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Abstract. Despite extensive efforts, pancreatic cancer remains 
incurable. Most risk factors, such as genetic disposition, meta-
bolic diseases or chronic pancreatitis cannot be influenced. By 
contrast, cigarette smoking, an important risk factor for pancre-
atic cancer, can be controlled. Despite the epidemiological 
evidence of the detrimental effects of cigarette smoking with 
regard to pancreatic cancer development and its unique property 
of being influenceable, our understanding of cigarette smoke-
induced pancreatic carcinogenesis is limited. Current data on 
cigarette smoke-induced pancreatic carcinogenesis indicate 
multifactorial events that are triggered by nicotine, which is the 
major pharmacologically active constituent of tobacco smoke. 
In addition to nicotine, a vast number of carcinogens have the 
potential to reach the pancreatic gland, where they are metabo-
lized, in some instances to even more toxic compounds. These 
metabolic events are not restricted to pancreatic ductal cells. 
Several studies show that acinar cells are also greatly affected. 
Furthermore, pancreatic cancer progenitor cells do not only 
derive from the ductal epithelial lineage, but also from acinar 
cells. This sheds new light on cigarette smoke-induced acinar 
cell damage. On this background, our objective is to outline 
a multifactorial model of tobacco smoke-induced pancreatic 
carcinogenesis.
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1. Introduction

Pancreatic cancer is the fourth leading cause of death in the 
United States and the sixth leading cause in Europe affecting 
between 7 and 9 per 100,000 in men and between 4.5 and 6 per 
100,000 in women (1). The cumulative mortality or lifetime risk 
of dying from pancreatic cancer is approximately 1.3% (2,3). 
However, the worldwide mortality/incidence ratio of pancreatic 
cancer is 98% indicating that almost all patients diagnosed with 
pancreatic cancer die of this disease (1). Pancreatic cancer is 
a rapidly progressive, therapy-resistant disease with a 1-year-
survival rate of 25% and a 5-year-survival rate of less than 5% 
(4). Thus, primary prevention plays a pivotal role in disease 
management. However, only few risk factors are clearly estab-
lished (2,5).

Late-onset diabetes correlates with a relative risk for pancre-
atic cancer of 2.1 for patients with diabetes persisting at least for 
1 year (6,7). For this estimation patients with shortly diagnosed 
diabetes must be excluded because 40% of pancreatic cancer 
patients are diabetic, and there is an increased hazard ratio for 
developing pancreatic cancer in patients with newly diagnosed 
diabetes (8-11). The high coincidence of diabetes and pancre-
atic cancer may provide for new screening strategies. In fact, 
diagnosing an altered glucagon/insulin ratio may be the first 
step in identifying pancreatic cancer patients (12,13). In any 
case, late-onset and early-onset diabetes persisting for more 
than 5 years prior to cancer diagnosis are risk factors for devel-
oping pancreatic cancer (14-17).

Similar to diabetes, obesity has been reported to increase 
the risk of developing pancreatic cancer (18). Most case-control 
studies found an increased risk in men and women exceeding 
a body mass index of 30 (19-21). However, in some cohorts 
obesity showed this correlation only in men (22), while in other 
cohorts there was no significant association in either group (23). 
Therefore, a disturbance in glucose and/or lipid metabolism 
might be responsible for the association between obesity and 
pancreatic cancer. This is corroborated by the observation that 
patients treated with statins to lower cholesterol levels or with 
metformin to lower pathological glucose levels show a signifi-
cantly decreased risk for developing pancreatic cancer (24). 
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However, in the case of metformin, the reduction of pancreatic 
cancer risk does not seem to be related to the normalization of 
blood glucose levels because this reduction was absent in patients 
treated with insulin or insulin secretagogues (25).

A clearly identified, strong risk-factor for pancreatic cancer 
is chronic pancreatitis (26-30). The cumulative risk of chronic 
hereditary pancreatitis patients to develop pancreatic cancer 
by age 70 has been assessed at almost 40%. Furthermore, in a 
multinational study including 2,016 patients, the standardized 
incidence ratio was roughly 16.5 (28). These data point at a role 
of chronic inflammation in the initiation and progression of 
pancreatic cancer (31). However, chronic pancreatitis accounts 
for only 3-4 % of the pancreatic cancer cases observed (32).

