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Abstract. In the last decade, microRNAs (miRNAs; small 
noncoding RNA molecules) as post-transcriptional regulators 
have been a hotspot in research for their involvement in 
biological processes and tumour development. However, there 
have been few reviews focusing on a single miRNA family. 
The dysregulation of miRNAs appears to play a crucial 
role in cancer pathogenesis where they exert their effect as 
oncogenes or as tumour suppressors. This review summarises 
current studies on the dysregulation of the microRNA-34 
(miR-34) family in different types of cancers and its role in 
the p53 network. The structure of the miR-34 family members 
includes p53-binding sites reflecting their function as tumour 
suppressors downstream of the p53 pathway. miR-34 dysregu-
lation occurs in cancers, including several epithelial cancers, 
melanomas, neuroblastomas, leukemias and sarcomas, in the 
presence or absence of the p53 mutation. For these cancers, 
functional restoration of miR-34 is a useful novel therapy. As 
evidenced from preclinical and clinical studies, the miR-34 
family plays an important role in the treatment of miR-34-
dysregulated cancers with mutant or wild-type p53. This 
review will have a potential impact in the clinical treatment 
of p53-mutant and/or miR-34-dysregulated cancers using a 
miR-34 restoration approach.
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1. Introduction

microRNAs (miRNAs) are small regulatory noncoding 
RNAs that repress gene expression at the post-transcriptional 
level in a sequence-specific manner. They play a crucial role 
in varying aspects of cell proliferation, differentiation and 
apoptosis (1). However, the vast number of miRNA genes, their 
varied expression patterns and the wealth of potential miRNA 
targets suggest that miRNAs are likely to be involved in an 
extended spectrum of human pathologies (2). Alterations in 
their expression have displayed correspondence with disease 
states in pathologic conditions such as Alzheimer's disease. 
Factors required for miRNA processing and/or function have 
also been involved in fragile X mental retardation (3) and 
DiGeorge syndrome (4). miRNA dysregulation is also associ-
ated with the initiation and development of cancer (5-7) as they 
are misexpressed in malignant tumours with respect to their 
normal tissue equivalents. Table I summarises the mechanisms 
in which this occurs. Calin et al demonstrated that greater than 
half of human miRNAs map to fragile or cancer-associated 
genomic regions that are susceptible to deletions, amplifica-
tions or recombination (8). Such locations suggest that various 
miRNAs are involved in tumourigenesis (8-10).

miRNAs cause either tumour suppression or tumour 
development. One class includes oncogenes, also known as 
oncomirs, whose expression is upregulated in tumours. They 
catalyse tumour development by negatively inhibiting tumour-
suppressor genes. Conversely, miRNA expression may also be 
downregulated in cancerous cells. These types of miRNAs are 
considered tumour-suppressor genes which prevent tumour 
development by negatively inhibiting oncogenes.

Since the first miRNA was described in 1993 (11), many new 
miRNAs have been discovered (12-14), and currently a miRNA 
registry (http://www.sanger.ac.uk/software/rfam/) contains 
sequence data on more than 10,500 miRNAs. However, to date, 
a specific function has been assigned to just a few miRNAs.

miRNA-directed gene regulation is a rapidly emerging 
area of research and study, propelled by technological 
advancements in RNA-based methods including cloning 
and size-fractionated RNA strategies (12,15,16). High-
throughput sequencing methods employing microarray 
hybridisation (17-23) and computational and bioinformatic 
prediction technologies (24-26) are significant in classifying 
particular miRNA signatures and uncovering regulatory 
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targets. Quantitative polymerase chain reaction (qPCR) vali-
dates miRNA expression profile (27,28) and Northern blot 
analysis of gene expression (29). Recently, next generation 
sequencing technologies are being readily employed to achieve 
a more precise portrayal of miRNA expression profiles to 
enhance our understanding of the intricacy and methods of 
miRNA regulation (30,31). Multiple reviews have summarised 
the mechanism of RNA interference (32-35), the biogenesis of 
miRNAs (36-38) and their role in gene regulation (39,40). This 
review focuses on an individual miRNA family, miRNA-34 
(miR-34), regarding its intrinsic link with p53.

This review aims to explore the research conducted on 
miR-34s for its role in the p53 network and relevant cancer 
treatment, specifically in regards to i) miR-34 structure and 
the p53-binding site, ii) miR-34 family in normal function, 
iii) p53 mutation and the role of miR-34 in cancer, and iv) the 
therapeutic potential of miR-34.

