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Abstract. Smoking is responsible for 90% of lung cancer 
cases. There is currently no clinically available gene test 
for early detection of lung cancer in smokers, or an effec-
tive patient selection strategy for adjuvant chemotherapy in 
lung cancer treatment. In this study, concurrent coexpression 
with multiple signaling pathways was modeled among a set 
of genes associated with smoking and lung cancer survival. 
This approach identified and validated a 7-gene signature 
for lung cancer diagnosis and prognosis in smokers using 
patient transcriptional profiles (n=847). The smoking-asso-
ciated gene coexpression networks in lung adenocarcinoma 
tumors (n=442) were highly significant in terms of biological 
relevance (network precision  = 0.91, FDR<0.01) when 
evaluated with numerous databases containing multi-level 
molecular associations. The gene coexpression network in 
smoking lung adenocarcinoma patients was confirmed in 
qRT-PCR assays of the identified biomarkers and involved 
signaling pathway genes in human lung adenocarcinoma 
cells (H23) treated with 4-(methylnitrosamino)-1-(3-pyridyl)-
1-butanone (NNK). Furthermore, the western blotting results 
of p53, phospho‑p53, Rb and EGFR in NNK-treated H23 and 
transformed normal human lung epithelial cells (BEAS-2B) 
support their functional involvement in smoking-induced 
lung cancer carcinogenesis and progression.

Introduction

Lung cancer remains the leading cause of cancer-related mortality 
for both men and women, and its incidence is increasing world-
wide (1). Smoking is the strongest population-attributable risk 

factor in lung carcinogenesis and is responsible for approximately 
90% of lung cancer incidents (2-4). Currently, there are no effec-
tive diagnostic screening tools for early detection of lung cancer 
in smokers. CT scans are offered for lung cancer screening in 
smokers. Nevertheless, neither the American Cancer Society nor 
the U.S. Preventive Services Task Force recommends CT scans 
due to concerns about accuracy in the interpretation of results. 
Furthermore, the mechanistic effect of smoking on lung cancer 
progression remains unclear. Despite our previous finding that 
smoking intensity at the time of diagnosis is a significant and 
independent prognostic factor for lung cancer (5), smoking status 
in itself is not a prognostic determinant of lung cancer.

Non-small cell lung cancer (NSCLC) accounts for 85-90% 
of lung cancer cases. NSCLC includes two major subtypes, 
adenocarcinoma and squamous cell carcinoma. Owing to the 
limitations of the current screening techniques, most patients 
with NSCLC are diagnosed at advanced disease stage. A 
minority (~25-30%) of patients with NSCLC are diagnosed 
with stage I disease and receive surgical resection as the major 
treatment option  (6). However, 35-50% of stage  I NSCLC 
patients will relapse within five years following surgery (6), 
indicating that a subgroup of these patients might benefit from 
adjuvant chemotherapy. Meanwhile, adjuvant chemotherapy 
of stage II and stage III disease has resulted in only modest 
survival benefits (7). While tumor recurrence remains the major 
treatment failure for lung cancer, it is not currently possible to 
identify specific high-risk patients for adjuvant chemotherapy. 
As a consequence, current multi-modality therapy is of limited 
efficacy, with an overall 5-year survival rate of about 15% (8).

In this study, we sought to identify a gene signature for lung 
cancer diagnosis and prognosis in smokers. Genes implicated 
in cancer initiation and progression show dysregulated interac-
tions with their molecular partners (9), and these cancer genes 
are more likely to actively interact with signaling proteins (10). 
Because tumors utilize different signaling pathways, we 
modeled crosstalk with a diverse set of signaling pathways 
to identify gene signatures that perform more uniformly 
across heterogeneous tumor sets. Specifically, implication 
networks (11,12) were used to model concurrent coexpression 
with multiple signaling pathways among a set of genes associated 
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with smoking and lung cancer survival. This approach identi-
fied and validated a smoking-associated 7-gene signature using 
patient microarray profiles of (n=847). Furthermore, BEAS-2B 
cell line transformed from normal human lung epithelial cells 
and human lung adenocarcinoma cells (H23) were treated with 
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a major 
tobacco-specific carcinogen (13,14), for qRT-PCR and western 
blots validation of the identified biomarkers and involved 
signaling pathways.

Materials and methods

Microarray profiles and patient samples. Four patient cohorts 
with published microarray transcriptional profiles were used in 
this study. The first cohort contains 442 lung adenocarcinoma 
patient samples from the Director's Challenge Study (15). This 
study cohort is composed of 4 data sets (University of Michigan, 
H. Lee Moffitt Cancer Center, Memorial Sloan-Kettering 
Cancer Center and Dana-Farber Cancer Institute) contributed 
by 6 institutions. The clinical characteristics and smoking status 
of the patients are summarized in Table I.