Between 5 and 10% of pancreatic cancer cases can be 
accounted to hereditary factors. The risk depends on the number 
of affected first degree relatives with a hazard ratio of 32.0 when 
3 family members are affected and 6.4 with 2 affected family 
members (33). Between 6 and 19% of familial pancreatic cancer 
families have mutations in the BRCA2 gene (34-36), but other 
germline mutations such as CDKN2A, PRSS1, STKI1, or MMR 
genes have also been found (37). No single gene defect has been 
identified to date except for one family, where a mutation in the 
palladin gene that is only found in affected family members 
causes a proline to serine amino acid change (38). These results 
may be the first steps in identifying gene mutations responsible 
for familial pancreatic cancer (39).

Remarkably, the most frequent risk factor associated with 
pancreatic cancer development is cigarette smoking (40-43). 
Cigarette smoke is graded as a class 1 carcinogen by the World 
Health Organization (44). It is related to 25% of pancreatic cancer 
cases, and the risk increases with duration and amount smoked 
(32). Quitting smoking reduces the excessive risk for pancreatic 
cancer within 5-10 years (21) with an initial reduction of pancre-
atic cancer risk of 50% within the first 2 years (42). Smoking 
also elevates the risk of patients with familial predisposition to 
pancreatic cancer, and in patients with hereditary pancreatitis, 
the onset of pancreatic cancer occurs 10-20 years earlier in 
smokers than in non-smokers (45,46). Furthermore, cigarette 
smoking promotes the development of chronic pancreatitis in 
a dose-dependent manner (47,48), and during chronic pancre-
atitis smoking further increases disease severity and induces 
pancreatic calcifications (49,50). Therefore, cigarette smoking is 
the only amenable risk factor in pancreatic carcinogenesis, and 
quitting smoking both prevents the development of pancreatic 
cancer as well as chronic pancreatitis (51).

For several reasons, the experimental work aiming at under-
standing the mechanisms behind cigarette smoke-mediated 
pancreatic damage lags behind. Cigarette smoke consists of a 
mixture of side stream smoke and mainstream smoke containing 
a blend of chemicals out of which 4,000 have been identi-
fied to date. Of the so far identified substances, more than 50 
compounds act, or are likely to act as carcinogens (52). Due to 
this complexity, most studies investigate either the action of nico-
tine or tobacco-derived carcinogens. Thus causal relationships 
between individual compounds at high doses and pancreatic 
carcinogenesis, but not cigarette smoke inhalation have been 
established. However, most chemicals contained in cigarette 
smoke are likely to interact with each other or synergize in their 
detrimental action. Unfortunately, only very few studies reflect 
this pathophysiological situation. In this review, we discuss 

recent experimental advances in the evolving field of cigarette 
smoke-induced pancreatic carcinogenesis. Furthermore, we 
link the evidence obtained in in vivo and in vitro experiments to 
observations in humans and discuss possible pathomechanisms 
involved in cigarette smoke-mediated pancreatic carcinogenesis.

2. Morphological alterations

Smoking leads to distinct histomorphological alterations of 
the pancreas. In autopsy specimens, several investigators have 
reported alterations described as focal acinar cell hyperplasia 
or dysplasia (53). These hyperplastic acinar nodules as depicted 
in Fig. 1A are well demarcated from the surrounding normal 
acinar cells, measure 300-1,000 µm, and are randomly distrib-
uted throughout the pancreas. Most of the lesions show only 
mild nuclear atypia and are therefore referred to as hyperplasia. 
However, severe dysplastic changes can be observed as well, but 
only in specimens where ductal hyperplasia or PanINs were also 
detected (54). It has been suggested that these lesions might be 
precursors of acinar cell carcinomas. However, there is a clear 
discrepancy between the number of observed lesions and the 
extremely rare incidence of acinar cell carcinoma.

In addition to cellular hyperplasia, two types of focal atypical 
acinar cell lesions associated with cigarette smoking have been 
described and differentiated by their staining properties in 
hematoxylin and eosin (H&E) staining, one of which shows 
predominantly acidophilic cells, the other basophilic cells (55). 
Electron microscopy reveals dilated rough endoplasmic reticulum 
and few zymogen granules. Interestingly, the proliferative index 
was lower in these lesions than in adjacent normal pancreatic acini 
(56,57). These acinar cell lesions were morphologically close to 
acinar cell nodules observed in rats treated with carcinogenic 
chemicals. However, their role remains speculative (58).

