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Abstract. Thyroid carcinoma is the most common malig-
nant endocrine neoplasia. Differentiated thyroid carcinomas 
(DTCs) represent more than 90% of all thyroid carcinomas 
and comprise the papillary and follicular thyroid carcinoma 
subtypes. Anaplastic thyroid carcinomas correspond to less 
than 1% of all thyroid tumors and can arise de novo or by dedif-
ferentiation of a differentiated tumor. The etiology of DTCs is 
not fully understood. Several genetic events have been impli-
cated in thyroid tumorigenesis. Point mutations in the BRAF 
or RAS genes or rearranged in transformation (RET)/papillary 
thyroid carcinoma (PTC) gene rearrangements are observed 
in approximately 70% of papillary cancer cases. Follicular 
carcinomas commonly harbor RAS mutations and paired box 
gene 8 (PAX8)-peroxisome proliferator-activated receptor γ 
(PPARγ) rearrangements. Anaplastic carcinomas may have a 
wide set of genetic alterations, that include gene effectors in the 
mitogen-activated protein kinase (MAPK), phosphatidylino-
sitol 3-kinase (PI3K) and/or β-catenin signaling pathways. 
These distinct genetic alterations constitutively activate the 
MAPK, PI3K and β-catenin signaling pathways, which have 
been implicated in thyroid cancer development and progres-
sion. In this context, the evaluation of specific genes, as well as 
the knowledge of their effects on thyroid carcinogenesis may 
provide important information on disease presentation, prog-
nosis and therapy, through the development of specific tyrosine 
kinase targets. In this review, we aimed to present an updated 
and comprehensive review of the recent advances in the under-
standing of the genetic basis of follicular cell-derived thyroid 
carcinomas, as well as the molecular mechanisms involved in 
tumor development and progression.
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1. Introduction

Thyroid carcinoma is the most common type of malignant 
endocrine neoplasia, accounting for approximately 1% of 
all new malignant diseases with an annual incidence of 
5.9 and 17.3 per 100,000 in men and women, respectively 
(US 2005‑2009) (1,2). Follicular cell-derived thyroid neopla-
sias include differentiated thyroid carcinoma (DTC), which 
represents more than 90% of all thyroid malignancies and 
comprise the papillary and follicular thyroid carcinomas 
(FTCs). The anaplastic thyroid carcinoma (ATC) corresponds 
to 1% of all thyroid tumors and can arise de  novo or by 
the dedifferentiation of a papillary or follicular tumor (3). 
Medullary thyroid carcinoma (MTC) is a malignancy arising 
from the parafollicular C-cells and accounts for approximately 
3-8% of all thyroid carcinomas (4).

The etiology of DTC is not yet fully understood. External 
radiation is the only exogenous factor which has been clearly 
identified as causing thyroid carcinoma, almost exclusively 
the papillary form. Iodine excess has been associated with 
the increase in the incidence of papillary thyroid carcinoma 
(PTC) (5,6). A number of genetic events have been described 
in thyroid carcinoma pathogenesis. Papillary carcinomas 
commonly present genetic alterations that lead to the activation 
of the mitogen-activated protein kinase (MAPK) pathway (7-9). 
In follicular carcinomas, the induction of both the MAPK and 
phosphatidylinositol 3-kinase (PI3K) cascades is frequently 
observed (10). On the contrary, anaplastic carcinomas harbor 
a wide set of additive genetic alterations, occurring mainly in 
the gene effectors of the MAPK, PI3K and β-catenin signaling 
pathways (11-13). These distinct signaling pathways have been 
implicated in follicular cell-derived thyroid cancer develop-
ment and progression (14-16).
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In this review, we aimed to present a comprehensive account 
of the recent advances in the understanding of the signaling 
pathways in follicular cell-derived thyroid carcinomas, as well 
as the molecular mechanisms involved in tumor development 
and progression.