The second patient cohort contains 130  squamous cell 
lung cancer samples from Raponi et al (16). The third cohort 
contains 111 NSCLC samples from Bild et al (17). The fourth 
cohort contains 164 airway epithelial cell lung tissue samples 
from current and former smokers published by Spira et al (2). 
This cohort has 60 lung cancer samples (48 NSCLC, 11 small 
cell lung cancer and 1 unknown histology) and 69 normal lung 
tissue samples. Patient gene expression profiles from Shedden 
et al (15), Raponi et al (16) and Spira et al (2) were quantified 
with Affymetrix HG-U133A. The dataset from Bild et al (17) 
was quantified with Affymetrix HG-U133 Plus 2. The raw 
microarray data were quantile-normalized and log2 transformed 
with dChip (18) for further analysis.

Implication networks. The implication induction algorithm (11) 
based on prediction logic (19) was used to derive coexpression 
between each pair of genes using software Genet (11,12,20). In 
the biological context, the six foremost implication rules relating 
two dichotomous variables are interpreted as follows: A ⇒ B: 
upregulation of gene A causes upregulation of gene B; A ⇒ ¬B: 
upregulation of gene A causes downregulation of gene B; ¬A ⇒B: 
downregulation of gene  A causes upregulation of gene  B; 
¬A ⇒ ¬B: downregulation of gene A causes downregulation 
of gene B; A ⇔ B: upregulation of gene A causes upregulation 
of gene B and upregulation of gene B causes upregulation of 
gene A; A ⇔ ¬B: upregulation of gene A causes downregulation 
of gene B and downregulation of gene B causes upregulation of 
gene A. Mean expression of each gene in the training set was 
used to define up- or downregulation. The minimum scope and 
the minimum precision of a derived implication relation were 
significantly greater than zero (P<0.05, one-sided z-tests).

Evaluation of gene coexpression networks. The following 
pathway databases were used to evaluate the biological rele-
vance of the derived coexpression networks, including NCBI 
Entrez Gene (21), Kyoto Encyclopedia of Genes and Genomes 
(KEGG)  (22), NCI-Nature Pathway Interaction Database 
(http://pid.nci.nih.gov/), protein-protein interaction database 
STRING 8 (23), and Pathway Studio 7.0 (Ariadne Genomics, 

Rockville, MD, USA). In addition, five gene set collections 
[positional, curated, motif, computational and Gene Oncology 
(GO)] and canonical pathway databases from the MSigDB (24) 
were used in the network precision and FDR evaluation. Using 
these resources, a coexpression relation is considered a true 
positive (TP) if the pair of genes satisfy any of the following: 
i) on the same chromosome or cytogenetic band; ii) in the same 
curated or canonical pathway; iii) sharing a cis-regulator motif, 
binding motif, or transcription factor binding site; iv) annotated 
by the same GO term; v) having protein-protein interaction; 
or vi) within the same computational gene sets mined from 
cancer-oriented microarray data. The coexpression relation is 
considered a false positive (FP) if the gene pair do not satisfy 
all five conditions listed above (25). If at least one gene in the 
pair is not annotated, a coexpression relation is labeled as non-
discriminatory (ND). Coexpression relations labeled as ND 
were excluded in this evaluation as they were not confirmed. 
Network precision is defined as:

The portion of FP over all positive cases is defined as q-value:

The FDR of the smoking-mediated coexpression networks was 
calculated by averaging the q-values obtained from the null 
distribution generated in 1,000 random permutations of the 
class labels in the test cohort.

The stability of the computationally derived smoking-
mediated coexpression networks was evaluated using different 
subsets of patient samples from the training set in 100 iterations. 
The stability is defined as the portion of the smoking-mediated 
coexpression relations obtained from the original data that were 
retrieved by using only a random subset of the training data and 
the full test data.

Cell cultures. NCI-H23 (ATCC no. CRL-5800) cells were 
cultured in RPMI-1640 medium (Mediatech, Manassas, VA, 
USA) supplemented with 10% FBS (Hyclone, Logan, UT, USA), 
2 mM L-glutamine (Mediatech), 100 IU penicillin/ml (Sigma, 
St. Louis, MO, USA), and 100 µg streptomycin/ml (Sigma). 
BEAS-2B (ATCC no. CRL-9609) cells were cultured in 
Dulbecco's modified Eagle's medium (Mediatech) supplemented 
with 5% FBS (Hyclone), 2 mM L-glutamine (Mediatech), 100 IU 
penicillin/ml (Sigma) and 100 µg streptomycin/ml (Sigma).