2. miR-34 structure and the p53-binding site

The miR-34 family shares some general characteristics 
with miRNAs. Normally, miRNAs are produced through a 
multistep progression involving two distinctive biogenetic 
pathways. During the maturation process, transcriptional and 
post-transcriptional levels are tightly monitored, ensuring 
accurate production. They are created from long primary 
transcripts that are developed in numerous steps to form 
cytoplasmic ~22-nucleotide mature miRNAs (36,41,42) with 
the excision of a 30-kb intron (43). The mature miRNA is 
then integrated into the miRNA-induced silencing complex 
(miRISC), which directs it to target sequences. Most miRNAs 
use their seed sequences on 5'-UTRs (Table II) to recognize 
their target sites located in 3'-UTRs by incomplete base-
pairing, resulting in mRNA destabilization or translational 
repression of the target genes (44,45).

The miR-34 family includes three processed miRNAs 
(miR-34a, miR-34b, and miR-34c) that are encoded by two 
different genes (46,47) (Fig. 1). miR-34a is encoded by an 
individual transcript while miR-34b and miR-34c share a 
common primary transcript. The gene encoding miR-34a 
is located on human chromosome 1p36, while miR-34b and 
miR-34c are co-transcribed from one transcription unit 
on chromosome 11q23. Animal studies have demonstrated 
that miR-34b/c is predominantly expressed in the lungs, 
and miR-34a is expressed in the brain, showing that they 
have tissue-specific functions (46). An expression analysis 
following individual transfection of each miR-34 showed 
that the affected mRNAs were almost indistinguishable. 
However, variations in the attractions for targets between 
the three miR-34 members occur. For instance, c-MYC is 
mainly regulated by miR-34b/c, evidenced by the enhanced 
complementarity between the miR-34b seed sequence and the 
seed-matching sequence in the c-MYC 3'-UTR, when evalu-
ated against miR-34a (48). The miRNA-encoding sequences 
and short promoter proximal regions each house a consensus 
p53-binding site (47) anticipated to be within 30 kb of the 
precursor transcription units for all members of the miR-34 
family. The proximity of the p53-binding site to both the 
miR-34a and miR-34b/c precursors has spurred the interest of 
many scientists. 

3. miR-34 family in normal function

More than 60% of human protein-coding genes are conserved 
targets of miRNA (49-51). Thus, they have diverse biological 
functions, including developmental timing, signal transduc-
tion and tissue differentiation (52). The miR-34 family is an 
example of a single miRNA family which performs numerous 
biological functions (Table III and Table IV).

Table I. Mechanisms of microRNA dysregulation.

Mechanisms
	A berrant transcription of the precursors by the epigenetic silencing of miRNA promoters through promoter methylation and
	 histone acetylation;
	A berrant miRNA processing due to altered expression of miRNA biogenesis machinery; 
	G ermline mutation of precursor miRNA molecules; 
	R arely, point mutations in mature miRNAs or in target sequences that interfer with normal target recruitment.

Table II. Sequences of mature miR-34 family members.a

Molecule	 Sequence

hsa-miR-34a	 5'-UGGCAGUGUCUUAGCUGGUUGU-3'
hsa-miR-34b	 5'-CAAUCACUAACUCCACUGCCAU-3'
hsa-miR-34c	 5'-AGGCAGUGUAGUUAGCUGAUUGC-3'

aSequence alignment of mature miR-34a, miR-34b and miR-34c 
molecules. The seed sequences at the 5'-UTRs in bold print are used 
to combine with targeted mRNAs for regulation purposes. Figure 1. Structure of genomic loci of the human miR-34a and miR-34b/c 

genes. Rectangular box indicates miRNA hairpins; filled circles indicate 
p53-binding sites.
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Regulation of cell cycle progression, apoptosis or senescence. 
The p53 protein is a transcription factor which blocks cell 
proliferation and stimulates cell death. It lies at the nexus 
of molecular pathways that monitor cellular disruptions and 
abnormal mitogenic activation (53). Cellular senescence and 
apoptosis, DNA-damaging agents, oxidative stress, and activa-
tion of oncogenes can all cause double-stranded breaks which 
stimulate ATM kinases and consequently phosphorylate p53 
(46) (Fig. 2). p53 orchestrates such responses by directly 
activating miR-34a and subsequent key genes through binding 

two repeats of the DNA sequence 5'-PuPuPuC(A/T)(T/A)
GPyPyPy-3' (54). The p53 gene encodes effector proteins that 
induce cellular processes: p21 (G1-arrest), 14-3-3σ (G2-arrest) 
and Puma (apoptosis) (55). miR-34a is the most significantly 
induced miRNA which acts as a post-transcriptional target of 
p53 (46). It controls the crucial tumour suppressive effects of 
p53 through a context-dependent induction of growth arrest, 
apoptosis or senescence (56-58) being partly responsible for 
the downregulation of anti-apoptotic proteins (55).