2. Papillary thyroid carcinoma

PTC represents ~80% of all malignant thyroid tumors. The 
overall incidence of PTC is 7.7 per 100,000 and is increasing, 
in part due to the increase in the detection of small tumors (16). 
PTC is often diagnosed at approximately the 5th decade of 
life and is known to be a slow-growing tumor (17,18). Patients 
usually present with a palpable nodule and the absence of any 
other clinical findings is common (3). The majority of patients 
have a favorable outcome; however, ~10% of the cases have 
tumor recurrence and metastatic disease (18,19).

Aberrant activation of the MAPK pathway due to muta-
tions or gene rearrangements is the most common genetic 
event in PTC (7-9). Point mutations in BRAF or RAS genes and 
(RET)/PTC or NTRK1 rearrangements are mutually exclusive 
and identified in more than 70% of PTCs (7-9). The Fig. 1A 
summarizes the major signaling pathways involved in PTC.

BRAF oncogene. Mutations in the BRAF gene are the most 
common genetic alteration in PTC, occurring in ~45% of 
cases (6). BRAF is a serine-threonine kinase protein, member 
of the RAF (v-raf-1 murine leukemia viral oncogene homolog) 
family, which comprises the  serine/threonine-specific 
kinase  effectors of the MAPK cascade (7,20,21). Briefly, the 
MAPK cascade effects initiate upon RAS activation, which 
recruits BRAF to the plasma membrane initiating its activa-
tion. Once activated, BRAF phosphorylates MEK, which in 
turn provides the signal to activate the tyrosine, ERK, in the 
cytosol and nucleus, leading to cell proliferation, migration and 
survival (22,23) (Fig. 1A). Approximately 95% of all BRAF 
mutations involve a T>A transversion at gene position 1799, 
resulting in valine to glutamate amino acid substitution at posi-
tion 600 of the protein (V600E). Other described alterations 
in the BRAF gene include the A>G transversion at gene posi-
tion 1801 (K601E), fusion with the A-kinase anchor protein 9 
(AKAP9) gene and small in-frame insertions or deletions 
around codon 600 (24-26).

The presence of BRAF mutations in micro-PTC (~40%) 
and benign tumors (9,27,28) suggests a role of this alteration 
in the early stages of PTC development. BRAFV600E is an 
oncogenic protein with markedly elevated kinase activity 
that overactivates the MAPK pathway (34,35). Studies using 
BRAFV600E-transgenic mice have shown the development 
of PTC with similar properties to those observed in human 
BRAF-positive PTCs (29), whereas mice with the constitutive or 
doxycycline-inducible BRAF-mutated gene develop infiltrative 
PTC with a high rate of extrathyroidal structures, vascular inva-
sion and a poorly differentiated aspect (30,31). The induction of 
BRAFV600E mutation has been shown to abolish the expression 
of several thyroid-specific genes, radioiodine uptake and cause 
pronounced hypothyroidism, which may be partially explained 
by the down-regulation of the thyroid hormone activating type 1 
and 2 deiodinases and induction of the thyroid hormone inacti-
vating type 3 deiodinase, as recently described (31,33).

BRAF mutations are typically identified in classical and tall 
cell variant of PTC and are associated with a more aggressive 
tumor behavior (9,34,35). The high growth rates observed in 
BRAFV600E tumors may be explained partially by the MAPK-
induced hyperphosphorylation with consequent inhibition of 
the retinoblastoma (RB) protein, dependent transcription factors 
(E2F) and p27 of cyclin-dependent kinase (CDK) activity (36). 
Moreover, the BRAF oncogene induces the expression of 
matrix metalloproteinases (MMPs), a large group of enzymes 
that regulate cell-matrix composition and are important factors 
of tumor invasiveness (37-39). Previous studies have suggested 
that MMP proteins are modulated according to the intensity 
of MAPK pathway activation and/or signal transducer and 
activator of transcription (STAT) expression, which may 
explain the mechanism of induction of these proteins in BRAF-
mutated PTCs and the increased propensity of these tumors to 
invade surrounding tissues (37,40). The BRAF-mutated protein 
also induces nuclear factor-κB (NF-κB). Thyroid cells (WRO) 
harboring this oncogene display increased levels of activity in 
the NF-κB pathway, which results in the upregulation of anti-
apoptotic factors and the induction of cell invasion (40).