NNK treatment and protein isolation. H23 and BEAS-2B cells 
were treated with 100 nM NNK (Toronto Research Chemicals, 
North York, ON, Canada) for 15 min, 1 and 16 h. Four repeats 
(total of five samples) were performed on each cell line and 
for each time point. Following treatment, cells were harvested 
by trypsinization and protein was isolated. Cells were lysed 
in CLB lysis buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 
1% Triton X-100, 0.25% Na-deoxycholate, 5 mM EDTA and 
1  mM NaF) supplemented with 1% (v/v) HALT Protease 
Inhibitor Cocktail, purchased from Thermo Scientific 
(Rockford, IL, USA), on ice for 15 min with occasional mixing 
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by vortex. Lysates were centrifuged at 20,800 x g for 15 min 
to pellet insoluble debris and then supernatants were collected. 
Total protein concentration was determined by bicinchonic 
acid (BCA) protein assay purchased from Pierce Protein 
Research Products (Rockford, IL, USA).

SDS-PAGE and western blotting. Proteins (50  µg) were 
resolved on precast Mini-Protean TGX Gels (4-20%; Bio-Rad 
Laboratories, Hercules, CA, USA). After boiling for 5 min with 
reducing Laemmli buffer, proteins were separated and subse-
quently transferred to a PVDF membrane at 100 mV for 1 h at 
4˚C. After transfer, membranes were blocked in NET-gelatin 
solution (150  mM NaCl, 5  mM EDTA, 50  mM Tris-HCl, 
pH 7.5, 0.05% Triton X-100 and 0.25% gelatin) for 1 h at room 
temperature. Primary antibody was added to membranes in 
15 ml NET-gelatin solution [1:500 dilution for anti-EGFR, 
1:25,000 dilution for anti-GAPDH, 1:2,000 dilution for anti-p53, 
1:1,000 dilution for phospho-p53 (phospho S15) and anti-Rb] 
and membranes were incubated for 2 h at room temperature 
with rocking. Membranes were then washed in NET-gelatin 
solution (3  x  20  min with shaking) with HRP-conjugated 
secondary monoclonal anti-mouse IgG antibody purchased 
from GE Healthcare UK Ltd. (Little Chalfont, UK). After 1 h 
of incubation, unbound secondary antibody was removed by 
washing in NET-gelatin solution (3 x 20 min with shaking). 
Signal was visualized using Immobilon chemiluminescent 
HRP substrate from Millipore (Billerica, MA, USA). Primary 
antibodies utilized included mouse monoclonal anti-EGFR, 
from Thermo Fisher Scientific (Fremont, CA, USA), and mouse 
monoclonal anti-GAPDH purchased from Fitzgerald Industries 
International Inc. (Acton, MA, USA). In addition, the following 
antibodies were used in western blotting: anti-p53 [Abcam, 
Mouse Monoclonal (ab26)], anti-phospho-p53/phospho S15 
[Abcam, Rabbit Polyclonal (ab1431)] and anti-Rb [Abcam, 
Mouse Monoclonal (ab24)].

Densitometry. Relative EGFR, p53, phospho-p53, and Rb 
expression was determined by densitometric analysis using 
ImageJ software provided by NIH (http://rsb.info.nih.gov/ij/
index.html). X-ray films were scanned at 300 and 600 DPI using 
a CanoScan (Canon, Lake Success, NY, USA) and images were 

imported into ImageJ for analysis. The raw signal intensity was 
determined by selecting the peak corresponding to each band 
and integrating the intensity within that peak. Local background 
intensity (calculated by averaging the background intensities at 
the upper and lower bounds of the peak) was integrated and 
subtracted from each raw intensity to give the background-
corrected signal intensity. To account for loading differences, 
the corrected signal intensity for the assayed proteins was 
divided by the corrected GAPDH intensity. Samples treated 
with varying NNK exposure times were compared to untreated 
controls for the H23 and BEAS-2B cell lines.

RNA isolation, complementary DNA synthesis, and qRT-PCR 
gene expression profiling. Total-RNA was isolated from 
both cell lines using the mirVana™ miRNA Isolation kit and 
following the manufacturer's protocol (Ambion, Austin, TX, 
USA). Total-RNA was eluted in 100 µl of nuclease-free water 
and stored at -80˚C. RNA concentration was determined 
using the NanoDrop 1000 Spectrophotometer (NanoDrop 
Technologies, Wilmington, DE, USA). RNA quality, 28S/18S 
ratio, and a visual image of the 28S and 18S bands were evalu-
ated using the 2100 Bioanalyzer (Agilent Technologies, Santa 
Clara, CA, USA). Total-RNA (1 µg) was converted into comple-
mentary DNA (cDNA) using the High Capacity cDNA Reverse 
Transcription Kit from Applied Biosystems (Life Technologies, 
Carlsbad, CA, USA). Thermal cycling conditions were as 
follows: 25˚C for 10 min, 2 cycles of 37˚C for 60 min and 85˚C 
for 5 sec followed by a programmed hold at 4˚C.

