaldehyde detoxification appear to be affected in
diabetic muscle tissue.

Skeletal muscle proteins with diabetes-associated expression
changes. The two muscle protein species with the highest fold
decrease were identified as carbonic anhydrase isoform CA3
(spot 1) and 3-hydroxyisobutyrate dehydrogenase (spot 2).
Other proteins with reduced expression level were found to
be the E2 component of the 2-oxo-glutarate dehydrogenase
complex (spot 3), enolase (spots 5 and 7) and esterase D
formylglutathione hydrolase (spot 6). Spots 4 and 8, which
were both identified as mitochondrial ATP synthase, exhibited
decreased and increased levels, respectively. These findings
are difficult to interpret, but may be due to differential patho-
logical effects on post-translational modifications in ATP
synthase molecules. This might explain the opposite alterations
in expression levels of two ATP synthase isoforms with
differing isoelectric points and molecular masses.
Muscle-associated proteins with an increased abundance in
GK muscle preparations were identified as adenylate kinase
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isoform AK1 (spot 9), Cu/Zn superoxide dismutase (spot 10),
immunoglobulin light chain (spot 11), phosphoglucomutase 9
(spot 12), Coq 9 protein (spot 13), the E2 component of the
pyruvate dehydrogenase complex (spot 14), isocitrate dehydro-
genase (spot 15), cytochrome c oxidase (spot 16), capping
protein of the actin filament (spot 17), a-actin (spot 18), stress
protein Hsp27/B1 (spot 19), fructose-biphosphate aldolase
(spot 20), B-globulin (spot 21), and 3-mercaptopyruvate sulfur-
transferase (spot 22). Interestingly, the muscle protein species
with the highest fold increase was identified as the enzyme
monoglyceride lipase (spot 23).

Silver- and RuBPs-stained protein candidates with diabetes-
associated expression changes. Following the detailed MS-
based identification of CBB-stained proteins, diabetes-related
changes in the expression of silver- or fluorescent RuBPs-
labelled proteins was carried out. Although larger numbers of
total protein spots were visualized by these two methods,
surprisingly no additional components with markedly higher
fold changes were identified. Interesting silver-stained proteins
with a lower abundance in GK muscle were found to be acyl-
CoA dehygrogenase (gil565411101; p/ 8.9; 70.8 kDa) and
pyruvate kinase (gil1675994l; pI 6.6; 57.8 kDa). Fluorescent
RuBPs staining revealed reduced expression of malate
dehydrogenase isoform MDH-1 (gil37590235l; pl 6.1;
36.5 kDa) in diabetic tissue preparations.

Discussion

Diabetes mellitus and its associated complications affect
millions of patients worldwide, causing blindness, cardio-
myopathy, kidney failure, stroke and skeletal muscular
weakness (41). Older adults with type 2 diabetes exhibit
significantly decreased muscle strength (7), which is thought
to be a major contributor to the development of physical
disability in the senescent population (42). These clinical
facts clearly warrant detailed biochemical investigations into
the molecular and cellular mechanisms that underlie abnormal
hormone signalling in diabetic muscle tissue. Insulin resistance
in peripheral organ systems, representing one of the main
features of diabetes-related dysregulation, is believed to be
already present at a very early stage of the pre-diabetic state
(10).