Recently, a novel inhibitory mechanism that may operate 
in BRAFV600E-induced PTC was shown. The presence of 
BRAFV600E mutation abolished the macrophage stimulating 
1/forkhead box O3 (MST1/FOXO3) pathway transactivation 
in a thyroid cell line (FRO), resulting in the suppression of 
p21 and p27 CDK inhibitors and interrupting the apoptotic 
process. Accordingly, the development of BRAFV600E trans-
genic mice with the MST1 knockout leads to abundant foci 
of poorly differentiated thyroid carcinoma and large areas 
without follicular architecture or colloid formation, suggesting 
that the activity of the MST1/FOXO3 pathway determines the 
phenotype of BRAFV600E tumors (41).

RET/PTC rearrangements. The RET proto-oncogene, located 
on chromosome 10q11.2, encodes a tyrosine kinase receptor. 
The RET protein is usually expressed in cells derived from the 
neural crest and gain-of-function mutations are associated with 
MTC (42). In PTC, genomic rearrangements juxtapose the RET 
tyrosine kinase domain to unrelated genes, thereby creating 
dominantly transforming oncogenes, denominated RET/PTC. 
The RET/PTC rearrangements are the 2nd most common 
genetic alteration described in PTC and observed in ~13-43% 
of cases, mostly in pediatric cancers or in individuals exposed 
to ionizing radiation from nuclear accidents (12,43‑45). At least 
12 types of RET/PTC rearrangements have been reported, all 
originating from the RET fusion to different partners (44,46). 
RET/PTC1 comprises up to 60% of the rearrangements and 
is derived from an intrachromosomal rearrangement (10q), 
leading to the fusion of the RET tyrosine kinase domain to 
the H4 gene (D10S170). The RET/PTC1 encodes a 585-amino 
acid protein with unknown function (47). RET/PTC3 accounts 
for 20-30% of the rearrangements and is formed by the RET 
gene fusion with the nuclear receptor coactivator 4 (NCOA4) 
gene (also known as ELE1, RFG or ARA70) (44,47).

Papillary tumors harboring the RET/PTC1 rearrangement 
commonly exhibit the classical papillary histology, whereas 
RET/PTC3 tumors normally present the solid variant  (48). 
RET/PTC tumors tend to be small, with a favorable outcome 
and usually do not progress to a more aggressive behavior and/
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or undifferentiated thyroid carcinoma (9,49,50). This alteration 
has also been associated with a younger age at diagnosis and 
a higher rate of lymph node metastasis (9,49). The high preva-
lence of RET/PTC in occult (42%) or microscopic PTC (77%) 
as well as in follicular adenoma (45%), may indicate a puta-
tive role of this rearrangement during the early stages of PTC 
development (51,52). Accordingly, studies performed using 
transgenic mice carrying RET/PTC1 and/or RET/PTC3 have 
shown that the PTC tumors which develop in these animals are 
similar to those occurring in humans (53,54).

The RET/PTC-derived mechanisms of tumor induction 
initiate with the fusion of protein partners, resulting in the 
ligand-independent autophosphorylation of the RET protein. 
The RET intracellular domain contains at least 12 autophos-
phorylation sites, and 11 of them are preserved in the RET/
PTC protein (55). The Y1062 and Y1015 RET residues are 
constitutively phosphorylated and are required for cell trans-
formation  (56). These residues are essential binding sites 
for several proteins, which in turn, lead to the activation of 
the MAPK and PI3K/AKT signaling pathways and play an 
essential role in RET/PTC signaling with downstream cellular 
effects on migration and proliferation (57-59). 

Another dysfunctional signaling pathway identified in 
65‑90% of RET/PTC-positive tumors is β-catenin, which 
is involved in gene transcription and cell adhesion regula-
tion (60,61). The β-catenin pathway can be directly activated by 
several mechanisms: via RET tyrosine residue, cAMP response 
element-binding (CREB), glycogen synthase kinase 3 phos-
phorylation (GSK3-S) or via effectors of the MAPK and PI3K 
pathways (61,62). The increase in the free β-catenin protein 
pool promotes proliferation and invasion, possibly due to the 
interaction with transcriptional factors, such as the T-cell factor/
lymphoid enhancer factor (TCF/LEF), c-Myc (v-myc myelocy-
tomatosis viral oncogene homolog), or cyclin D1 (60,61,63).