All qRT-PCR reactions were performed on a 7500 real‑time 
PCR system from Applied Biosystems. The reports were gener-
ated using SDS2.3 software (Applied Biosystems). The Ct values 
obtained were normalized to the UBC housekeeping gene 
in each sample. Fold changes were computed using the 2-∆∆Ct 
method of 5 biological replicates and 3 technical replicates (26). 
Statistical significance was computed using repeated ANOVA 
tests in R and is considered statistically significant at P≤0.05.

The coexpression relation of a gene pair derived with 
the implication induction algorithm was compared with the 
observed NNK-induced gene expression changes. The coex-
pression relation is confirmed when the observed NNK-induced 
gene expression changes are consistent with the predicted 

Table I. Summary of clinical characteristics of patients from the Director's Challenge Study (15).

	 UM and HLM (training set)		 MSK and DFCI (testing set)
	 -----------------------------------------------------------------------	 -----------------------------------------------------------------------
	 Smokers	 Non-smokers	 Smokers	 Non-smokers

Patient sample size	 149	 20	 151	 29
Age (mean, s.d.)	 65 (10)	 68 (11)	 63 (10)	 66 (11)
Gender (male %)	 54	   0	 48	 31
Median survival (mo)	 42	 54	 48	 43
Tumor stage (%)
  I	 58	 80	 65	 55
  II	 22	   5	 25	 28
  III	 18	 10	 10	 17
  Unknown	   1	   5	   0	   0
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implication rule between the two genes. For example, if the rule 
between gene A and gene B is positive equivalence (A ⇔ B), it is 
confirmed if both gene A and gene B showed overexpression in 
the corresponding experiments.

Results

Identification of a smoking-associated 7-gene signature. 
Lung cancer survival genes were first selected from the 
whole genome on the training set (UM and HLM; n=256) 
from Shedden et al (15). A total of 2,310 genes were signifi-
cantly associated with overall survival (P<0.05, univariate 
Cox model). Second, from this set of 2,310 genes, 217 genes 
exhibited significant differential expression (P<0.05, t-tests) in 
smokers versus non-smokers. These 217 survival and smoking-
associated genes, as well as 6 major signaling pathway genes 
(EGF, EGFR, MET, KRAS, E2F3, and E2F5) were included in 
the network analysis. These signaling pathways are included in 
human NSCLC disease mechanisms delineated by the KEGG 
Pathway Database (http://www.genome.jp/kegg/pathway/hsa/
hsa05223.html). They were selected based on their reported 
clinical relevance in NSCLC. These 6 signaling pathway genes 
were not significantly associated with survival nor were they 
differentially expressed in smokers.

Patient samples in the training set were separated into 
two groups: smokers (patients who smoked in the past or 
who are currently smoking) and non-smokers (patients who 
never smoked). For each smoking-defined patient group, a 
coexpression network among the 223 genes was constructed. 

Between each pair of the 223 genes, significant (P<0.05; z-tests) 
coexpression relations were retrieved in the smoker group and 
the non-smoker group, constituting smoking-mediated gene 
coexpression networks in NSCLC. By comparing the coexpres-
sion types between each pair of genes in the two networks, 
differential network components were identified and considered 
important for further evaluation. These differential components 
are interactions that were present in the smoker group but 
missing in the non-smoker group, or conversely, those present in 
the non-smoker group but absent in the smoker group. From the 
differential components associated with the smoker group and 
non-smoker group, genes having direct coexpression relations 
with all 6 lung cancer signaling pathway genes were identified 
as the signature genes (Fig. 1). As a result, 6 genes were identi-
fied from the smoker group and 1 gene was identified from the 
non-smoker group. This constituted the smoking-associated 
7-gene signature for NSCLC (Table II).

Prognostic validation in lung adenocarcinoma. We sought to 
investigate if the identified gene signature could provide accu-
rate prognostic prediction of survival in lung adenocarcinoma 
patients. On the training cohort, the original microarray gene 
expression profiles of the identified 7 gene probes were fitted into 
a Cox model as covariates. A survival risk score was generated 
for each patient in the training set. A training model (Fig. 2A) 
was identified and applied to the test set (MSK and DFCI; n=186; 
Fig. 2B) without re-estimation of parameters. In both training 
and test sets, this scheme separated patients into two groups with 
different survival outcomes (P<0.007, Kaplan-Meier analyses). 

