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Abstract. Mass spectrometry-based analyses of the low-
molecular-weight fraction of serum proteome allow identifying 
proteome profiles (signatures) that are potentially useful in 
detection and diagnostics of cancer. Here we compared serum 
proteome profiles of healthy donors and patients with three 
different types of cancer aiming to identify peptide signatures 
that were either common for all cancer samples or specific for 
cancer type. Blood samples were collected before start of the 
therapy from patients with head and neck squamous cell cancer, 
colorectal adenocarcinoma and non-small cell lung cancer, 
and from a corresponding group of healthy volunteers. Mass 
profiles of the serum proteome were recorded in the range 
between 2 and 13 kDa using MALDI-ToF spectrometry and 
131 identified peptide ions were used for statistical analyses. 
Similar degrees of overall similarities were observed in all 
intra-group and inter-group analyses when general features of 
serum proteome profiles were compared between individual 
samples. However, classifiers built of selected spectral compo-
nents allowed differentiation between healthy donors and three 
groups of cancer patients with 69-74% sensitivity and 82-84% 
specificity. There were two common peptide species (3766 and 
5867 Da) with increased levels in all cancer samples. Several 
spectral components permitted differentiation between lung 
cancer samples and either head and neck cancer or colorectal 
cancer samples, but two latter types of samples could not be 
properly discriminated. Abundance of spectral components 
that putatively corresponded to fragments of serum amyloid 
A (11511 and 11667 Da) was highest in lung cancer samples, 
yet increased levels of these peptides appeared to generally 

associate with more advanced cancer cases. We concluded that 
certain components of serum peptide signatures are common 
for different cancer signatures and putatively reflect general 
response of organism to the disease, yet other components of 
such signatures are more specific and most likely correspond to 
clinical stage of the malignancy.

Introduction

The low-molecular-weight fraction of the blood proteome appears 
to be a promising source of novel biomarkers of human diseases. 
Thus, mass spectrometry (MS) methods, which allow character-
ization of this particular component of human proteome, emerge 
as a valuable tool of clinical proteomics and disease diagnostics 
(1-5). The proteomics approach that takes into consideration 
characteristic features of the whole proteome but does not rely 
on particular protein, is called proteome pattern analysis or 
proteome profiling. In this approach specific proteome signatures 
are built based on several peptide/protein components, which 
can be exemplified by ions registered at defined m/z values in the 
mass spectrum. Such signatures can be used for sample identifi-
cation and classification even though their particular components 
may lack differentiating power when analyzed separately 
(6-9). Matrix-assisted laser desorption/ionization spectrometry 
(MALDI), and its derivative surface-enhanced laser desorption/
ionization spectrometry (SELDI), coupled to a time-of-flight 
(ToF) type of analyzers, appear to be particularly suitable for such 
proteome pattern analysis. Several works have been published 
that explored the applicability of MALDI/SELDI-based analysis 
of the low-molecular-weight fraction of serum/plasma proteome 
for cancer diagnostics since the milestone report published by 
Petricoin and coworkers in 2002 (10). These studies have shown 
that multi-peptide signatures selected in numerical tests have 
potential values for diagnostics of different types of cancer 
(5,11-15). Because of apparent problems with standardization 
of methodological details, both experimental and computational, 
none of proposed serum peptide signatures analyzed directly by 
mass spectrometry has been approved for routine diagnostics. 
However, this approach is generally accepted for identification 
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of marker candidates, the first stage of a biomarker's discovery 
pipeline.