RAS oncogene. RAS genes (H-RAS, K-RAS, and N-RAS) 
encode highly related G-proteins which play a central role 
in intracellular signal transduction by the activation of the 
MAPK and other signaling pathways, such as PI3K/AKT (see 
below) (15). RAS gene mutations are found in 10-43% of PTCs, 
particularly in the follicular variant (64-66). The RAS point 
mutations generally occur in codons 12, 13, or 61 of H-RAS, 
K-RAS, or N-RAS proteins. RAS-mutated PTC tends to be 
encapsulated and exhibits a low rate of lymph node metastasis 
(9,65). However, previous studies have reported that this muta-
tion may also be associated with a more aggressive phenotype 
and a higher incidence of distant metastasis (66,67). The 
molecular mechanism proposed for RAS-derived tumorigen-
esis is the constitutive activation of distinct pathways involved 
in proliferation, differentiation and cell survival processes (66).

NTRK1 rearrangements. The neurotrophic tyrosine kinase 
receptor, type 1 (NTRK1) gene, located on chromosome 1, 
encodes the high-affinity nerve growth factor (NGF) receptor 
and is activated through the MAPK pathway (68). NTRK1 
rearrangements are usually found in <10% of PTCs and result 
from the NTRK1 gene fusion with different partners (69,70,71). 
Experimental evidence suggests that the NTRK1 oncogene 
represents an early event in the process of thyroid carcino-
genesis. Transgenic mice carrying NTRK1 oncogene develop 

thyroid hyperplasia and PTC (72). Additionally, crossing 
NTRK1 mice with p27kip1-deficient mice has been shown 
to increase the penetrance of thyroid cancer and shorten the 
tumor latency period (73). NTRK1 rearrangements are asso-
ciated with a younger age at diagnosis and a less favorable 
outcome (69,70).

3. Follicular thyroid carcinoma

The FTC represents 10-15% of thyroid cancers. These tumors 
are generally unifocal and present less lymph node involvement 
(<5%) than PTCs. By contrast, distant metastases, mainly to 
the lungs and bones, are more frequent at disease presentation 
(~20%) (4). Although former studies have indicated that FTCs, 
particularly the invasive form, have a poorer prognosis than 
PTCs (74,75), a recent study that evaluated more than 1,000 
patients did not find differences in tumor-specific survival 
between PTC and FTC, after controlling for age, primary 
tumor size, extrathyroidal invasion or distant metastasis at 
diagnosis (76).

The most common genetic events observed in follicular 
carcinomas are point mutations in RAS genes and the rear-
rangements between the thyroid-specific transcription factor 
gene and the peroxisome proliferator-activated receptor gene 
[paired box gene 8 (PAX8)-peroxisome proliferator-activated 
receptor γ (PPARγ) rearrangements] (80%). Similarly to what 
is described in PTC, their oncogenic effects occur through the 
activation of the MAPK cascade; however, the induction of the 
PI3K pathway is an important event in follicular pathogen-
esis (15). Fig. 1B summarizes the major signaling pathways 
involved in FTC.

RAS oncogene. Activating mutations in the RAS gene are 
observed in 18-52% of follicular carcinomas and are associated 
with tumor dedifferentiation and a less favorable prognosis 
(77,78). A number of studies have suggested that RAS mutations 
are an early event in follicular thyroid tumorigenesis, since 
they are identified in up to 50% of benign follicular tumors 
(77,79,80,82,83). Studies using transgenic mice carrying the 
mutated N-RAS (Gln61Lys) oncogene demonstrated that these 
rodents developed follicular adenomas (11%), invasive follic-
ular carcinomas (~40%) and, in certain cases, tumors with a 
mixed papillary/follicular morphology. Moreover, 25% of these 
carcinomas displayed large, poorly differentiated areas, with 
vascular invasion and with lung, bone or liver metastasis (81).