Figure 1. Methodology for network-based identification of smoking-associated 7-gene signature.
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The hazard ratio of the 7-gene risk score [HR=1.89, 95% CI: 
(1.06, 3.38)] was higher than other lung cancer prognostic factors 
except cancer stage in the test set (Table III). There was no 
significant difference in prognostic value between the hazard 
ratio of the 7-gene risk score and cancer stage (II vs. I). The 
results demonstrate that the 7-gene risk score could provide a 
more accurate prognosis than some commonly used clinico-
pathological parameters.

The 7-gene signature gave accurate prognostic prediction in 
smokers in both training and test sets in Shedden's cohorts (15) 
(P<0.01; Fig. 2C and D), but not in non-smokers in Kaplan-
Meier analyses (P<0.12, results not shown). In addition, gene 
expression-defined high- and low-risk groups had significant 
association with smoking (P<0.02, χ2 tests) and smoking 
cessation (P<0.00001, χ2 tests; Table I). These results further 
confirmed the smoking association of the identified 7-gene 
signature.

Prognostic validation on other histological subtypes of NSCLC. 
The prognostic performance of the 7-gene signature was further 
evaluated on cohorts from Raponi et al (16) and Bild et al (17), 
which include another major subtype of NSCLC, squamous cell 
lung carcinoma. For robust validation, patient samples in these 
two studied cohorts were randomly partitioned into separate 
training and test sets. A prognostic classifier was constructed on 
the training set using the Cox model and validated on the test set 
without re-estimation of parameters.

In the Raponi cohort  (16) of squamous cell carcinoma 
patients, the 7-gene signature stratified patients into two 
groups with distinct survival outcomes (log-rank P<0.005, 
Kaplan-Meier analysis) in the training set (Fig. 2E). This model 
generated borderline significant stratification (P=0.06, Kaplan-
Meier analysis) in the test set (Fig. 2F). This might be owing 
to the fact that 10 patients (8%) of Raponi's cohort were either 
non-smokers or their smoking status was not known, whereas 
the 7-gene signature provides refined prognosis specifically in 
smoking lung cancer patients.

In the Bild cohort (17) containing both lung adenocarcinoma 
and squamous cell carcinoma patients, the 7-gene signature 

Table II. The identified smoking-associated 7-gene signature.

Gene symbol	 Gene title	 Molecular function (Gene Ontology)

ABCA3	 ATP-binding cassette, sub-family A (ABC1),	 ATP, nucleotide binding; ATPase, transporter
	 member 3	 activity
CRTAC1	 Cartilage acidic protein 1	 Calcium ion binding
CYP3A4	 Cytochrome P450, family 3, subfamily A,	 Monooxygenase, electron carrier, oxidoreductase
	 polypeptide 4	 activity; heme, metal ion and steroid binding
GPRC5C	 G protein-coupled receptor, family C, group 5,	 Receptor activity; protein binding
	 member C
LTF	 Lactotransferrin	 Ferric iron, heparin, metal ion, protein binding;
		  peptidase, serine-type endopeptidase activity
PIGN	 Phosphatidylinositol glycan anchor biosynthesis,	 Phosphotransferase, transferase activity
	 class N
SEMA3C	 Sema domain, immunoglobulin domain (Ig),	 Receptor activity; semaphorin receptor binding
	 short basic domain, secreted, (semaphorin) 3C

Table III. Multivariate Cox proportional analysis of the 7-gene 
risk score and major clinical covariates in smoking lung cancer 
patients from the test cohort (MSK and DFCI) in Director's 
Challenge Study (15).

Variablea	 P-value	 Hazard ratio
		  (95% CI)b

Analysis without
7-gene risk score
  Gender (male)	 0.55	 1.17	(0.70, 1.95)
  Age at diagnosis (>60)	 0.35	 1.31	(0.74, 2.29)
  Tumor differentiation
    Moderately differentiated	 0.30	 0.63	(0.26, 1.51)
    Poorly differentiated	 0.89	 1.06	(0.47, 2.38)
  Cancer stage
    II	 1.54E-03	 2.60	(1.44, 4.71)
    III	 5.53E-05	 4.48	(2.16, 9.29)

Analysis with
7-gene risk score
  Gender (male)	 0.51	 1.19	(0.71, 1.99)
  Age at diagnosis (>60)	 0.49	 1.22	(0.69, 2.16)
  Tumor differentiation
    Moderately differentiated	 0.33	 0.65	(0.27, 1.55)
    Poorly differentiated	 0.93	 0.96	(0.43, 2.16)
  Cancer stage
    II	 1.64E-03	 2.61	(1.44, 4.74)
    III	 3.29E-05	 4.79	(2.29, 10.04)