Several components of proposed cancer signatures, espe-
cially those characteristic for advanced cancer, were identified 
as fragments of blood proteins involved in the acute phase 
and inflammatory response (16,17). This indicated that among 
cancer biomarker candidates to be found by the MS-based serum 
proteome profiling were those reflecting overall influence of a 
disease upon the human organism. However, the contribution in 
proposed cancer signatures of components specific for particular 
types of malignancies and ‘non-specific’ components related to 
general response of the organism has not been established yet, 
hence comparison of serum proteome signatures specific for 
different types of cancer would help to clarify this issue. Several 
peptides reported to discriminate serum (or plasma) samples 
collected from healthy persons and patients with different 
cancers appeared repetitively in published studies, but only a 
few works addressed systematically the question of specificity 
of identified peptide signatures for different types of cancer. 
Comparative analysis of serum peptides detected in samples 
from healthy persons and breast, bladder or prostate cancer 
patients allowed identification of cancer-specific signatures, yet 
some differentiating peptides were common for all three cancer 
signatures (e.g. fragments of fibrinopeptide A) (18). A few serum 
peptides that discriminated colon cancer patients from healthy 
donors were also characteristic for patients with lung or prostate 
cancers but not for patients with breast cancer (e.g., fragments 
of apolipoprotein C1) (19). Here we aimed to characterize 
similarities of proteome profiles registered by MALDI-ToF 
spectrometry in serum of healthy donors and patients with three 
different types of malignancies - head and neck squamous cell 
cancer, colorectal adenocarcinoma and non-small cell lung 
cancer, and verify whether cancer type-specific signatures could 
be built based on such proteome profiles.

Materials and methods

Characteristics of patient and control groups. One hundred 
and twenty male cancer patients was enrolled into this study: 
35 patients with squamous cell cancer located in head and 
neck region (40% in larynx, 29% in pharynx and 31% in oral 
cavity; called collectively head and neck cancers), 35 patient 
with colorectal cancer (adenocarcinoma type) and 50 patients 
with non-small cell lung cancer (hereafter called lung cancer). 
For comparison, the head and neck cancer group consisted of 
patients with the least advanced cancers while the lung cancer 
group consisted of patients with the most advanced cancers, on 
average; Table I shows more detailed information on the analyzed 
groups. Forty-five healthy male volunteers were included in 
the study as a control group. All participants were Caucasians; 
there was a similar proportion of smokers (~73%) and alcohol 
consumers (~71%) in all groups (to further reduce heterogeneity 
of the analyzed group only male donors were recruited). The 
study was approved by the local Ethics Committee at the Maria 
Sklodowska-Curie Memorial Cancer Center and Institute of 
Oncology, and all participants provided informed consent indi-
cating their conscious and voluntary participation.

Preparation of serum samples. Samples were collected before 
the start of a therapy of patients and processed following a stan-

dardized protocol. Blood was collected into a 5 ml Vacutainer 
Tube (Becton-Dickinson), incubated for 30 min at room 
temperature to allow clotting, and then centrifuged at 1000 g for 
10 min  to remove the clot. The serum was aliquoted and stored 
at -70˚C. Directly before analysis, samples were diluted 1:5 with 
20% acetonitrile (ACN) and 25 mM ammonium bicarbonate.

Registration of mass spectra. Samples were analyzed using an 
Autoflex MALDI-ToF mass spectrometer (Bruker Daltonics, 
Bremen, Germany); the analyzer worked in the linear mode and 
positive ions were recorded in the mass range between 2 and 
13 kDa. Mass calibration was performed after every four samples 
using standards in the range of 2.8-16.9 kDa. Prior to analysis 
each sample was loaded onto a ZipTip C18 tip-microcolumn by 
passing it through repeatedly 10 times, column was washed with 
water and then eluted with 1 µl of matrix solution (30 mg/ml 
sinapinic acid in 50% ACN/H2O and 0.1% TFA with addition 
of 1 mM n-octyl glucopyranoside) directly onto the 600 µm 
AnchorChip (Bruker Daltonics) plate. ZipTip extraction/loading 
was repeated twice for each sample and for each spot on the 
plate two spectra were acquired (i.e., four spectra were recorded 
for each sample). Randomization in blocks was used in spectra 
registration to avoid a possible batch effect.