4. p53 mutation and the role of miR-34 in cancer

p53 is a tumour suppressor which needs to be disabled or 
disrupted for most types of cancers to differentiate and 
proliferate (59). As such, mutations in the p53 pathway are 

Figure 2. Molecular mechanisms in the p53-miR-34 network involved 
in regulating cell apoptosis. Briefly, wt-p53 activates miR-34 after DNA 
damage and/or cellular stress, which subsequently inhibits expression of 
anti-apoptotic genes and results in cell apoptosis and tumour suppression. 
Crosses reflect the downregulation of anti-apoptotic proteins by miR-34. 
Also shown is the regulation of SIRT1 by miR-34a as part of a positive feed-
back loop that leads to further activation of p53, once it has been activated. 
Abbreviations of anti-apoptotic proteins: CDK4/6, cyclin-dependent kinase 
4/6; E2F3, E2F transcription factor 3; Bcl-2, B-cell lymphoma 2; SIRT1, 
silent information regulator 1.

Figure 3. Abnormal regulation of the p53-miR-34 network causing cell 
proliferation and tumourigenesis. Briefly, the function of miR-34 is lower 
in the presence of mutant p53 and/or miR-34 dysregulation. Overexpression 
of anti-apoptotic genes and proteins result in cell proliferation and tumour 
development. Large crosses indicate sites of abnormality in the downstream 
pathway. Abbreviations of anti-apoptotic proteins as in Fig. 2 legend.

Table III. Normal function of miR-34 family members.

Function	R ole of miR-34s

Haematopoiesis and immunity	 miRNA influences lineage selection and affects critical developmental checkpoints during haema-
	 topoiesis. Expression of miR-34a results in an incomplete block in B-cell development in murine
	 bone marrow, mediated by blocked expression of the transcription factor, Foxp1, a known B-cell
	 oncogene (66). 
Stem cell biology	 Silent information regulator 1 (SIRT1) gene, previously demonstrated to be involved in sustaining
	 the undifferentiated phenotype in mouse embryonic stem cells (ESCs), is a direct target of miR-34
	 (67).
Skeletal and cardiac muscle	 miR-34s are dramatically upregulated during normal human bronchial epithelial cell differentiation
	 including ciliated and secretory cells within the mature airway epithelium (68).
Nervous system	 During development, many miRNAs, including miR-34a, are expressed in neurons and show
	 distinct expression patterns within the embryonic central nervous system, suggesting their role in
	 brain formation and function (69-71). Expression of miR-34a is roughly 6-fold to 9-fold higher in
	 the spinal cord, medulla oblongata, and pons compared to whole mouse brain (72).



wong et al:  miR-34s in cancers1192
Ta

bl
e 

IV
. S

um
m

ar
y 

of
 m

iR
-3

4 
st

ud
ie

s i
n 

in
di

vi
du

al
 c

an
ce

rs
.

C
an

ce
r	

Su
bt

yp
e	

m
iR

-3
4 

ex
pr

es
si

on
 in

 c
an

ce
r	E

f
fe

ct
s o

f r
es

to
ra

tio
n 

of
 m

iR
-3

4 
ex

pr
es

si
on

	
m

ol
ec

ul
e

Lu
ng

 c
an

ce
r	

m
iR

-3
4b

/c
 (7

3)
	R


ed

uc
ed

 e
xp

re
ss

io
n 

in
 n

on
-s

m
al

l c
el

l l
un

g 
ca

nc
er

 (7
3)

 is
 a

ss
oc

ia
te

d 
w

ith
 a

	I
n

 N
SCLC


 e

xp
re

ss
in

g 
p5

3,
 re

sp
on

se
 to

 ra
di

ot
he

ra
py

 is
 d

ep
en

de
nt

 o
n 

B
C

l-2
		


hi

gh
 li

ke
lih

oo
d 

of
 re

la
ps

e 
(7

4)
.	