Cigarette smoking also induces the occurrence of atypical 
nuclei in pancreatic acinar and ductal cells, which were defined 
by variation in shape, size, and staining character. In pancreatic 
ducts, heavy smoking leads to an increase of atypical nuclei 
from 5.4 in non-smokers to 74.9% (59). Similarly, smoking 
40 cigarettes per day induces an increase in atypical nuclei from 
1.8 to 69.1%. However, in contrast to acinar cell alterations, the 
increase in smoke related ductal lesions appears to correlate with 
age rather than with smoking history (60).

Similar to humans, rodents treated with environmental 
tobacco smoke also develop acinar cell damage (61). In this 
experiment, animals were exposed to environmental tobacco 
smoke for 70 min twice a day over a period of 3 months in 
two different doses, 100 mg/m3 total suspended particles (TSP) 
and 160 mg/m3 TSP. In 58% of the animals treated with the 
higher dose of cigarette smoke, histomorphologic pancreatic 
damage was detected, while animals subjected to the lower 
dose treatment lacked these lesions. The lesions were typically 
confined by sharp borders, which usually correlated with the 
anatomical lobular structures. They were also characterized 
by focal increases in extracellular matrices with a subsequent 
decrease in acinar cell structures (Fig. 1B). However, the occur-
rence of these lesions was low, and less than 5% of the pancreatic 
tissue was affected. Further examinations indicated that an 
inflammatory reaction was present and that the smoke-induced 
acinar cell damage may have induced chemotraction, immune 
responses, and tissue reorganization (62-64).
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3. Enzyme regulation

There is a clear association of cigarette smoke exposure and 
alterations of the pancreatic acinar cell compartment. Its 
pathomechanism and how acinar cell damage may contribute 
to the development of pancreatic ductal adenocarcinoma remain 
unclear. One probable causal factor is the ratio disturbance of 
pancreatic digestive enzyme expression and the expression of 
their protective, anti-proteolytic counterparts (65). Moreover, 
the impact of cigarette smoke is not limited to gene expression. 
Altered synthesis and secretion patterns are induced as well. 
Thus, trypsin and chymotrypsin activity of pancreatic cell 
lysates of animals exposed to cigarette smoke are markedly 
decreased (61).

Similar to the aforementioned experimental observations, 
smoking induces alterations of pancreatic enzyme synthesis and 
secretion in humans (66,67). Current data must be interpreted 
carefully due to the small number of test subjects and distinct 
differences in the tests used. Still, it appears likely that cigarette 
smoking interferes with the synthesis and secretion of pancre-
atic digestive enzymes in humans. Upon pancreatic stimulation, 
increased serum concentrations of total amylase, pancreatic 
isoamylase, cationic trypsinogen, and pancreatic secretory 
trypsin inhibitor proteins were measured in cigarette smokers 
(68). Smokers more frequently showed a serum increase of 
immunoreactive cationic trypsinogen to secretin stimulation 
of more than 100% (69). However, a high dose of secretin was 
required to achieve a low response in blood enzyme concentra-
tion (70).

Additionally, secretin-independent increased basal levels of 
digestive enzymes in smokers have been reported. Basal serum 
amylase and pancreatic elastase concentrations were found to 
be higher in smokers than in non-smokers, and a single injection 
of secretin to cigarette smokers significantly increased serum 
amylase, trypsinogen and elastase without an observed incre-
ment in non-smokers (71). Similar results were found regarding 
serum lipase activity (72). These studies, together with the 
observation of altered gastrointestinal motility (67) and endo-

crine alterations (73,74) indicate that cigarette smoking induces 
functional alterations of pancreatic enzyme secretion that are 
currently not fully understood.

4. Nicotine and pancreatic regulation

One pathophysiologial explanation for such altered secretion 
patterns could be the pharmacologic action of nicotine on the 
cholinergic system (75). In humans, pancreatic enzyme secretion 
is both under neurohormonal and CCK-receptor mediated control 
(76,77). In fact, there is a 10-fold higher level of m3-muscarinic-
receptor-mRNA than CCK-receptor-mRNA. This indicates that 
the neurohormonal control of enzyme secretion plays a bigger 
role than acinar cell stimulation with CCK (78).