Spectral data processing. The preprocessing of spectral data that 
included alignment and averaging of technical repeats, binning 
of neighboring points to reduce data complexity, removal of the 
spectral area below baseline and normalization of the total ion 
current (TIC), was performed according to procedures consid-
ered to be standard in the field (20,21). In the second step spectral 
components, which reflected [M+H]+ peptide ions recorded at 
defined m/z values, were identified using decomposition of mass 
spectra into a mixture of Gaussian components as described 
elsewhere (22) followed by several post-processing steps. The 
average spectrum was decomposed into a sum of 300 Gaussian 
bell-shaped curves by using a variant of the expectation maximi-
zation (EM) algorithm (23) and Bayesian Information Criterion 
(BIC) for model selection (24). The initial set of 300 Gaussian 
components, defined by their mean values and standard devia-
tions was further divided into two subsets according to their 
coefficients of variation (CV); a threshold value was obtained 
by decomposing the CV density function into a mixture of 
two normal density functions and employing the maximum 
probability criterion for their classification. Components with 
standard deviations bigger than the threshold value (i.e., 0.17% of 
the m/z value), which presumably represented the residual base-
line, were excluded from analyses. Additionally, considering the 
real resolution of registered spectra, overlaping components were 
merged if their mean values were closer than 0.1% of the m/z 
value and were homogeneous in variances (verified by F test). 
The post-processing procedure resulted in dimension reduc-
tion from 300 to 131 Gaussian components. The final Gaussian 
components were used to compute features of registered spectra 
(termed spectral components afterward) for all samples by the 
operations of convolutions with Gaussian masks. The knowledge 
base EPO-KB (Empirical Proteomic Ontology Knowledge Base) 
(25), which annotates registered m/z values to known peptide/
proteins, was used for hypothetical identification of spectral 
components assuming their mono-protonation and allowing for 
a 0.5% mass accuracy limit.
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Statistical analyses. The similarity measure proposed by 
Frank and coworkers (26) was used for evaluation of simi-
larities of mass profiles within and between groups; a modified 
measure that based on all 131 spectral components was used. 
The intra-group similarity was defined as the mass profile 
similarity calculated pairwise between the group members, 
while the inter-group similarity was calculated by the pairwise 
comparison of individuals from different groups. To provide 
optimal statistical tools for selection of discriminative spectral 
components the Lilliefors's test was applied to assess for distri-
bution normality and Bartlett's test was employed to check 
homogeneity of variances. Because the statistically significant 
heteroscedasticity of spectral components was observed the 
modified Welch statistics (MWT) (27) was chosen for selec-
tion of discriminating components. Due to numerous spectral 
components analyzed a correction for multiple testing was 
applied; Storey's q-values (28) with thresholds for FDR (false 
discovery rate) equal to 0.05 were used. Support vector machine 
(SVM) technique with a linear kernel function (29) combined 
with the feature ranking based on the MWT values was used 
for sample classification. In all experiments predictive perfor-
mance of the classifier was measured by the average error rate 
together with sensitivity and specificity level; multiple random 
validation procedure (i.e., Monte Carlo cross-validation) was 
used for the classifier validation. To demonstrate the structure 
and determinant power of the information included in spec-
tral components an unsupervised hierarchical clustering was 
performed; the Euclidean metric distance between mass profiles 
with the criterion of complete linkage was applied.

Results

The low-molecular-weight peptide component of serum samples 
collected before the start of an anticancer treatment from patients 
with head and neck squamous cell cancer (HNC), colorectal 
adenocarcinoma (CRC), non-small cell lung cancer (LC) and 
corresponding group of healthy controls (Ctr) was analyzed by 
mass spectrometry. One hundred and thirty-one spectral compo-
nents that corresponded to [M+H]+ peptide ions registered with 
specific m/z value and abundance defined the mass profile of 
each serum specimen. Fig. 1A shows a typical mass spectrum of 
serum proteome registered in analyzed material by MALDI-ToF 
spectrometer in the 2,000 to 13,000 Da range. Average profiles 
of mass spectra appeared comparable among analyzed groups of 
donors, which is shown graphically in Fig. 1B. In the first step of 
statistical analysis general similarities between serum proteome 
profiles registered for different groups of samples were computed. 
Based on the abundance of each spectral component the overall 