The RAS-mutated protein mediates its effects on cellular 
proliferation in part by activation of a cascade of kinases: RAF 
(A-RAF B-RAF and C-RAF), dual-specificity mitogen-acti-
vated protein kinases (MEK1/2), extracellular signal-regulated 
kinases (ERK1/2) and p38 mitogen-activated protein kinase. 
RAS also activates the PI3K pathway, via a direct interaction 
with the catalytic subunit of the protein. The PI3K activation 
leads to the accumulation of the 2nd messenger, phosphati-
dylinositol 3,4,5-trisphosphate (PIP3), resulting in pyruvate 
dehydrogenase kinase isozyme 1 (PDK1) and v-akt murine 
thymoma viral oncogene homolog (AKT) activation (85,86) 
(Fig. 1B). Previous studies using mice harboring a phosphatase 
and tensin homolog (PTEN) gene deletion and a KRASG12D 

mutation, have shown that the separate activation of MAPK or 
PI3K pathways, is unable to transform thyroid follicular cells; 
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Figure 1 Schematic presentation of the signaling pathways involved in follicular-derived thyroid carcinoma. (A) In papillary thyroid carcinoma, BRAFV600E 
or RAS point mutations, or RET/PTC rearrangement result in a constitutively phosphorylated protein which leads to a potent activation of downstream effec-
tors of the MAPK pathway. (B) In follicular thyroid carcinoma, RAS-mutated protein can mediate its cellular effects either by the activation of the MAPK 
cascade or the PI3K pathway, while PAX8-PPARγ rearrangement leads to the abrogation of the PTEN inhibitory effect and the PI3K signaling activation. (C) 
In anaplastic thyroid carcinoma, the MAPK cascade is induced by RAS or BRAF mutations, while copy gain or mutations of the PI3K and PTEN mutations are 
associated with the constitutive activation of PI3K/AKT pathway. Additionally, β-catenin mutations activate the β-catenin/E-cadherin pathway, whereas TP53 
gene alterations lead to aberrant cell cycle regulation.
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however, their simultaneous activation is highly oncogenic, 
leading to locally invasive follicular carcinomas and distant 
metastasis (84).

PAX8-PPARγ rearrangements. The thyroid-specific tran-
scription factor (PAX8) gene is a critical regulator of thyroid 
differentiation and growth (87). PPARγ is a ligand-dependent 
nuclear transcription factor highly expressed in adipose tissue, 
where it plays a critical role in adipocyte differentiation and 
fat metabolism regulation (88). The PAX8-PPARγ rearrange-
ment arises through a chromosomal translocation, fusing the 
5' portion of the PAX8 gene with the entire coding sequence of 
the PPARγ gene (chromosomes 3p25 and 2q13). It is detected 
in ~35% of FTCs (10,89,90).

The PAX8-PPARγ rearrangement leads to strong induction 
of the PPARγ protein and the consequent abrogation of the 
normal PPARγ function (95,96). Under normal conditions, 
PPARγ inhibits cell proliferation and induces apoptosis via 
downstream pathways. The loss of these functions results in 
uncontrolled cell growth (14). PPARγ overexpression abol-
ishes the PTEN-inhibitory effect on immunoactive AKT, 
which in turn induces the PI3K signaling pathway (58,97). The 
PAX8-PPARγ rearrangement also activates the MAPK, trans-
forming growth factor β (TGFβ) and Wnt/β-catenin (wingless 
in Drosophila) signaling pathways. The increased expression 
of the C-terminal binding protein (CTBP2) gene has been 
observed in the PAX8-PPARγ-positive-tumors (95). CTBPs 
are co-repressor proteins associated with several transcrip-
tional factors involved in Wnt, TGFβ and MAPK signaling 
activation, thus explaining their major role in follicular tumor 
development (98).

 Patients with FTC harboring the PAX8-PPARγ rearrange-
ment are usually diagnosed at a young age, have a small tumor 
size and the majority of tumors are overtly invasive at presen-
tation (10,89). These findings, however, were not reproduced in 
other studies and the impact of PAX8-PPARγ on the biology 
and behavior of FTCs remains controversial (10,92).