7-gene risk score	 0.03	 1.89	(1.06, 3.38)

aGender was a binary variable (0 for female and 1 for male); age at 
diagnosis was a binary variable (0 for <60-year-old and 1 otherwise); 
tumor grade was categorical variable of 3 categories [well (as the refe-
rence group), moderately and poorly differentiated]; tumor stage was 
categorical variable of 3 categories [stage I (as the reference group), 
stage II and stage III]. bDenotes confidence interval.
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Figure 2. Prognosis in NSCLC patients using smoking-associated 7-gene signature. In the cohorts from Shedden et al (15), the risk score giving the best predic-
tion on the 3-year ROC curve generated significant patient stratification (log-rank P<0.007) on the (A) training set and (B) independent test set. This classifier 
also stratified smoking lung adenocarcinoma patients into two distinct (log-rank P<0.01) prognostic groups in both the (C) training and (D) test sets. Significant 
stratifications were also obtained in the randomly partitioned training and test sets of patients with squamous cell carcinoma from (E and F) Raponi et al (16) and 
(G and H) the Bild cohort (17) of lung adenocarcinoma and squamous cell carcinoma. Log-rank tests were used to assess the statistical significance in survival 
probability between the two prognostic groups. Red curves, low-risk patient group; green curves, high-risk patient group.
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stratified patients into two distinct survival groups in both 
training and test sets (P<0.04, Kaplan-Meier analyses) (Fig. 2G 
and H). Overall, these results demonstrate that the 7-gene signa-
ture could select high-risk NSCLC patients with a smoking 
history for chemotherapy.

Early diagnostic detection of lung cancer in smokers. We 
further investigated whether the 7-gene signature could be used 

for diagnostic screening of lung cancer in smokers. The smoking 
cohort from Spira et al (2) was separated into a training set 
(n=77) and two independent test sets (n=52 and n=35). Using a 
nearest neighbour algorithm implemented in WEKA (27), the 
7-gene classifier could accurately identify lung cancer patients 
from normal patients with an overall accuracy of 73 and 74% 
in two test sets, respectively. The odds ratio of predicted lung 
cancer risk was highly significant in all three sets [OR=3.85, 

Figure 3. NNK-induced gene and protein expression in H23 and BEAS-2B. Gene expression fold change in cell lines treated with NNK (100 nM) vs. control in 
(A) human lung adenocarcinoma cells H23 and (B) normal lung epithelial cells BEAS-2B. The gene expression was normalized with endogenous control gene UBC. 
An asterisk above a bar indicates significant (P<0.05) differential expression in repeated ANOVA tests of five biological samples and three technical repeats in qRT-
PCR assays. Protein expression measured by western blots in NNK treated cell lines (C and D) BEAS-2B and H23 for EGFR, (E and F) p53, (G and H) phospho-p53 
and (I and J) Rb. The protein expression was quantified with densitometry and normalized with endogenous control protein GAPDH in three biological repeats.
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95% CI: (1.45, 10.20), P<0.007 in training set; OR=7.35, 95% CI: 
(2.16, 25.04), P<0.001 in Test set 1; OR=8.45, 95% CI: (1.84, 
38.75), P<0.006 in Test set 2; Table II]. These results indicate 
that the identified 7-gene signature has important implications 
in diagnostic screening of lung cancer risk in smokers.

NNK-induced gene and protein expression in BEAS-2B and 
H23. BEAS-2B and H23 cells were treated with NNK for valida-
tion of smoking-associated gene expression. Each cell line was 
exposed to NNK for 15 min, 1 and 16 h. Ten signaling pathway 
genes and 7 signature genes were examined. Results showed that 
9 genes (GPRC5C, LTF, SEMA3C, E2F1, E2F4, E2F5, EGF, 
EGFR and TP53) exhibited significant differential expression 
in the NNK-treated H23 cells (Fig. 3A). In BEASE-2B cells, all 
genes except CYP3A4 were expressed following NNK exposure, 
with 13 genes (GPRC5C, LTF, PIGN, SEMA3C, E2F1, E2F3, 
E2F5, EGF, EGFR, KRAS, MET, TP53 and RB1) exhibiting 
significant differential expression (Fig. 3B).