similarity of proteome profiles was established for each pair of 
serum samples collected from different donors, and then average 
similarity within or between groups was assessed based on all 
pairwise analyses. Fig. 2A shows examples of such pairwise 
analyses of samples with high and low level of similarity of 
proteome profiles (S-value). The similarities of registered serum 
proteome profiles between different donors were computed for 
both intra-group and inter-group comparisons and characterized 
by the median value of all pairwise analyses, which is presented 
in Table ΙΙ (Fig. 2B shows graphic examples of such results). 
We found that general intra-group similarities of serum proteome 
profiles were comparable for all four groups of donors. The 
similarity of serum proteome profiles among healthy donors 
was slightly higher (median S-value 0.797) when compared to 
inter-personal similarities within each of three cancer patient 
groups (median S-value in a range 0.764-0.774); however, such 
differences were not statistically significant. Importantly, levels 
of similarities of serum proteome profiles identified between 
groups of donors (median S-value ranged from 0.751 to 0.777) 
were comparable to levels of similarities detected inside each 
group. We concluded that general features of serum proteome 
profiles were similar in all analyzed groups of donors, which 
apparently reflected a homeostatic nature of the analyzed tissue.

Table I. Characteristics of analyzed groups of blood donors.

Group		  n	A ge (median	 T1+T2 score	 T3 score	 T4 score	N +	 M1
			   and range)

Healthy volunteers	 Ctr.	 45	 49 (26-72)	 -	 -	 -	 -	 -
Head and neck cancer patients	 HNC	 35	 54 (40-75)	 42%	 29%	 29%	 46%	   0%
Colorectal cancer patients	 CRC	 35	 61 (36-78)	 20%	 65%	 15%	 58%	 23%
Lung cancer patients	 LC	 50	 66 (52-78)	 28%	 18%	 54%	 90%	 34%

Figure 1. Mass profile of the low-molecular-weight fraction of serum proteome. 
(A) An average mass spectrum registered in the range of 2,000-13,000 Da. 
(B) Average spectra from control healthy donors (Ctr) and patients with head 
and neck (HNC), colorectal (CRC) and lung (LC) cancers.
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Next we searched for differentiating spectral components (i.e., 
m/z peptide ions) and build classifiers, which allowed discrimi-
nating serum proteome profiles and identifying peptide signatures 
characteristic for each of four groups of donors. Table ΙΙΙ shows 
numbers of spectral components that differentiated each pair 
of compared groups in univariate analyses (at a 0.05 and 0.001 
q-value significance cut-off level), and characteristics of corre-
sponding classifiers: number of components (features) in optimal 

classifiers, total errors of classification, sensitivity and specificity 
of optimal classifiers. We found similar reliability of classifica-
tion when control samples of healthy donors were analyzed 
against samples from each group of cancer patients (sensitivities 
in a range 69-74%, specificities in a range 81-84%). However, 
such three cancer classifiers (signatures) were built of different 
numbers of different components. Table IV shows characteristics 
of spectral components, which were the most important for such 
classification and differentiation between controls and three 
types of cancer samples. There were only two components of 
classifiers (i.e., registered serum peptide ions), which at high level 
of statistical significance discriminated between control samples 
and all three types of cancer samples. Abundance of these 
peptides with registered m/z values 3766 and 5867 Da was higher 
in serum of cancer patients than in serum of healthy controls 
(Fig. 3). Other most frequent components of cancer classifiers 
appeared to be more unique for particular groups of patients, e.g., 
components 11,511 and 11,667 Da (hypothetically annotated as 
fragments of serum amyloid A, SAA1) were specific for differ-
ences between control and lung cancer samples. In the next step 
we searched for features of serum proteome profiles that differ-
entiated between three groups of cancer samples; Table V shows 
characteristics of peptide ions, which were the most essential for 
such differentiation. We found that reliable classification (i.e., 
good discrimination) could be obtained for comparison between 
lung cancer (LC) and head and neck cancer (HNC) samples, and 
slightly worse classification for comparison between LC and 
colorectal cancer (CRC) samples. In addition, the same spectral 
components were important for differentiation between LC and 
HNC samples, and between LC and CRC samples. Noteworthy, 
spectral components that putatively corresponded to fragments 
of SAA1 (m/z = 11,511 and 11,667 Da) differentiated LC samples 
from either HNC, CRC and healthy control samples (Fig. 4A). 
In marked contrast, none of spectral components discriminated 
between HNC and CRC samples in univariate analyses, and 
reliable classification was not possible when these two types of 
samples were compared (Table III).