Several studies examined the action of nicotine on the 
pancreatic gland. Biologically active nicotine and its inactive 
metabolites cotinine and norcotinine can be detected in the 
pancreas. In vitro pancreatic stimulation even increases acinar 
cell uptake of nicotine (61,79,80). The pathophysiological 

  A   B

Figure 1. (A) Human acinar cell alterations in a tissue section-derived from a patient with pancreatic cancer. The arrows indicate the focal hyperplasia of acinar 
cells (asterisk) being well demarcated from normal acinar cells. A blood vessel (+) is shown in the lower left of the picture. H&E, original magnification x100. 
(B) Section of the pancreas of a rat treated with cigarette smoke for 12 weeks. The arrows indicate focal acinar cell damage compared to normal acinar cells 
marked by an asterisk. Area of acinar cell damage is indicated by the cross. H&E, original magnification x200.

Figure 2. Schematic view of proposed mechanism of pancreatic cancer induc-
tion by cigarette smoke.
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action of nicotine on the pancreas has been reviewed recently 
(79,81,82). In rodents, nicotine induces a widespread action on 
acinar cells. After adding nicotine to the drinking water of rats 
in concentrations ranging from 50-200 mg/l over a period of 
16 weeks, acinar cell amylase release upon CCK-8 stimulation is 
decreased (83). This effect appears to occur in vivo as well where 
pancreatic secretion is reduced while transcription of digestive 
enzymes remains unaltered, leading to increased pancreatic 
content of digestive enzymes upon nicotine treatment (84). 
Furthermore, nicotine induces morphological and functional 
cell lesions regardless of the application method (83,85,86).

Interestingly, nicotine also increases acinar cell prolifera-
tion in AR42J cells, an immortal cell line-derived from acinar 
cells with retained secretory capacity (81). This proliferative 
effect was dependent on p-ERK 1/2 activation, but neither ERK 
activation nor cell proliferation was truncated by the nAChR 
antagonist mecamylamine, indicating this effect being inde-
pendent of nicotinic acetylcholine receptors (nAChR) (87). In 
freshly isolated pancreatic acini, a similar proliferative response 
upon nicotine treatment was observed. However, in contrast 
to AR42J cells, this response was mediated by interaction of 
nicotine with nAChRs and b-ARs (88).

While the data on nicotinic action in pancreatic cells are 
limited, the effect of nicotine has been investigated in greater 
detail in other types of tissue. In these studies, nicotine exerted 
an effect on a variety of human cell types such as endothelial 
cells and even tumor cells (89). There is a plethora of experi-
mental evidence demonstrating various effects of nicotine, such 
as an increased survival of tumor cells (90), an increased rate of 
tumor metastasis (91,92), a decrease in patient survival (93-95), 
and a reduced response to chemotherapy (96-100).

One of the nicotine-related effects that was studied in detail, 
is the angiogenic property of nicotine which is mediated at least 
in part by nAChRs (101-103). The endothelial cell tube formation 
assay using human umbilical vein cells (HUVEC) showed that 
nicotine stimulated the release of basic fibroblast growth factor 
(b-FGF) in HUVECS (104). In accordance, nicotine treatment 
increased human endothelial cell tube formation in a dose-
dependent manner. Similarly, nicotine stimulated angiogenesis 
through b-FGF in the chick chorioallantoic membrane (CAM) 
tumor implant model. These effects were completely blocked by 
αvβ3 integrin antibodies and by the blockade of the non-neuronal 
nicotine receptor, indicating that FGF and nACh-receptors are 
involved in nicotine mediated angiogenesis (103).

In cervical cancer cell lines, nicotine induces increased cell 
proliferation and EGFR over-expression (105). Furthermore, after 
serum starvation, long-term exposure of mouse epithelial lung 
cells to nicotine disrupted the cell cycle restriction machinery 
in a nAChR-dependent manner through ras activation and 
subsequent increase in Raf/MAP kinase activity, which further 
induced a significant increase in cyclin D1 promoter activity 
(106). Intriguingly, significant differences were observed between 
short- and long-term exposure of immortal cell lines to nicotine. 
While brief nicotine application induces protein kinase C and 
phosphoinositide 3-OH-kinase activation, long-term exposure 
influenced ras activation and ERK 1/2 expression (107). In 
parallel to increasing proliferation, nicotine also reduces the rate 
of apoptosis by NF-κB up-regulation (108). These observations 
were reproduced in vivo where nicotine treatment stimulated the 
growth of pancreatic xenograft tumors (109). Taking the above- 

mentioned experimental evidence into consideration, it appears 
without a doubt that nicotine alters neurotransmitter levels in 
pancreatic cancer, exerts direct proliferative effects on tumor 
cells and increases neo-angiogenesis (110).