In early type 2 diabetes, low levels of insulin resistance
can probably be partially compensated by increased secretion
levels via enhanced pancreatic B-cell activity. However, at
more advanced stages of diabetes, B-cell failure occurs leading
to inadequate amounts of circulating insulin to overcome
defects in tissue sensitivity (8). Since type 2 diabetes is an
extremely complex and heterogeneous disorder (2), and
probably involves both genetic and environmental factors, an
unbiased global analysis of diabetic tissues by proteomics
should be useful to identify novel indicators of its molecular
pathogenesis. In this respect, the mass spectrometry-based
proteomic survey of diabetic skeletal muscle tissue presented
herein has successfully revealed a variety of expression
changes in key muscle proteins. However, as compared to
more severe muscular defects (23,24), the diabetes-related
expression changes of metabolic enzymes is relatively
moderate.
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The proteomic analysis of GK muscles indicates that
abundant enzymes, transporters and structural components are
affected in the non-obese diabetic phenotype. This includes
muscle-associated proteins involved in glycolysis, the citric
acid cycle, oxidative phosphorylation, lipolytic catabolism,
nucleotide metabolism, carbon dioxide removal, oxygen
transportation, amino acid catabolism, the contractile
apparatus, cellular detoxification mechanisms and the stress
response. The muscle protein species with the highest fold
decrease were identified as 3-hydroxy-isobutyrate dehydro-
genase and carbonic anhydrase CA3. Hydroxy-isobutyrate
dehydrogenase is involved in a rate-limiting step of the
degradation of valine, leucine and isoleucine (43). The
resulting carbon skeleton can be utilized as a metabolic
substrate for the generation of energy, and this mech-
anism appears to be weakened in diabetic muscle tissues.
Interestingly, the CO,-removal mechanism and a specific
detoxification mechanism seem to be affected in GK muscles.
Since the muscle-specific isoform CA3 of carbonic anhydrase
catalyses the vital conversion of CO, into carbonic acid (44),
its reduced expression suggests an impaired removal of CO,
in diabetic fibres.

In addition, a decreased concentration of esterase D
formylglutathione hydrolase might cause toxic side effects.
The reduced expression of dihydrolipoamide succinyltrans-
ferase, the core enzyme of the 2-oxoglutarate dehydrogenase
complex in muscle mitochondria that participates in succinyl-
CoA production (45), agrees with the idea of abnormal
mitochondrial functioning in diabetes (46). However, other
mitochondrial markers such as isocitrate dehydrogenase,
cytochrome c oxidase and Coq 9 protein (47) were shown
to be increased in GK muscle, possibly representing a com-
pensatory mechanism to improve the oxidative capacity. This
would agree with the increased level of B-globulin.

Diabetes seems to have a differential effect on key enzymes
of the glycolytic pathway. While enolase levels were shown
to be decreased, phosphoglucomutase and aldolase exhibited
an elevated concentration in GK muscles. Since many glyco-
lytic enzymes are multi-functional, it is difficult to interpret
how insulin resistance triggers these altered expression
patterns. However, changed abundance in these enzymes
will certainly alter the glycolytic flux in diabetic muscle.
Interestingly, pyruvate dehydrogenase, the key linker enzyme
that connects glycolysis with the citric acid cycle, is elevated.
This might be a compensatory mechanism in glucose-starved
diabetic muscle tissues and might help to maximise the trans-
formation of glycolysis-derived pyruvate into acetyl-CoA. In
analogy to a recent proteomic survey of obese muscle (48),
the AK1 isoform of adenylate kinase is increased in diabetes,
suggesting alterations in nucleotide metabolism. Higher
concentrations of the contractile elements a-actin and the
capping protein of the actin filament indicate diabetes-
dependent repair mechanisms of the thin filament. This would
agree with increased levels of stress proteins and anti-oxidant
markers, such as the small heat shock protein Hsp27/B1,
3-mercaptopyruvate sulfurtransferase and Cu/Zn superoxide
dismutase. Their up-regulation demonstrates a considerable
need to counter-act cellular damage due to diabetes.

The protein species with the highest fold increase in GK
muscle was identified as monoglyceride lipase. This enzyme
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mediates a critical step in the hydrolysis of stored triglycerides
(49) and its up-regulation might represent increased energy
utilization by the lipolytic pathway in glucose-starved muscle
tissues. More detailed biochemical studies have to be carried
out to determine the general suitability of monoglyceride
lipase as a muscle marker of non-obese diabetes. However, it
is clear that insulin resistance results in a lack of glucose
uptake by muscle cells, which in turn has an effect on other
metabolic pathways such as gluconeogenesis, triacylglycerol
hydrolysis, fatty acid oxidation and ketone body formation.

In conclusion, this initial study of changes in the protein
expression pattern of GK muscle has identified interesting
new candidates for the establishment of a biomarker signature
of diabetic skeletal muscle. It will now be critical to correlate
these findings to investigations on human skeletal muscle
(50-52) and to conduct more detailed studies with other
protein dyes that exhibit a different dynamic labelling range,
such as fluorescent methodologies (53). In the future, new
signature molecules will hopefully be useful for the improve-
ment of diagnostic methods and the identification of superior
therapeutic targets to eliminate diabetes-associated muscle
weakness.
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