Finally we searched for association between features of 
serum proteome profiles and clinical progress of malignancies 
(i.e., clinical stages according to the TNM system) in overall 
group of cancer patients. Statistical tests were applied to iden-
tify spectral components that discriminated between groups of 
patients differing in clinical stage of primary tumor (T), lymph 
node status (N) and distant metastases (M). We found several 
of such differences, yet none of them remained statistically 
significant when the correction against multiple testing was 
applied (data not shown). However, when we focused on spectral 
components essential for discrimination between lung cancer 
samples and other types of cancer samples, i.e., 11,511 and 
11,667 Da, clear tendency for association between abundance of 
these peptides and the degree of progression of malignancy was 
noted. Fig. 4B shows that average abundance of the 11,511 Da 
component was higher in serum of patients with highest stage of 
primary tumor (T4 vs. T1+T2+T3) and with distant metastases 
(M1 vs. M0), while the difference between subgroups with 
different lymph node status (N+ vs. N0) was less evident (the 
same differences were observed for the 11,667 Da component). 
It had to be noted that patients with lung cancer dominated in 
subgroups of patients with highest clinical stage of primary 
tumor (27 out of 41) and with distant metastases (17 out of 26). 

Figure 2. Assessment of the overall similarity of mass profiles. (A) Examples of 
pairs of serum samples with high (S=0.998, left panel) and low (S=0.278, right 
panel) degree of the overall similarity (each dot represents one spectral com-
ponent). (B) Histograms showing examples of intra- and inter-group similarity 
measures (numbers show median values of similarities between samples and 
their 95% confidence intervals). 

Table II. Similarity of serum proteome profiles within and 
between groups of donors.

Analyzed groups	 Median	 95% CI

Intra-group similarity
	 Ctr.	 0.797	 0.725-0.869
	 HNC	 0.774	 0.696-0.852
	 CRC	 0.764	 0.669-0.858
	 LC	 0.772	 0.704-0.840

Inter-group similarity
	 Ctr. vs. HNC	 0.777	 0.744-0.809
	 Ctr. vs. LC	 0.762	 0.728-0.797
	 Ctr. vs. CRC	 0.759	 0.718-0.801
	 HNC vs. CRC	 0.765	 0.725-0.806
	 HNC vs. LC	 0.751	 0.716-0.786
	 LC vs. CRC	 0.775	 0.745-0.806

Shown are median values of similarities between samples and their 
95% confidence intervals.
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Hence, differences observed between subgroups of patients with 
less-advanced and more-advanced cancer could simply reflect 

cancer type-specific features of peptide signatures character-
istic for lung cancer. To exclude such possibility the analysis of 
association between abundance of spectral components and the 
clinical stages according to the TNM system was performed also 
for the group of lung cancer patients only. Fig. 4C shows that 
in the group of lung cancer patients average abundance of the 
11,511 Da component was also higher in serum of patients with 
malignancies at clinical stages T4 and/or M1 (the same tendency 
was observed for the 11,667 Da component). In addition, other 
spectral components essential for discrimination between LC 
samples and HNC/CRC samples (i.e., 3556, 6438, 8917, 9137 Da) 
also showed tendency to correlate with a clinical progression of 
malignancy, both in the all-cancer patient and in the lung cancer 
patient groups (all this components were less abundant in LC 
samples when compared to HNC/CRC samples, and in general 
their lower abundance appeared to correlate with more advanced 
cancer cases). We concluded that differences observed between 
LC samples and both CRC and HNC samples at least partially 

Table III. Characteristics of peptide signatures built to differentiate groups of blood donors.

