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Abstract. Vestibular schwannomas are benign neoplasms 
that arise from the vestibular nerve. The hallmark of these 
tumors is the biallelic inactivation of neurofibromin 2 (NF2). 
Transcriptomic alterations, such as the neuregulin 1 (NRG1)/
ErbB2 pathway, have been described in schwannomas. In this 
study, we performed a whole transcriptome analysis in 31 
vestibular schwannomas and 9 control nerves in the Affymetrix 
Gene 1.0 ST platform, validated by quantitative real-time PCR 
(qRT-PCR) using TaqMan Low Density arrays. We performed 
a mutational analysis of NF2 by PCR̸denaturing high-
performance liquid chromatography (dHPLC) and multiplex 
ligation-dependent probe amplification (MLPA), as well as a 
microsatellite marker analysis of the loss of heterozygosity 
(LOH) of chromosome 22q. The microarray analysis demon-
strated that 1,516 genes were deregulated and 48 of the genes 
were validated by qRT-PCR. At least 2 genetic hits (allelic loss 
and/or gene mutation) in NF2 were found in 16 tumors, seven 
cases showed 1 hit and 8 tumors showed no NF2 alteration. MET 
and associated genes, such as integrin, alpha 4 (ITGA4)̸B6, 
PLEXNB3/SEMA5 and caveolin-1 (CAV1) showed a clear 

deregulation in vestibular schwannomas. In addition, androgen 
receptor (AR) downregulation may denote a hormonal effect 
or cause in this tumor. Furthermore, the osteopontin gene 
(SPP1), which is involved in merlin protein degradation, was 
upregulated, which suggests that this mechanism may also 
exert a pivotal role in schwannoma merlin depletion. Finally, 
no major differences were observed among tumors of different 
size, histological type or NF2 status, which suggests that, at the 
mRNA level, all schwannomas, regardless of their molecular 
and clinical characteristics, may share common features that 
can be used in their treatment.

Introduction

Schwannomas are benign tumors that arise from Schwann cells 
in the peripheral nerves. These tumors often originate from the 
vestibular nerve, although they can develop anywhere from the 
glial-Schwann junction up to the nerve terminations within 
the auditory and vestibular sensory organs (1). Although histo-
logically benign, vestibular schwannomas may cause hearing 
loss, tinnitus, facial palsy and, when large enough, brain stem 
compression and even death. Vestibular schwannomas are 
usually sporadic and unilateral (95%) but may be bilateral when 
associated with neurofibromatosis type 2 (NF2) syndrome, 
which is caused by germline mutations of the neurofibromin 2 
(NF2) gene. Moreover, patients with NF2 develop other tumors 
as well, such as meningiomas, ependymomas and gliomas (2).

The NF2 gene, a tumor suppressor located at 22q12 that 
encodes a protein termed merlin or schwannomin  (3), is 
mutated in up to 66% of sporadic schwannomas  (4). The 
NF2 gene is inactivated in most, if not all, schwannomas (5) 
and is frequently lost in conjunction with the loss of chromo-
some 22. Merlin is a member of the band 4.1 superfamily of 
proteins and exhibits sequence homology with the members 
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of the ezrin̸radixin̸moesin (ERM) family, with 17 coding 
exons and 2 main isoforms, arising from alternative splicing 
of exons 16 and 17. In Schwann cells, merlin colocalizes with 
E-cadherin at the paranodes and Schmidt‑Lanterman incisures 
in the myelinating peripheral nerve (6).

Merlin is involved in a variety of signaling pathways, such 
as mTORC1 regulation (7), activation of the Hippo pathway 
in Drosophila (8), membrane recruitment and activation of 
Rac̸PAK (9) and, upon cell-to-cell contact, downregulation 
of the membrane levels of ErbB2, ErbB3 (10) and EGFR (11). 
Recently, merlin has been found to suppress tumorigenesis by 
entering the nucleus and binding to the E3 ubiquitin ligase 
CRL4DCAF1, suppressing its activity  (12). For translocation 
into the nucleus, merlin must be activated (closed state) by 
the dephosphorylation of myosin phosphatase target subunit 1 
(MYPT1), although other mechanisms of activation should not 
be ruled out.