To further evaluate the NNK-induced protein expression, 
western blot assays were performed in NNK-treated BEAS-2B 
and H23 cells after 15 min, 1 and 16 h exposures. The results 
show that EGFR had consistent overexpression at both the 
mRNA and protein levels over the time course in BEAS-2B 
cells after NNK treatment. In H23 cells, EGFR exhibited over-
expression at the mRNA level; however, protein expression was 
downregulated following NNK exposure (Fig. 3C and D). These 
results indicate that in normal lung epithelial cells, the EGFR 
gene is overexpressed upon NNK treatment, consistent with 
previous findings (28); whereas in lung adenocarcinoma cells, 
the NNK-induced transcriptional and translational regulation of 
EGFR are not concordant at the same time points.

p53 had consistent NNK-induced expression patterns at 
mRNA and protein levels, with short-term downregulation 

followed by upregulation in BEAS-2B cells. As H23 is p53 
deficient, p53 protein was not expressed in these cells (Fig. 3E 
and  F). Interestingly, downregulation of phospho-p53 was 
consistently observed in both NNK-treated BEAS-2B and H23 
cells (Fig. 3G and H), concordant with its mRNA and total 
protein expression. These results are consistent with the report 
that NNK induces damage in the p53 gene (29).

In NNK-treated BEAS-2B cells, Rb gene expression was first 
significantly downregulated at 15 min, returned to its normal 
expression at 1 h, and then showed modest overexpression at 
16 h; whereas the Rb protein showed a steady overexpression 
following the NNK treatment at all-time points. In NNK-treated 
H23 cells, both mRNA and protein expression of Rb were 
downregulated at all-time points (Fig. 3I and J). These results 
are consistent with the reported increased phosphorylation of 
the Rb Ser795 6-15 h after NNK treatment of normal human 
bronchial epithelial cells (NHBE) and small airway epithelial 
cells (SAEC). This, in turn, promoted cells entering into the 
S phase (at 15-21 h) (30).

Confirmation of smoking-associated gene coexpression 
network in lung adenocarcinoma. There were 17  gene 
coexpressions specifically associated with smokers, and 
one coexpression specifically associated with non-smokers 
significant (P<0.05) in both training and test sets from Shedden 
et al (15) (Fig. 4A). Among these 18 coexpression relations, 
11 gene associations were confirmed with multiple biological 
databases (Fig. 4A; network precision=0.91; FDR<0.01), and 
the network structure was stable (Fig. 4B).

The smoking-associated gene coexpression network in 
lung adenocarcinoma patients (Fig. 4A) was further validated 
using the NNK-induced gene expression changes in lung adeno-
carcinoma cell line H23 (Fig. 3A). Results show that most of 

Figure 4. Smoking-associated coexpression network in lung adenocarcinoma. (A) Gene coexpression relations specific to smokers and non-smokers significant 
(P<0.05) in both training and test sets from Shedden et al (15) (network precision = 0.91, FDR = 0.01). (B) The stability of smoking-mediated networks as 
evaluated with random subsets of patients from the training cohort in 100 iterations. (C) Coexpression relations observed in the NNK-treated H23 cell line for 
15 min, 1 and 16 h.
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the coexpressions in the smoking-associated network of lung 
adenocarcinoma tumors were confirmed by the coexpressions 
observed in NNK-treated H23 cells, at varying time points 
(Fig. 4C). All of the 17 smoking-associated gene coexpressions 
in NSCLC patients were observed in the cell experiments, 
except two coexpressions, one between EGF and LTF and one 
between CRTAC1 and GPRC5C. These two unobserved gene 
coexpressions could be related to other sources of carcinogens 
in tobacco, because NNK is only one of the carcinogens in 
tobacco, among about 54 others (14). Overall, the smoking-
associated gene coexpression network in NSCLC patients was 
largely confirmed in NNK-treated cell experiments, elucidating 
a network of smoking-induced gene alterations in NSCLC.

Comparison with Bayesian belief networks and gene asso-
ciation networks based on Pearson's correlation. This study 
presents novel implication network formalism for biomarker 
discovery. The ability to model cyclic relations in Genet over-
comes the fundamental drawback of acyclic Bayesian networks 
in modelling molecular networks  (31). In comparison with 
Bayesian belief networks, expression profiles of the identified 
7 signature genes and 6 signalling pathway genes were used to 
build causal networks with TETRAD IV (http://www.phil.cmu.
edu/projects/tetrad/current.html) for smoking and non-smoking 
lung adenocarcinoma patients in training and test sets, respec-
tively (Fig. 2). There was only one interaction associated with 
smokers (between MET and SEMA3C; Fig. 2E) present in both 
training and test sets, which was considered a true positive when 
evaluated with MSigDB. In contrast, Genet generated signifi-
cantly more biologically relevant gene coexpression relations 
that were validated by the biological databases and experimental 
results, confirming its topological advantage over the Bayesian 
belief networks.