le
ve

ls
 a

nd
 m

ay
 b

e 
m

od
ul

at
ed

 b
y 

ov
er

ex
pr

es
si

on
 o

f m
iR

-3
4b

 (7
5)

.
Pa

nc
re

at
ic

 c
an

ce
r	

m
iR

-3
4a

	
H

um
an

 p
an

cr
ea

tic
 c

el
l l

in
es

 e
xh

ib
it 

at
 le

as
t a

 2
-f

ol
d 

re
du

ct
io

n 
in

 m
iR

-3
4a

	R


es
to

ra
tio

n 
ca

us
ed

 a
n 

in
hi

bi
tio

n 
of

 th
e 

ex
pr

es
si

on
 o

f t
ar

ge
t g

en
es

, N
ot

ch
1/

2 
		


ex

pr
es

si
on

 w
he

n 
co

m
pa

re
d 

to
 it

s e
xp

re
ss

io
n 

in
 n

or
m

al
 p

an
cr

ea
tic

 c
el

l l
in

es
 	

an
d 

B
cl

-2
, l

ea
di

ng
 to

 C
SC

 se
lf-

re
ne

w
al

 a
nd

/o
r c

el
l f

at
e 

de
te

rm
in

at
io

n.
 T

hi
s

		


(7
6)

. M
ia

Pa
C

a2
 c

el
ls

, l
ow

 in
 m

iR
-3

4a
 e

xp
re

ss
io

n,
 h

ad
 e

nh
an

ce
d 

le
ve

ls
 o

f	
ex

pl
ai

ns
 th

e 
87

%
 re

du
ct

io
n 

in
 th

e 
tu

m
ou

r-i
ni

tia
tin

g 
ce

ll 
po

pu
la

tio
n 

(7
7)

 w
ith

		


tu
m

ou
r-i

ni
tia

tin
g 

ce
lls

 w
ith

 e
le

va
te

d 
am

ou
nt

s o
f N

ot
ch

1/
2 

an
d 

B
cl

-2
 (7

7)
. 	

se
ne

sc
en

ce
 a

nd
 c

el
l c

yc
le

 a
rr

es
t. 

A
dd

iti
on

al
ly

, r
es

to
ra

tio
n 

se
ns

iti
se

d 
ca

nc
er

			



ce

lls
 to

 c
on

ve
nt

io
na

l t
he

ra
pe

ut
ic

 m
et

ho
ds

 o
f c

he
m

ot
he

ra
py

 a
nd

 ra
di

at
io

n 
(6

0)
.

B
re

as
t c

an
ce

r	
m

iR
-3

4a
	R


ed

uc
ed

 e
xp

re
ss

io
n 

of
 m

iR
-3

4a
 is

 fo
un

d 
in

 tr
ip

le
-n

eg
at

iv
e 

(i.
e.

 n
eg

at
iv

e 
	U


po

n 
th

e 
al

te
ra

tio
n 

of
 m

iR
-3

4a
 e

xp
re

ss
io

n 
le

ve
ls

 in
 th

e 
m

es
en

ch
ym

al
 li

ne
,

		


ex
pr

es
si

on
 o

f p
ro

ge
st

er
on

e 
re

ce
pt

or
s, 

es
tro

ge
n 

re
ce

pt
or

s a
nd

 H
er

-2
) a

nd
 	

M
D

A
-M

B
-2

31
, i

t w
as

 fo
un

d 
th

at
 in

cr
ea

si
ng

 le
ve

ls
 o

f m
iR

-3
4a

 p
ro

te
ct

ed
 c

el
ls

		


m
es

en
ch

ym
al

 su
bs

et
s (

M
D

A
-M

B
-2

31
) c

om
pa

re
d 

to
 o

th
er

 b
re

as
t c

an
ce

r 	
fr

om
 ra

di
at

io
n-

in
du

ce
d 

ce
ll 

de
at

h 
w

hi
le

 re
du

ci
ng

 le
ve

ls
 o

f m
iR

-3
4a

 se
ns

iti
se

d
		


ce

ll 
lin

es
, s

uc
h 

as
 H

er
-2

+  tu
m

ou
rs

 (UACC





81
2)

. T
hi

s c
an

 b
e 

ex
pl

ai
ne

d 
by

 	
ce

lls
 to

 ra
di

at
io

n-
in

du
ce

d 
ce

ll 
de

at
h.