	 Differentiating components	O ptimal classifiers
	 --------------------------------------------------	 ----------------------------------------------------------------------------------------------------------------------------------------------------
Compared	 q<0.05	 q<0.001	N o. of	 Total error (%)	 Sensitivity (%)	 Specificity (%)
groups			   components

Ctr.	 HNC	   9	   3	   2	 19.9	 74.1	 83.6
Ctr.	 LC	 95	 16	   7	 22.9	 71.7	 82.6
Ctr.	 CRC	 54	   3	   4	 23.7	 68.6	 81.9
HNC	CRC	   0	   0	 50	 40.0	 63.1	 56.3
HNC	LC	 70	 12	   3	 21.7	 78.6	 77.9
LC	 CRC	 17	   4	   8	 27.5	 73.6	 71.1

Shown are numbers of differentiating components in univariate analyses (q<0.05 and q<0.001), and numbers of features (components), total errors, 
sensitivities and specificities in optimal (best performing) multi-component classifiers.

Table IV. Examples of spectral components that discriminated between serum samples collected from healthy controls and cancer 
patients.

	 Ctr. vs. HNC	 Ctr. vs. CRC	 Ctr. vs. LC	 -------------------------------------	 -----------------------------------------	 ----------------------------------------
m/z (Da)	 q-value	 %	 q-value	 %	 q-value	 %	 Hypothetical identity

  2425	 0.306	   0	 1.48E-03	 23	 0.013	   1	 -
  2786	 0.301	   0	 0.058	   1	 2.09E-06	 82	 HAMP (frag. 60-84)
  3766	 2.59E-04	 61	 6.23E-05	 91	 7.80E-05	 44	 -
  5867	 7.77E-08	 93	 2.07E-05	 84	 5.50E-05	 46	 -
  6429	 0.242	   0	 0.268	   0	 7.03E-05	 48	 APOC1 (frag. 27-81)
  8598	 0.046	   1	 1.72E-04	 74	 5.11E-04	 20	 C4A (frag. 680-755)
11511	 0.126	   0	 0.221	   0	 1.31E-06	 97	 SAA1 (frag. 20-122)
11667	 0.126	   0	 0.164	   0	 2.09E-06	 91	 SAA1 (frag. 19-122)
11717	 0.046	   1	 6.79E-03	   16	 5.50E-05	 51	 B2M (frag. 21-119)

Shown are m/z values of components, q-values of differences in univariate analyses and frequencies in classifiers for each pairwise analysis; 
the most frequent components of classifiers are marked in bold characters. Hypothetical identity of fragments of peptides based on annotation 
of registered m/z values at the EPO-KB knowledge base: HAMP, hepcidin; APOC1, apolipoprotein C1; C4A, component C4A; SAA1, serum 
amyloid A; B2M, β2-microglobulin.

Figure 3. Abundance of spectral components that differentiated samples of 
control healthy donors and cancer patients (box-plots show minimum, lower 
quartile, median, upper quartile and maximum values; outliers are marked by 
asterisks). 
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reflected the presence of serum peptides characteristic for more 
advanced stages of a disease, which cases were most frequent in 
group of patients with lung cancer.

To further characterize differences and similarities between 
serum proteome profiles characteristic for compared groups 
of donors an unsupervised hierarchical cluster analysis was 
performed (Fig. 5). Apparently we did not observe any clear 
clustering of four analyzed groups of donors. However, when 
two major clusters were compared it appeared that the majori-
ties of samples from healthy donors (together with samples from 
HNC patients) and samples from lung cancer patients (together 
with samples from CRC patients) were present in separate 
clusters: the former ones were over-represented in cluster 1 (71 
and 62%, respectively) while the latter ones in cluster 2 (64 and 
60%, respectively). Furthermore, it appeared that patients with 
more advanced malignancies were more frequent in cluster 2 
(e.g., distant metastases were observed in 18 and 27% of cancer 
patients in cluster 1 and cluster 2, respectively). Thus, in spite 
of large heterogeneity of samples, the unsupervised analyses 
indicated that differences between peptide signatures charac-
teristic for healthy donors and lung cancer patients were the 
most distinct, and that features of serum proteome profiles were 
associated with a disease progression.