Follicular adenomas have been shown to have lower 
frequency rates of PAX8‑PPARγ rearrangements, suggesting 
that this chromosomal translocation may be involved in the 
early phases of the neoplastic process of FTC, possibly even 
in premalignant lesions (90,91,93). Transfection studies of 
PAX8‑PPARγ in thyroid follicular epithelial cells have demon-
strated accelerated growth rates and a lower number of cells in the  
G0/G1 resting state (14,94).

4. Anaplastic thyroid carcinoma

ATC, also known as undifferentiated thyroid carcinoma, is 
the most aggressive form of thyroid neoplasia. It can originate 
de novo or represent an advanced stage of follicular cell-
derived thyroid tumors (4,99). Anaplastic tumors represent <1% 
of all thyroid tumors and their annual incidence is ~1-2 cases 
per 1,000,000 with a higher overall incidence in endemic goiter 
areas (100,101). The ATC typical presentation is advanced 
disease at diagnosis. Patients with anaplastic carcinoma usually 
have widespread local invasion and distant metastases, most 
frequent in the lung, pleura, bone and brain (100). This tumor 
has poor or no response to conventional therapeutic modalities. 
The median survival time after diagnosis is <1 year (102,103). 

A younger age (<60 years), smaller tumor size (<7 cm) and 
restricted disease have been associated with a lower mortality 
rate on multivariate analysis (104).

ATCs have been described as carrying multiple distinct 
genetic alterations with a high prevalence of mutations in 
MAPK effectors (13,21). Mutations in the TP53 gene, β-catenin 
and PI3K cascade also play a critical role in ATC develop-
ment, promoting the dedifferentiation of a previously well 
differentiated thyroid tumor (11,105,106). Fig. 1C summarizes 
the signaling pathways involved in ATC.

Mutations in gene effectors of the MAPK pathway. MAPK acti-
vating genetic alterations have been described to be involved 
in the development/progression of ATCs. ATC tumors present 
a significant prevalence of RAS (6-55%) and BRAF mutations 
(24-50%) (13,14,107). By contrast, RET/PTC, NTRK and 
PPARγ-PAX8 rearrangements are rarely observed in these 
undifferentiated tumors, supporting the hypothesis that DTCs 
associated with these rearrangements do not usually progress 
to anaplastic form (108,109).

BRAFV600E mutation is typically found in ATC tumors which 
contain areas of well-differentiated PTC, but also in poorly 
differentiated and anaplastic tumor areas. These observations 
suggest that although this mutation may occur early in tumori-
genesis, it is not sufficient to initiate the dedifferentiation process. 
However, it is conceivable that BRAF mutations may predispose 
to additional genetic alterations which in turn activate more 
aggressive pathways and lead to dedifferentiation (15,110,111). Of 
note, BRAFV600E mutation has also been observed in lymph-node 
metastasis of ATCs (111). Of note, patients with ATCs harboring 
BRAF mutations have a higher mortality rate than those patients 
presenting with RAS or with no identified mutation, indicating a 
negative prognosis of these genetic alterations during all stages 
of thyroid cancer progression (13).

RAS mutations are found in a high prevalence in ATCs 
(6-55%) (13,14,77). A previous study suggested that the RAS 
effect may be due to the promotion of chromosomal insta-
bility, since the expression of constitutively activated RAS 
destabilizes the genome of PCCL3 thyroid cells, predisposing 
to large scale genomic abnormalities (112).

Genetic alterations in genes involved in the activation of the 
PI3K pathway
PIK3CA mutations and copy number gains. The PIK3CA gene 
encodes a catalytic subunit of PI3K and has been described 
to be mutated in 12-23% of ATC cases, normally restricted 
to the undifferentiated thyroid components. Previous studies 
have shown a preferential expression of PIK3CA mutations 
during the later stages of thyroid cancer, suggesting that this 
event may be more important in ATCs (12-23%) than in DTCs 
(PTCs, ~2% and FTCs, <10%) (11,106). 