 T
hi

s d
em

on
st

ra
te

s t
ha

t m
iR

-3
4a

 is
		


co

m
m

on
 m

ut
at

io
ns

 in
 p

53
 in

 th
e 

fo
rm

er
 su

bt
yp

es
 o

f b
re

as
t c

an
ce

r (
78

,7
9)

.	
re

qu
ire

d 
to

 p
ro

te
ct

 c
el

ls
 fr

om
 n

on
-a

po
pt

ot
ic

 c
el

l d
ea

th
 in

 m
am

m
al

ia
n

			



M

D
A

-M
B

-2
31

 c
el

ls
. T

he
se

 re
su

lts
 su

gg
es

t t
ha

t m
iRNA




 le
ve

ls
 c

an
 a

ls
o 

be
			




em
pl

oy
ed

 to
 a

tte
nu

at
e 

re
sp

on
se

 to
 tr

ea
tm

en
t a

s a
nt

ag
on

iz
in

g 
m

iR
-3

4a
			




en
ha

nc
es

 th
e 

se
ns

iti
vi

ty
 o

f b
re

as
t c

an
ce

r c
el

ls
 to

w
ar

ds
 ra

di
at

io
n 

(7
9)

.
Pr

os
ta

te
 c

an
ce

r	
m

iR
-3

4c
	

m
iR

-3
4c

 e
xp

re
ss

io
n 

le
ve

ls
 w

er
e 

si
gn

ifi
ca

nt
ly

 d
ec

re
as

ed
 in

 h
um

an
 p

53
-n

ul
l 	

m
iR

-3
4c

 e
xp

re
ss

io
n 

w
as

 fo
un

d 
to

 b
e 

in
ve

rs
el

y 
as

so
ci

at
ed

 w
ith

 P
C

3 
ce

ll
		


an

d 
p5

3-
m

ut
at

ed
 D

U
14

5 
ce

lls
 a

s c
om

pa
re

d 
to

 LNC



aP

 c
el

ls
 e

xp
re

ss
in

g	
tu

m
ou

r a
gg

re
ss

iv
en

es
s, 

W
H

O
 g

ra
de

, P
SA

 le
ve

ls
 a

nd
 m

et
as

ta
tic

 p
ot

en
tia

l, 
		


w

ild
-ty

pe
 p

53
 (8

0)
. T

hi
s i

s e
xp

la
in

ed
 b

y 
th

e 
do

cu
m

en
te

d 
lo

ss
 o

f h
et

er
o-

	
su

gg
es

tin
g 

th
at

 m
iR

-3
4c

 p
la

ys
 a

 ro
le

 b
ot

h 
in

 in
iti

at
io

n 
an

d 
de

ve
lo

pm
en

t o
f

		


zy
go

si
ty

 a
t 1

1q
23

 (t
he

 lo
cu

s o
f m

iR
-3

4b
/c

) i
n 

pr
os

ta
te

 c
an

ce
r (

81
).	

th
e 

tu
m

ou
r (

82
).

			R





es
to

ra
tio

n 
re

du
ce

d 
le

ve
ls

 o
f E

2F
3,

 a
 g

en
e 

in
vo

lv
ed

 in
 c

el
l c

yc
le

 re
gu

la
tio

n 
at

			



th

e 
G

1/
S 

ch
ec

kp
oi

nt
 a

nd
 w

as
 re

sp
on

sib
le

 fo
r c

at
al

ys
in

g 
pr

ol
ife

ra
tio

n 
in

 p
ro

sta
te

			



ce

ll 
lin

es
. T

hi
s r

es
ul

te
d 

in
 a

n 
im

pa
ire

d 
ce

llu
la

r p
ro

lif
er

at
io

n 
ra

te
 a

nd
 fe

w
er

 c
el

ls
			




in
 th

e 
S-

ph
as

e.
 It

 a
ls

o 
ca

us
es

 a
n 

in
cr

ea
se

d 
ap

op
to

si
s r

at
e 

an
d 

a 
re

du
ct

io
n 

in
			




th
e 

an
ti-

ap
op

to
tic

 p
ro

te
in

 B
C

l-2
 (8

2)
 a

nd
 S

IRT
1

 m
RNA




 (8
3)