Large-scale gene coexpression networks have been used in 
disease classification (32). These studies construct pair-wise 
gene coexpression networks by using correlation coefficients 
computed from gene expression profiles. Such networks indicate 
the distance or similarity between each pair of gene expression 
profiles but do not provide the direction or causal relations in 
the gene regulatory patterns. We have compared Genet with 
gene association networks based on Pearson's correlation. In 
constructing smoking-mediated coexpression networks using 
217 smoking and survival associated genes and 6 signalling 
hallmarks, both models had the same network precision and 
FDR. However, Genet generated significantly more biologically 
relevant gene association relations that were validated by the 
test set (20). These results indicate that prediction logic is more 
robust than Pearson's correlation for inducting gene association 
networks.

Discussion

In the United States, about 90% of male and 75-80% of female 
lung cancer deaths can be attributed to smoking each year (14). 
In recent years, lung adenocarcinoma, a rare tumor type in the 
early 20th century, has replaced squamous cell lung cancer as 
the most frequent cell type of NSCLC (33). The observations 
in the United States and abroad suggest that increases in lung 
adenocarcinoma cases since 1950 are more consistent with 
changes in smoking behavior and cigarette design than with 

diagnostic advances or histologic interpretation (34-36). The 
gene-smoking interactions and their relationship to lung cancer 
are not well established in epidemiology studies (14).

This study identified a 7-gene signature for lung cancer 
diagnosis and prognosis in smokers. The identified biomarker 
genes are involved in multiple lung cancer signaling pathways 
through concurrent coexpression with major signaling proteins. 
The 7-gene signature provided an accurate estimate of risk 
for tumor development and recurrence (as indicated by lung 
cancer survival) in smokers. The 7-gene signature also appeared 
to be a more accurate prognostic factor than commonly used 
clinicopathological factors for NSCLC. These results indicate 
the potential utility of this gene signature in predicting lung 
cancer risk in smokers before symptoms can be detected with 
morphological assessments in clinic. Such early detection could 
significantly improve the clinical outcome in lung cancer treat-
ment. Furthermore, the 7-gene assay could potentially be used 
to identify specific patients at high-risk for tumor recurrence/
metastasis using customized Affymetrix arrays, thus improving 
patient selection for adjuvant chemotherapy.

The gene expression-defined prognostic groups had a strong 
association with smoking and smoking cessation. Smokers 
were more likely to have the poor prognosis gene expression 
pattern than non-smokers. Furthermore, current smokers 
showed a stronger association with the poor prognosis gene 
expression pattern than previous smokers. These results suggest 
that the identified 7-gene signature is associated with smoking 
induced lung cancer initiation and progression, and the poor 
prognosis gene expression pattern might be reversed after 
smoking cession. Tobacco smoke contains a substantial amount 
of NNK, and the lowest dose shown to induce lung cancer in 
animal studies is remarkably close to the total dose of exposure 
experienced by a smoker in their lifetime (37). The smoking-
associated gene coexpression network computationally derived 
from NSCLC patient transcriptional profiles was confirmed in 
the NNK-treated H23 cell line, further attesting to its biological 
relevance and smoking association in lung cancer.

Using the same methodology, a 6-gene (20) and an 8-gene 
signature were also identified from 217 smoking and survival 
associated genes, by modeling concurrent coexpression with 
different sets of 6 signaling hallmarks randomly selected from 
10 KEGG human NSCLC signaling pathways (Table III). These 
10 signaling proteins were selected based on their reported 
clinical relevance in NSCLC. The prognostic performance of 
the 6- and 8-gene signatures was comparable with the 7-gene 
signature  (20) (Fig.  1). The 6- and 7-gene signatures both 
outperformed the clinicopathological covariates, but the 8-gene 
signature did not (results not shown). There is one common 
gene, SEMA3C, between the 6- and 7-gene signatures. In the 
experimental validation, all 10 signaling pathway genes showed 
significant differential expression in NNK treated normal lung 
epithelial cells and lung adenocarcinoma cells. The observed 
NNK-induced protein expression of p53, phospho-p53, Rb and 
EGFR was largely concordant with their mRNA expression 
levels in the BEAS-2B normal lung epithelial cells. In lung 
adenocarcinoma cell line H23, the NNK-induced gene expres-
sion was concordant with protein expression of p53, phospho-p53 
and Rb, but not of EGFR. These results indicate that p53, Rb and 
EGFR might be functionally involved in smoking-induced lung 
cancer initiation and progression. EGFR mutations, associated 
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with better chemoresponse, are significantly associated with 
non-smokers compared to smokers in a large epidemiology 
study (38). The identified gene signatures were concurrently 
coexpressed with these signaling pathways in patient tran-
scriptional profiles. The association of these gene signatures 
with smoking, smoking cessation, as well as lung cancer 
risk and survival, in turn, supports the involvements of these 
oncoproteins in smoking induced lung cancer initiation and 
progression.
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