5. Cigarette smoke-related carcinogens and the pancreatic 
gland

In cigarette smoke, many substances have been detected that 
directly induce malignant tumors through DNA interference. 
Several of these compounds have been proven to reach the 
pancreas and are likely to influence carcinogenesis. In a study 
examining the carcinogenic burden of the pancreatic juice of 
18 smokers and 9 non-smokers, the mean level of the nicotine 
derivative 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone 
(NNK), a nitrosamine (111), smoking significantly elevated 
the NNK concentration in pancreatic juice. Another nicotine 
derivative, N'-nitrosonornicotine (NNN), was found in two 
out of 18 samples of the pancreatic juice of smokers, and 
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) was 
detected more frequently as well (112).

In rodents several tobacco-derived carcinogens have been 
found to induce pancreatic tumors of ductal phenotype (Table I). 
NNK and NNAL, a carbonyl reduction metabolite of NNK, 
induces pancreatic tumors in mice, rats and in hamsters. In 
10% of F344 rats, life-time treatment with 1 ppm NNK in the 
drinking water induced pancreatic tumors of ductal phenotype. 
Strikingly, lung tumors were observed in 25% (113). The tumori-
genicity was diet-dependent and increased in animals with high 
fat intake. However, F344 rats tend to develop spontaneous 
pancreatic tumors with increasing age independent of their diet 
which indicates that the diet accelerated tumor formation (114).

The formation of DNA adducts and their subsequent inter-
ference with gene function plays a key role in carcinogenesis. 
Cigarette smoking increases these DNA adducts in the human 
pancreas. In a 32P post-labeling analysis of pancreatic DNA of 
smokers 102±21 DNA adducts/108 nucleotides were detected. 
This contrasts sharply with the 32P-post-labeling analysis of 
DNA-derived from non-smoking control subjects which reveals 
only 13±1 DNA adducts/108 nucleotides (115). The chemical 
nature of these adducts found in human smokers is heteroge-
neous, and there is no evidence that one specific DNA adduct 
is induced by cigarette smoking. One possible explanation may 
be that nitrosamines are metabolized to reactive electrophils 
in order to react with DNA, and this metabolic process may be 
influenced by individual and organ specific factors (116,117). 
In laboratory animals, carcinogen metabolization has been 
extensively studied, and it has been found that the hydroxylation 
of NNK by cytochrome P450 isoenzymes induces DNA meth-
ylation (118). Additional experiments showed that unspecific 
inhibition of NNK hydroxylation through isothiocyanate inhibits 
the generation of NNAL and decreases its carcinogenic potential 
(119,120). Whether these mechanisms are solely responsible for 
the tumor formation is a matter of debate, and several studies 
propose additional mechanisms of NNK action. The observation 
that DNA methylation patterns in rats, mice, and hamsters did not 
correlate with the organotropy of NNK mediated carcinogenesis 
corroborates this view (121). A second observation supporting 
additional factors to the P450 catalysed α hydroxylation in 
NNK-induced tumorigenesis is the influence of ethanol treat-



INTERNATIONAL JOURNAL OF ONCOLOGY  41:  5-14,  2012 9

ment on NNK mediated pancreatic tumor development. In vitro, 
human and hamster ductal epithelial cells can be transformed 
to cells with malignant properties by NNK alone. Ethanol treat-
ment enhances the metabolization and carcinogenicity of NNK 
(122,123). Strangely, these observations cannot be reproduced 
in vivo. In a hamster model where NNK is administered s.c. to 
pregnant female hamsters together with oral ethanol treatment, 
pancreatic tumors are induced only when ethanol is adminis-
tered, while NNK treatment alone mostly induces lung tumors 
(124-126). This shift in organotropy cannot be explained by the 
expression pattern of cytochrome P450 isoenzymes or the rate of 
NNK metabolization. Nor was the concentration of metabolites 
altered by ethanol treatment. This indicates that in contrast to 
the in vitro experiments with pancreatic ductal cells, alterations 
in enzyme activity induced by ethanol have less impact on the 
development of NNK-induced pancreatic tumors in vivo (127).