Discussion

There are several studies published where MALDI/SELDI-based 
analyses of the low-molecular-weight fraction of serum/plasma 
proteome were applied for identification of peptide signatures 
specific for patients with head and neck cancer (30-34), colorectal 
cancer (19,35-38) and lung cancer (39-44). All these works 
proposed differentiating peptides and multi-peptide signatures 
that discriminated between specimens collected from cancer 
patients and healthy donors, yet such cancer signatures were built 
of apparently different spectral components. Some peptide ions 
appeared repetitively in several signatures (based on similarities 

Table V. Examples of spectral components that discriminated between different groups of cancer patients.

	 HNC vs. CRC	 HNC vs. LC	 CRC vs. LC
	 -------------------------------------	 -----------------------------------------	 ----------------------------------------
m/z (Da)	 q-value	 %	 q-value	 %	 q-value	 %	 Hypothetical identity

  3556	 0.333	   8	 6.01E-04	   6	 5.00E-04	 72	 -
  3886	 0.177	 26	 2.59E-03	   0	 2.99E-03	 51	 -
  6438	 0.302	   8	 3.07E-04	   7	 5.00E-04	 89	 APOC1 (frag. 29-83)
  8676	 0.302	   8	 2.59E-03	   1	 2.33E-03	 53	 -
  8917	 0.251	 17	 1.03E-03	   3	 5.00E-04	 81	 C3 (frag. 672-747)
  8928	 0.145	 33	 1.03E-02	   0	 2.47E-03	 52	 -
  9137	 0.061	 82	 2.77E-05	 30	 5.40E-02	   5	 HP (frag. 79-160)
  9414	 0.061	 97	 8.31E-05	   1	       0.293	   0	 -
11511	 0.101	 45	 2.39E-08	 92	 5.00E-04	 82	 SAA1 (frag. 20-122)
11667	 0.081	 59	 4.78E-08	 86	 2.33E-03	 56	 SAA1 (frag. 19-122)

Shown are m/z values of components, q-values of differences in univariate analyses and frequencies in classifiers for each pairwise analysis; the 
most frequent components of classifiers are marked in bold characters. Hypothetical identity of fragments of peptides based on annotation of 
registered m/z values at the EPO-KB knowledge base: APOC1, apolipoprotein C1; C3, component C3; HP, haptoglobin; SAA1, serum amyloid A.

Figure 4. Abundance of the 11,511 Da spectral component. (A) Comparison 
of abundance of the 11,511 Da component in samples of healthy donors and 
cancer patients. (B) Abundance of the 11,511 Da component in samples of 
all cancer patient groups differing in clinical stage of primary tumor (T), 
lymph node status (N) and distant metastases (M). (C) Abundance of the 
11,511 Da component in samples of lung cancer patients with different TNM 
stages (box-plots show minimum, lower quartile, median, upper quartile and 
maximum values; outliers are marked by asterisks).
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of their registered m/z values), but only few of them (e.g., ~5,900 
and ~11,700 Da) were reported as important for discrimination 
between healthy controls and all these three types of cancer. 
However, because of different methodological approaches 
implemented in these works conclusions on real similarities 
and specificities of proposed signatures were impossible. Here 
we performed simultaneous analysis of four groups of donors, 
which allowed direct comparison of specific peptide signatures. 
We found that only two spectral components, i.e., 3766 and 
5867 Da, were present in all three cancer signatures, while other 
components discriminating between control and cancer samples 
were more unique for analyzed groups of patients. Peptide ion 
with registered m/z value 5867 Da putatively corresponded 
to peptide ions ~5900 Da reported earlier as discriminating 
between control and cancer samples (19,31,32,40), yet verifica-
tion of this component's resemblance would have required its 
direct sequence identification. Nevertheless, based on literature 
reports and presented data we concluded that peptide signatures 
differentiating healthy donors from head and neck, colorectal 
and lung cancers patients were most apparently built of two types 
of components - common for all cancer cases and specific for 
patient groups.