In addition to schwannomas, merlin alterations have been 
described in other tumor types, particularly meningiomas and 
ependymomas and, less commonly, in mesotheliomas, renal 
cell carcinomas, melanomas, colorectal cancers and glioblas-
tomas (13). Furthermore, advanced breast cancer exhibits a loss 
of merlin expression via post-translational mechanisms (14). 
Other genetic changes that are rare in schwannomas, such as 
1p losses and 9q34 and 17q gains, have been described in a few 
samples (15,16). Furthermore, epigenetic changes involving 
the NF2 gene (17-21) and other tumor-related genes (22) have 
also been investigated in vestibular schwannomas.

There are only 3 studies available on the global gene 
expression profile in vestibular schwannomas. These studies 
used various microarray platforms: 4 EST filters from 
Research Genetics (Huntsville, AL, USA) (23), Affymetrix 
HG-U133A (24) and ABI 1700 (25). The first of these studies 
used 1 control nerve sample and 7 tumors, while the other 
two increased the controls to 3 and the tumors to 16 and 25, 
respectively. Due to the number of controls available, the 
statistical approach was different: the first approach was very 
restrictive and centered on specific probes, while the other two 
were less restrictive and even validated 7 genes by qRT-PCR. 
Apart from specific coincidences, these studies showed no 
common trends. With the less stringent method previously 
described  (25), 1,650 genes appeared deregulated and the 
development of new tools for data analysis led to the conclu-
sion that the ERK pathway was the core network. Our goal, 
with the help of new improved tools for data analysis, was to 
perform a more thorough analysis of the expression patterns of 
31 schwannomas and 9 controls. Our results concur with earlier 
array analysis data on schwannomas, such as caveolin-1 (CAV1) 
downregulation (25), as well as with other studies conducted, 
using techniques such as qRT-PCR [i.e., neuregulin 1 (NRG1)-
ErbB2-ErbB3 upregulation] and immunohistochemistry 
analysis (CCND1 upregulation) (26).

In conclusion, the main finding of this study is the activa-
tion of the MET pathway due to changes in the expression of 
other modulators of this gene [integrin, alpha 4 (ITGA4)/ITGB6 
and PLEXNB3̸SEMA5]. Furthermore, osteopontin (SPP1) 
upregulation, described in breast cancer as being responsible 
for merlin degradation (14), may explain the absence of merlin 
even in schwannomas with no DNA hits in NF2 (5). Finally, 
we also performed correlation analyses with clinical and 

molecular alterations, in order to identify markers with useful 
prognostic, diagnostic and therapeutic information.

Materials and methods

Sample and DNA/RNA preparation. The study group consisted 
of 31 patients who underwent vestibular schwannoma removal 
surgery at our institution. The study population included 
17 females and 14 males. The local Ethics Review Board of La 
Paz University Hospital approved the study protocol according 
to the principles of the Declaration of Helsinki. All patients 
received detailed information of the study and provided their 
written informed consent prior to their inclusion. DNA was 
isolated from 31 frozen samples, corresponding to 28 sporadic 
and 3  NF2-associated vestibular schwannomas, using the 
Wizard Genomic DNA purification kit (Promega). DNA 
from the corresponding peripheral blood of the patients was 
also extracted. RNA was isolated using the RNeasy® Mini 
kit (Qiagen) in all tumoral and non-tumoral samples. The 
following non-tumoral samples were used as the controls: 
2 auricular nerves, 2 cervical nerves, 1 facial nerve, 1 vestibular 
nerve and 1 nerve from the VIII cranial pair (all processed with 
the same protocol as schwannomas), as well as 1 commercial 
normal human adult Schwann cell (HSC) RNA, purchased 
from ScienCell (HSC total RNA, catalog number 1705).

Expression arrays. Affymetrix Human Gene 1.0 ST arrays were 
used to analyze gene expression levels. We processed 25 ng of 
total RNA as previously described by Gonzalez-Roca et al (27). 
In brief, library preparation and amplification were performed 
following the distributor's (Sigma-Aldrich) recommendations 
for whole transcriptome amplification (WTA2). Amplification 
was performed for 17 cycles and amplified cDNA was purified 
and quantified on a NanoDrop ND‑1000 spectrophotometer 
(Thermo-Fischer). cDNA (8 µg) was subsequently fragmented 
by DNAse I and biotinylated by terminal transferase obtained 
from a GeneChip Mapping 10Kv2 Assay kit (Affymetrix). 
Hybridization, washing, staining and scanning of Affymetrix 
Human Gene 1.0 ST arrays were performed following the 
manufacturer's recommendations. Scanned images (DAT files) 
were transformed into intensities (CEL files) by Affymetrix 
GeneChip Operating Software (GCOS). Arrays were processed 
at the IRB Barcelona Functional Genomics Core Facility. Data 
can be accessed at the Gene Expression Omnibus (GEO) data-
base GSE39645.