PIK3CA copy number gains are the 2nd most frequent 
event in ATC occurring in ~38-61% of tumors (14,106). Of 
note, this occurs almost exclusively in the undifferentiated 
component of the tumor. The copy number gain induces the 
activation of the PI3K cascade through the enhanced activity 
of AKT, leading to thyroid cancer progression. Of note, the 
PIK3CA mutations and copy number gain may co-exist with 
other somatic mutations in ATC, reinforcing the activation of 
the distinct signaling pathway in these tumors (11).
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PTEN gene alterations. PTEN is a tumor suppressor gene 
that antagonizes signaling through the PI3K pathway. Its 
action occurs by removing a phosphate group from the inositol 
ring of PIP3, which reduces the downstream activity of the 
AKT kinase, thereby inducing cell cycle arrest, apoptosis, or 
both (113). Several genetic alterations in the PTEN suppressor 
gene have been described in ATCs: 12% present a mutated 
form (106,108), 28% gene silencing (114) and 69% the hyper-
methylated PTEN gene (115). These alterations lead to PTEN 
inactivation by different mechanisms, with a prominent role in 
the pathogenesis of follicular epithelium-derived thyroid carci-
nomas, particularly in the most aggressive or undifferentiated 
forms (114,115). Moreover, PI3K activation produced by down-
regulated PTEN has been shown to correlate with regions of 
tumor invasion and metastasis (58,116). Of note, studies using 
transgenic mice with a deletion of PTEN or RAS mutations 
have shown that the presence of both genetic events is required 
to trigger this aggressive form of thyroid cancer (84).

TP53 mutations. The TP53 gene encodes a nuclear protein 
that can induce cell cycle arrest, senescence and apoptosis in 
response to various stimuli. Alterations in the p53 pathway 
may contribute to carcinogenesis, disease progression and 
resistance to therapy (117). In thyroid tumors, TP53 mutations 
are commonly observed in anaplastic carcinomas (~70%) and 
are rarely described in well-differentiated thyroid carcinomas 
(0-9%) (12,105,118). This suggests that TP53 mutations are a 
late event in tumor progression and that this gene may play a 
critical role in the transformation of DTC into the anaplastic 
form (105). The frequent association of p53 inactivation with 
PI3K activation may contribute to genomic instability, leading 
cancer cells to become resistant to apoptosis and to escape 
from any growth restriction. This contributes to a rapidly 
enlarging neck mass as well as to chemotherapy and radio-
therapy resistance commonly observed in these tumors (11).

β-catenin genetic alterations. Genetic alterations in the 
β-catenin (CTNNB1) gene are observed in ~65% of thyroid 
anaplastic tumors. Gain-of-function mutations can promote 
β-catenin nuclear translocation which consequently trig-
gers the transcription process (119,120). The expression of 
E-cadherin, a component of the β-catenin pathway, normally 
expressed in thyroid tissue, is usually absent in undifferenti-
ated thyroid carcinomas (121). These changes appear to play a 
pathogenic role in thyroid tumor invasion and regional lymph 
node metastasis, due to a decrease in intercellular adhesion 
and enhancement of cell motility (122). The lack of E-cadherin 
expression is associated with an adverse prognosis for patients 
with thyroid carcinoma (123).

5. Clinical Implications: Potential therapeutic targets

DTCs demonstrate indolent behavior in the majority of 
patients and can be effectively treated by surgery followed 
by radioactive iodine and/or thyroid hormone suppressive 
therapy (124,125). In patients with metastatic disease, radioac-
tive iodine therapy can be effective in some cases, whereas 
suppressive thyroid hormone therapy can help to delay the 
pace of the disease (125,126). Nevertheless, for those patients 
with metastatic DTC that progresses despite radioiodine and 
thyroid hormone therapy, no effective treatments are currently 
available.