In the second part of analyses we searched for serum 
proteome features that were putatively cancer type-specific and 
might allow discrimination between groups of cancer patients. 
We found that abundance of several spectral components was 
different in samples of lung cancer patients and in samples of 
patients with either colorectal or head and neck cancer. The 
latter two types of samples could not be discriminated based 
on features of serum proteome profiles even though compared 
cancers represented different histological and molecular types 
of malignancies (i.e., adenocarcinomas and squamous cell 

carcinomas). The analyzed group of lung cancer consisted of 
patients with more advanced tumors as compared to groups of 
head and neck or colorectal cancer patients, which suggested 
existence of a correlation between features of serum proteome 
and clinical stage of cancer. In fact, we observed a clear tendency 
toward association between stage of the cancer and abundance 
of serum peptides essential for discrimination between lung 
cancer samples and other cancer samples (i.e., 3556, 6438, 8917, 
9137, 11511 and 11667 Da components). Most importantly, this 
association was noted not only when overall group of cancer 
patients was analyzed (which could reflect overrepresentation of 
lung cancer patients in a subgroup of patient with more advanced 
cancers) but also when more homogeneous group of lung cancer 
patients was analyzed separately. All these observations suggested 
that serum proteome features that differentiated analyzed groups 
of cancer patients were rather cancer stage-specific than cancer 
type-specific. Such possibility could be rationally justified if we 
assumed that the most characteristic changes observed in the 
serum proteome profiles reflected general response of human 
organism to malignancy, and that intensity of changes depended 
on overall escalation of the disease rather than specific histo-
logical or molecular features of a cancer type.

Among serum components with elevated levels in the group 
of patients with lung cancer and associated with more advanced 
cancer cases there were two components, i.e. 11,511 and 
11,667 Da, which putatively corresponded to fragments of serum 
amyloid A1 (hypothetical identification based on annotation at 
the EPO-KB database). SAA1 is an acute phase apolipoprotein 
typically induced in liver in response to inflammatory stimuli. 
However, increased expression of SAA1 was also observed 
during tumorigenesis and elevated serum level of this protein was 
a general feature of progressive and metastatic cancer cases, hence 

Figure 5. Unsupervised hierarchical cluster analysis of serum samples of healthy donors and cancer patients. Two major clusters of samples are separated; 
color bars represent different groups of donors (upper panel), and cancer patients with or without distant metastases (bottom panel) (increased abundance of a 
spectral component is marked in red, decreased abundance is marked in green). 
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being proposed as a prognostic cancer marker (17). Importantly, 
increased levels of ~11,5 and/or ~11,7 kDa serum peptides, which 
corresponded to fragments of SAA1, were already detected 
by MALDI/SELDI-based proteomics approaches in serum 
of patients with different types of advanced cancers, e.g., renal 
cancer (45,46), ovarian cancer (47), pancreatic cancer (48), prostate 
cancer (49), osteosarcoma (50), neuroblastoma (51), also including 
malignancies addressed in this work - head and neck cancer (52), 
colon cancer (53) and lung cancer (44,54,55). Consequently, all 
these reports indicated that SAA1 fragments were indeed cancer 
stage-specific but not cancer type-specific components, which 
validated our hypothesis on the nature of major features of cancer 
signatures that based on serum proteome mass profiles.

Finally, we concluded that peptides putatively involved in 
the systemic response of human organism to malignancy, whose 
abundances were associated with a general progression of the 
disease, predominated in identified cancer signatures, which 
apparently reduced the possibility to build serum proteome-
based markers specific for different molecular and histological 
types of cancer.
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