Array normalization and summarization. Overall array inten-
sity was normalized between arrays to correct for systematic 
bias in data and remove the impact of non-biological influences 
on biological data. Affymetrix arrays had multiple probes 
(probe set) directed to each gene. Following normalization, 
the probe intensity of all probes in a probe set was summa-
rized to a single value. Normalization and summarization 
was performed using the Robust Multichip Average (RMA) 
algorithm (28).

Statistical array analysis. The 40 samples (31 tumors and 
9 nerve controls) were processed in 2 batches, with controls 
and tumors in both batches. ComBat, an Empirical Bayes 
method (29), was subsequently used to remove the batch effect, 
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based on previous findings (30). In order to include genes for 
web tool analysis, those genes with at least a 2-fold change 
of expression and a p<0.05 cut-off (t-test) were selected, as 
previously recommended  (31). Bonferroni adjustment was 
used to obtain more restrictive results. For the analysis, we 
used probes from NM (messenger RNA) of RefSeq annotation 
and intron-free olfactory receptors were removed in order to 
avoid cross‑hybridization (32). All statistical analyses were 
performed using MultiExperiment Viewer (MeV)  (33,34). 
Principal component analysis (PCA) was performed by 
eigenvalue decomposition of the 3 principal components for 
tridimensional classification of the samples and an unsuper-
vised hierarchical cluster by Pearson's correlation was selected 
to group the samples. The significance analysis of microarrays 
(SAM) statistical technique (with 1,000 permutations and a 
threshold fold change of 2) was also performed for descriptive 
and comparative purposes.

Array web tool analysis. To obtain a list of deregulated genes 
for use with web tool databases, a fold change ranking plus 
a non-stringent p‑value cut-off (p<0.05) was used. Three 
different open access databases were selected for the analysis:

DAVID (35,36). We used the RefSeq annotations selected 
for statistical array analysis as a background. A list of genes 
(upregulated, downregulated, or both) was then used to obtain 
enriched biological and/or molecular themes. Public genomic 
resources, such as Gene Ontology (GO), Swiss-Prot (SP) and 
Protein Information Resource (PIR), were selected for analysis.

Reactome (http://www.reactome.org). In this peer-reviewed 
and manually curated database, pathways can be easily 
analyzed by introducing a list of genes with the relative average 
expression of the groups (controls vs. tumors in our study).

WebGestalt (37). Similar to the DAVID database, this tool 
provides data that can also be checked with Transcription 
Factor Target analysis, WikiPathways and Cytogenetic band 
analysis. The configuration used for the analysis was the 
enrichment analysis at p<0.05 using the hypergeometric test 
and BH adjustment.

Quantitative RT-PCR. To validate the expression pattern 
obtained by the microarrays, qRT-PCR amplifications were 
performed with TaqMan Gene Expression Assay products on 
an ABI PRISM 7900HT Sequence Detection system (Applied 
Biosystems, Foster City, CA, USA). The reactions were per- 
formed using TaqMan Low Density arrays (TLDAs; Applied 
Biosystems) containing 50 ml TaqMan Universal PCR Master 
Mix (Applied Biosystems, Foster City, CA, USA) and 50 ml of 
a cDNA template corresponding to 100 ng total RNA per 
channel of the microfluidic card. A total of 48 genes studied in 
these assays were selected according to their deregulation and 
involvement in pathways of potential interest in the develop-
ment of schwannomas as well as of other tumors: ANK2- 
Hs00153998_m1, ANK3-Hs00253210_m1, AR-Hs00171172_
m1, ATF7IP2-Hs00228009_m1, CAV1-Hs00184697_m1, 
CCND1-Hs00765553_m1, CTNNA1-Hs00944794_m1, 
CXCL1-Hs00236937_m1, CXCL5-Hs00171085_m1, DSG2-
Hs00170071_m1, EGFR-Hs01076086_m1, ERBB2-Hs0100 
1586_m1, FABP4-Hs01086177_m1, FLOT1-Hs00195134_m1, 
GRB14-Hs00182949_m1, L1CAM-Hs01109748_m1, LATS2- 
Hs00324396_m1, MCAM-Hs00174838_m1, MDM2‑Hs9999 