Several factors that influence the carcinogenic action of 
NNK in a P450-independent fashion have been described to 
date. The metabolization of nitrosamines may be affected 
by anatomic factors (128), NAD+ glycohydrolase-catalysed 
transglycosylation reactions in pancreatic microsomes (129), 
extensive tissue retention of the (S)-NNAL enantiomer followed 
by sequestration and re-oxidation to NNK in the target tissue 
(130) or COX2 mediated inflammatory events (131,132). Another 

likely explanation for the discrepancy between NNK-dependent 
adduct formation and the induction of malignancies could be 
the interference of the nitrosamines with regulatory pathways, 
for neither NNK itself nor its metabolites are able to bind and 
activate nicotinic acetyl choline receptors (nAChR) and beta 
adrenergic receptors (b-AR).

When NNK acts as a β1- and β2-adrenergic receptor agonist, 
it induces the release of aracidonic acid in lung adenocarci-
noma cell lines (133). In colon carcinoma cell lines, binding of 
NNK to b-ARs induces intracellular c-AMP elevation, NF-κB 
mediated cyclooxygenase-2 up-regulation, and prostaglandin 
E2 release (134,135). In addition to NNK-mediated stimulation 
of prostaglandin syntheses, NNK increased cell proliferation 
in immortalized human pancreatic duct epithelium as well as 
airway epithelial cells by b-AR-mediated transactivation of 
EGFR (136,137). Recent studies have shown that in addition to 
b-AR binding, NNK binds predominantly to nAChRs α7 with 
a binding affinity that is several magnitudes greater than the 
receptor affinity of nicotine to nAChRs (138-140). The nAChR 
α7 is functionally expressed in a variety of malignant and non-
malignant tissues. Upon activation of nAChR α7 by NNK, cell 
proliferation is stimulated and apoptosis is inhibited involving 
several intracellular pathways (141-145). For example, in human 
lung cancer cells, NNK induced functional cooperation of Bcl2 

Table I. In vitro and in vivo action of tobacco-derived carcinogens (A acinar phenotype; D, ductal phenotype; P, precancerous 
lesion).

Carcinogen	 Tumorigenic	 Detected in	 Increased DNA
	 in pancreas	 human pancreas	 adducts in smokers

4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)	 Rats D (113)	 Pancreatic juice	 No
NNAL 

N-nitroso-bis(2-oxopropyl)amine (BOP)	 Hamsters D	 No	 No
N-nitroso-bis(2-hydroxypropyl)amine (BHP)	 (148,167)
N-nitroso-(2-hydroxypropyl)(2-oxopropyl)amine (HPOP)	 (168)
N-nitroso-bis(2-acetoxypropyl)amine (BAP) 

7,12-dimethyl-1,2-benzanthracene (DMBA)	 Mouse D	 No	 No
3-methylcholanthrene (3-MC)	 (153) Rat D
	 (169)  
	 Hamsters D
	 (170)

N-nitroso-2,6-dimethylmorpholine (cis-NNDM) 	 Rat D (171)
	 Hamster D (168,172) 

N-nitrosomethyl(2-oxopropyl)amine (MOP)	 Hamster D (173)

n-methyl-N-nitrosourea (MNU)	 Mouse P (174)
	 Guinea Pig D/P (175)

2-amino-1-methyl-6-phenylimidazo [4,5-b]-pyridine (PhIP)	 Rat A (176)		  Yes (177)

Dimethylhydrazine	 Rabbit P (178)
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and c-Myc in promoting cell survival and proliferation, while 
at the same time the cell migration and invasion was increased 
in an Erk1/2-dependent manner (146,147).

Other tobacco-derived carcinogens, such as N-nitroso- 
bis(2-oxopropyl)amine (BOP) applied subcutaneously, can 
induce pancreatic adenocarcinomas in an experimental setting. 
Co-treatment with NNAL induced a synergistic, carcinogenic 
action (148-151).