.
C

ol
or

ec
ta

l	
m

iR
-3

4a
/b

/c
	

Th
e 

m
aj

or
ity

 (5
1-

74
%

) o
f a

ll 
co

lo
re

ct
al

 c
an

ce
rs

 a
re

 p
53

-m
ut

an
t w

hi
ch

 is
 	

m
iR

-3
4a

 c
au

se
d 

se
ne

sc
en

ce
-li

ke
 g

ro
w

th
 a

rr
es

t i
n 

hu
m

an
 c

ol
on

 c
an

ce
r (

56
)

ca
nc

er
		


re

sp
on

si
bl

e 
fo

r m
iR

-3
4a

 d
ys

re
gu

la
tio

n 
in

 o
ne

-th
ird

 o
f c

ol
or

ec
ta

l c
an

ce
rs

. 	
th

ro
ug

h 
do

w
nr

eg
ul

at
io

n 
of

 th
e 

E2
F 

si
gn

al
lin

g 
pa

th
w

ay
 (7

6)
 w

he
n 

co
m

pa
re

d
		A




bo
lit

io
n 

of
 m

iR
-3

4a
 fu

nc
tio

n 
re

su
lts

 in
 a

bn
or

m
al

 c
el

l p
ro

lif
er

at
io

n 
an

d	
to

 w
ild

-ty
pe

 a
nd

 p
53

 -/
-  m

ut
an

t H
CT

 
11

6 
co

lo
n 

ca
nc

er
 c

el
l l

in
es

. T
he

re
 w

as
 a

ls
o 

		


co
lo

re
ct

al
 c

an
ce

r d
ev

el
op

m
en

t (
84

).	
up

re
gu

la
tio

n 
of

 th
e 

H
M

G
-b

ox
 tr

an
sc

rip
tio

n 
fa

ct
or

 1
 (H

B
P1

) g
en

e 
w

hi
ch

 is
			




lin
ke

d 
w

ith
 RA


S-

in
du

ce
d 

pr
em

at
ur

e 
se

ne
sc

en
ce

 (8
5)

. F
ur

th
er

m
or

e,
 h

ei
gh

te
ne

d
			




ex
pr

es
si

on
 o

f m
iR

-3
4c

 w
ea

ke
ne

d 
th

e 
ab

ili
ty

 a
nd

 p
ot

en
tia

l o
f H

T-
29

 c
ol

or
ec

ta
l

			



ca

nc
er

 c
el

ls
 to

 m
ig

ra
te

 a
nd

 m
et

as
ta

si
se

 (8
6)

.
G

as
tri

c 
ca

nc
er

 	
m

iR
-3

4b
/c

	
m

iR
-3

4b
/c

 a
re

 e
pi

ge
ne

tic
al

ly
 si

le
nc

ed
 m

iRNA



s a

nd
 th

ei
r d

ow
nr

eg
ul

at
io

n 
	I

n
du

ce
s c

he
m

os
en

si
tis

at
io

n 
an

d 
ap

op
to

si
s, 

in
di

ca
tin

g 
th

at
 m

iR
-3

4
		


is

 a
ss

oc
ia

te
d 

w
ith

 h
yp

er
m

et
hy

la
tio

n 
of

 th
e 

ne
ig

hb
or

in
g 

C
pG

 is
la

nd
 (8

7)
.	

m
ay

 re
st

or
e 

p5
3 

fu
nc

tio
n 

(6
3)

.
O

va
ria

n 
ca

nc
er

	
m

iR
-3

4b
/c

	R


ec
ep

to
r p

ro
te

in
 ty

ro
si

ne
 k

in
as

e 
M

ET
 is

 o
fte

n 
ov

er
ex

pr
es

se
d 

in
 e

pi
th

el
ia

l 	
m

iR
-3

4 
re

gu
la

te
s c

el
l p

ro
pa

ga
tio

n 
an

d 
in

va
si

on
 th

ro
ug

h 
ta

rg
et

in
g 

se
ve

ra
l

		


ov
ar

ia
n 

ca
nc

er
s, 

re
sp

on
si

bl
e 

fo
r t

he
 o

cc
ur

re
nc

e 
of

 m
et

as
ta

se
s a

nd
 m

ot
ili

ty
 (8

8)
. 	

ge
ne

s s
uc

h 
as

 M
ET

, M
YC


 a

nd
 E

2F
3 

(8
9)