Over the last decades, cancer research has been predomi-
nantly focused on the genetic alterations and the advances in 
the understanding of the molecular events involved in differen-
tiated thyroid carcinogenesis have allowed for the development 
of new therapies designed for patients with metastatic disease 
refractory to radioactive iodine treatment. Specific tyrosine 
multikinase inhibitors to target key molecules such as BRAF, 
RET/PTC rearrangements, vascular endothelial growth factor 
receptors (VEGFRs) and platelet-derived growth factor recep-

Table I. Clinical trials and follicular cell-derived thyroid tumors response.

Trade name	 Compound	 Target	 Tumor	 No. of	 Partial responsea 	 Stable diseaseb	 Refs.
			   type	 patients	 [% (n)]	 [% (n)]

Sorafenib	 BAY 43-9006	 BRAF (BRAFV600E)	 PTC	 41	 15	 (6)	 56	(23)	 (127)
		  VEGFR1-3, PDGFR,	 DTC	 31	 25	 (8)	 -		  (128)
		  RET, RET/PTC	 DTC	 30	 23	 (7)	 34	(10)	 (129)
Axitinib	 AG-013736	 VEGFR1-3, PDGFR,	 PTC	 30	 26	 (8)	 40	(12)	 (131)
		  c-Kit	 FTC	 15	 40	 (6)	 46	 (7)
			   ATC	 2	 50	 (1)	 -
Pazopanib	 W786034	 VEGFR1/2, PDGFR	 DTC	 39	 49	(18)	 -		  (132)
Motesanib	 AMG706	 VEGFR1-3, RET, c-kit	 DTC	 93	 14	(13)	 67	(62)	 (133)
Gefitinib	 ZD1839	 EGFR	 DTC	 25	 0		  12	 (3)	 (134)
Selumetinib	 AZD6244	 MEK1/2	 PTC (IR)	 32	 3	 (1)	 54	(21)	 (135)
PLX4032	 RG7204	 BRAFV600E	 PTC	 3	 33	 (1)	 66	 (2)	 (130)

DTC, differentiated thyroid carcinoma; PTC, papillary thyroid carcinoma (IR, iodine-131 refractory); FTC, follicular thyroid carcinoma; 
ATC, anaplastic thyroid carcinoma. aPartial response: a decrease of at least 30% in the sum of the largest diameter of target lesions, relative to 
the corresponding sum at baseline. bStable disease: the absence of shrinkage sufficient for a partial response and the absence of enlargement 
sufficient for progressive disease, relative to the corresponding sum at baseline.
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tors (PDGFR) have been evaluated as potential alternatives 
to DTC treatment. Table I summarizes the results obtained 
to date in several clinical trials. Phase II studies using BAY 
43-9006 (sorafenib) have shown partial response (15-25%) and 
stable disease (34-56%) in progressive DTC patients and the 
median progression-free survival was significantly longer in 
patients harboring BRAF mutations (127-129). A recent study 
using PLX4032, an inhibitor of mutant BRAF, in metastatic 
melanoma patients evaluated the effect of this drug in 3 PTC 
patients. The response lasted 8 months in 1 patient (progres-
sion-free lasted for 12 months) and stable disease lasted 11 and 
13 months in each of the other 2 patients (130). Although these 
compounds have demonstrated the most impressive clinical 
responses to date in the treatment of advanced thyroid cancer, 
the low rate of partial response, the rare report of complete 
responses and the emergence of eventual progression, point 
out to the need to develop either more effective single agents 
or to identify rational combinations of therapeutic targets.

6. Conclusion

Thyroid carcinogenesis consists of a complex process with 
a large number of molecular alterations among several 
thyroid neoplasias. The set of genetic alterations observed in 
follicular-cell derived thyroid carcinomas activates specific 
pathways, such as the MAPK, PI3K and β-catenin signaling 
pathways, which have been shown to play an important role 
in thyroid cancer initiation and progression. The screening for 
follicular cell-derived specific mutations in association with 
traditional diagnosis methods has improved the diagnostic 
accuracy, impacting the prognosis of these tumors. Moreover, 
the advances in the knowledge of the effects of thyroid onco-
genes and related mechanisms of action have allowed for the 
development of multikinase inhibitor targets, promoting new 
perspectives on therapy to aggressive thyroid tumors.
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