Furthermore, dimethylbenzanthracene (DMBA) induces 
pancreatic tumors in rodents and resembles a model in which 
transdifferentional events in pancreatic carcinogenesis may play 
a role. When DMBA crystals are implanted in the area of the 
pancreatic head of mice, these mice quickly develop pancreatic 
duct alterations in a Notch signalling-dependent manner (152). 
These changes are characterized by transdifferentiation of acinar 
cells to tubular lesions starting as early as 2 weeks after DMBA 
implantation. One month post-implantation, PanIN lesions and 
some adenocarcinomas were observed. Sixty percent of the 
animals developed pancreatic tumors within three months after 
implantation (152,153). Intriguingly, DMBA induces pancreatic 
carcinogenesis in rats as well (58,154,155). DMBA-induced 
carcinogenesis was increased through pancreatic hyper-
stimulation as well as systemic immunosuppression through 
immunosuppressive acidic protein (156,157). Metabolization 
of DMBA has been investigated in rats. High concentrations 
of DMBA metabolites, such as 5,6-epoxy-7-hydroxymethyl-
12-methylbenzanthracene were formed by pancreatic tissue 
in vitro, and measured DMBA-DNA adducts correlated with 
tumorigenesis in F344 rats (158).

6. Acinar cell damage and pancreatic ductal adenocarcinoma

It seems that cigarette smoke as well as the DMBA model 
primarily affect the acinar cell compartment. This appears to be 
in contrast to the ductal phenotype of human pancreatic cancer. 
Experimental evidence suggests that cigarette smoke exposure 
induces a differential expression of genes related to pancreatic 
ducts only when histomorphological acinar cell damage is 
present (65). Recent data on carcinogen-induced transforma-
tion of acinar cells to atypical pseudo-ductular structures in 
the DMBA model indicate that neither centroacinar cells nor 
pancreatic ductal cells are the only progenitors from which 
the pancreatic ductal adenocarcinoma develops (58,159,160). 
In genetic mouse models of K-ras, nestin positive progenitor 
cells were the source of ductal adenocarcinomas (161). Nestin 
is expressed in both endocrine and exocrine lineages. In addi-
tional experiments the selective expression of endogenous K-ras 
oncogene in embryonic acinar cells and in the centroacinar 
lineage resulted in pancreatic intraepithelial neoplasias and 
invasive pancreatic ductal adenocarcinoma (162,163). However, 
since nestin is not expressed in cells of the centroacinar lineage 
and since beta cell transdifferentiation does not contribute to 
metaplastic ductal lesions, the possibility of acinar to ductal 
transdifferentiation in early pancreatic carcinogenesis became 
likely (164). In accord with this hypothesis, Cre-loxP-based 
genetic lineage tracing provides direct evidence of acinar to 
ductal metaplasia in a minority of mucinous metaplastic lesions 
induced by pancreatic hyperstimulation (165). Independently, 
acinar cell targeting of oncogenic K-ras in adult mice induces 
a spontaneous induction of mPanINs of all histological grades 

(166). Therefore, if transdifferentiation of acinar cells to duct-
like structures is thus induced, acinar cell damage may be the 
fist step in cigarette smoke-induced pancreatic adenocarcinoma.

7. Conclusions and perspectives

Cigarette smoke inhalation leads to pancreatic acinar cell 
damage and increases the risk of developing pancreatic cancer 
and chronic pancreatitis in humans. So far, the precise underlying 
mechanisms have not been defined. The influence of cigarette 
smoke constituents on pancreatic carcinogenesis can be divided 
into two major modes of action, first through the interference 
with physiological pathways and second through the interaction 
with DNA. Nicotine and its derivatives greatly interfere with 
physiological regulatory pathways in terms of altering secretion, 
increasing proliferation and reducing apoptosis. These alterations 
result in inflammatory lesions to pancreatic acinar cells. The 
second class of substances that induces pancreatic carcinogen-
esis interferes with pancreatic DNA. The data reviewed strongly 
suggest that cigarette smoke induced pancreatic carcinogenesis 
is a multifactorial event consisting of DNA damage as well as 
DNA independent alterations. Of these events, the transdiffer-
entiation of acinar cells to duct-like structures may be the link 
between cigarette smoke induced acinar cell damage and the 
development of ductal adenocarcinoma. Additionally, tobacco-
derived carcinogens may cause genomic mutations that lead to a 
malignant phenotype (Fig. 2). Further studies that are not limited 
to acinar or ductal cells are therefore needed to investigate the 
pathogenesis of cigarette smoke induced pancreatic damage.
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