.
M

el
an

om
a	

m
iR

-3
4a

	I
n

 p
53

-m
ut

an
t c

an
ce

rs
 m

et
hy

la
tio

n 
of

 th
e 

m
iR

-3
4a

 p
ro

m
ot

er
 o

cc
ur

s (
60

) 	R


ec
on

st
itu

tio
n 

of
 m

iR
-3

4a
 le

ve
ls

 in
hi

bi
te

d 
uv

ea
l m

el
an

om
a 

ce
ll 

pr
ol

ife
ra

tio
n

		


re
su

lti
ng

 in
 re

du
ce

d 
m

iR
-3

4a
 e

xp
re

ss
io

n.
	

an
d 

in
va

si
on

 th
ro

ug
h 

th
e 

do
w

nr
eg

ul
at

io
n 

of
 c

-M
ET

 o
nc

og
en

e 
(9

0)
.



international journal of oncology  38:  1189-1195,  2011 1193

found in almost all forms of cancers (55) (Fig. 3). p53 muta-
tions have been linked with antagonistic tumour behaviour 
and poor clinical outcome (47). p53 maps to 1p36 (the locus 
of miR-34a), a region of common loss in various cancer forms 
(47). Thus, comparatively low levels of miR-34s are observed 
in human tumours and cancer cell lines (60).

5. Therapeutic potential of miR-34

It is known that the expression levels of miR-34 are deficient 
in p53-mutant cancer cells. This explains the abundance of 
research surrounding ‘miRNA replacement therapy’, which 
focuses on the concept that the re-introduction of miRNAs 
suppressed in p53-mutant cancer cells reactivates cellular 
pathways that initiates a therapeutic response (61) (Fig. 4). 
This involves introducing synthetic miR-34 or miR-34 
mimetics into pathological tissues in an effort to reinstate 
normal proliferation, apoptosis, and other cellular functions 
(62). Specifically, the restoration of miR-34 was discovered 
to reduce the amount of tumour-initiating cells, or cancer 
stem cells (CSCs) (63). CSCs are tumour cells persisting after 
chemotherapy that, in almost all cancers, prompt the regrowth 
of the tumour. Characteristically, these cells are resistant to 
conventional therapies. As such, cancer treatment should be 
targeted against both resting CSCs and proliferating cancer 
cells. A study found that ectopic expression of miR-34 induces 
cell cycle arrest in both human-primary and tumour-derived 
cell lines which is in line with the capacity of miR-34 to 
downregulate a set of genes promoting cell cycle progression 
(64).
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Figure 4. Treatment of p53-mutant or miR34-dysregulated cancer by ectopic 
miR-34. Briefly, the function of miR-34 is reduced in the presence of mutant 
p53 and/or miR-34 dysregulation. Delivery of ectopic miR-34 recovers its 
function and results in cell apoptosis and tumour suppression via inhibition 
of anti-apoptotic genes. Small crosses reflect the downregulation of anti-
apoptotic proteins by miR-34. Large crosses indicate sites of abnormality in 
the downstream pathway. Abbreviations of anti-apoptotic proteins: CDK4/6, 
cyclin-dependent kinase 4/6; E2F3, E2F transcription factor 3; Bcl-2, B-cell 
lymphoma 2; SIRT1, silent information regulator 1.
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6. Conclusion

This review demonstrates that p53, a potent tumour suppressor, 
modulates levels of miRNAs, specifically miR-34s. The 
expression of miR-34s is robustly induced by DNA damage 
and oncogenic stress in a p53-dependent approach. When 
overexpressed, miR-34 causes apoptosis or cellular senes-
cence, whereas reduction of miR-34 function attenuates 
p53-mediated cell death. These findings, in association with 
the concept that miR-34 is downregulated in several forms of 
human cancer, show that miRNAs affect tumourigenesis by 
acting within the boundaries of established tumour-suppressor 
pathways. As such, they hold an important function in the 
treatment of p53-mutant or wild-type p53 cancers with 
dysregulated miR-34s using a miR-34 restoration approach. 
The restoration of functional miR-34 stimulates chemosen-
sitisation and apoptosis, suggesting that miR-34 may restore 
p53 function. This inhibits tumour development as a result 
of the direct control of downstream anti-apoptotic proteins. 
Thus, the restoration of the tumour suppressor miR-34 may 
provide a novel molecular therapy for p53-mutant cancers. 
This review will have a clinical impact on the treatment of 
p53-mutant and/or miR-34-dysregulated cancers using a 
miR-34 restoration approach. Clinical studies using miR-34a 
(65) are underway and may provide further information to 
clarify the safety and efficacy of this molecule.
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