9008_m1, MET-Hs01565584_m1, NOV-Hs00159631_m1, 
NRG1-Hs00247625_m1, NRXN1-Hs00245125_m1, PAK2-
Hs01127126_m1, PAK3-Hs00176828_m1, PAWR-Hs01088 
574_m1, PDGFA-Hs00964426_m1, PDGFB-Hs00966522_
m1, PDGFC-Hs00211916_m1, PDGFD-Hs00228671_m1, 
PDGFRA-Hs00998026_m1, PIK3IP1-Hs00364629_m1, 
RASSF4-Hs00604698_m1, RENBP-Hs00234138_m1, 
SHOX2-Hs01059691_m1, TGFB3-Hs01086000_m1, VLDLR; 
FLJ35024-Hs00182461_m1, WWP1-Hs00366927_m1, 
CDH1-Hs01023894_m1, CX3CL1-Hs00171086_m1, ERBB3- 
Hs00951455_m1, HEPACAM-Hs00404147_m1, IL8RA- 
Hs00174146_m1 and S100A9-Hs00610058_m1 (available upon 
request).

Calculation of gene expression was obtained as follows: 
average cycle threshold (Ct) values were obtained using SDS 2.2 
software (Applied Biosystems). The maximum Ct value was 
set at 40. Ct values were normalized using 4 housekeeping 
genes (18S-Hs99999901_s1, ACTB-Hs99999903_m1, 
PPIA‑Hs99999904_m1 and RPL18-Hs00965812_g1). The 
relative expression level of each target gene was expressed as 
ΔCt  =  Ctref  -  Ctgene  (38). Reference-normalized expression 
measurements were adjusted by defining the lowest expres-
sion value as 0, with subsequent 1-unit increases reflecting 
an approximate doubling of the RNA. The non-parametric 
Mann‑Whitney-Wilcoxon test was used to calculate the signifi-
cance of differences between control samples and schwannomas.

Loss of heterozygosity (LOH) of 22q. In order to determine 
the 22q allelic constitution of schwannomas, the status of 
5 microsatellite markers at the D22S275, D22S264, D22S929, 
D22S268 and D22S280 loci (22q11-q12.3) was verified by 
labeling 5' primers with fluorescent markers (6-FAM̸HEX 
and ROX as a size standard) (Applied Biosystems). Allelic 
ratios were defined according to previously described criteria: 
T2 x N1̸T1 x N2, in which the LOH was <0.6 or >1.67 (39).

PCR/denaturing high-performance liquid chromatography 
(dHPLC) analysis and direct sequencing of NF2. Genomic 
DNA amplification was performed using standard PCR 
methods (total volume of 20 µl). A set of 15 primer pairs was 
used as previously described (3). Mutational screening was 
performed using dHPLC following the manufacturer's instruc-
tions (Transgenomic WAVE® dHPLC Systems). Samples with 
different patterns by dHPLC were sequenced bidirectionally 
(ABI 3100‑Avant, Applied Biosystems), using the BigDye 
sequencing kit (Applied Biosystems), to determine the posi-
tion and nature of the alteration. For the mutation description, 
sequence NM_000268.3 was used when the alteration 
appeared within mature mRNA and sequence NC_000022.10 
was used when the mutation was located in other parts of the 
NF2 gene.

Multiplex ligation-dependent probe amplification (MLPA) 
analysis of NF2. To identify large NF2 deletions not detected 
by PCR/dHPLC, we used a commercial MLPA kit for 
analysis (SALSA P044 NF2; MRC-Holland, Amsterdam, 
The Netherlands). Information regarding the probe sequences 
and ligation sites can be found at http://www.mlpa.com. The 
MLPA protocol was performed as described by the manu-
facturer, using 100 ng of DNA from the control and tumor 



TORRES-MARTIN et al:  MICROARRAY ANALYSIS OF VESTIBULAR SCHWANNOMAS 851

samples. Data analysis was performed with MRC-Coffalyser 
software (MRC-Holland).

Clinical data. The tumors were located on the left side in 
16 cases (52%). The mean age was 44.5±14.3 years. Audiologic 
measurements included pre-operative and post-operative 
pure‑tone average (PTA) and speech discrimination score 
(SDS). Hearing data were reported according to the recommen-
dations of the American Academy of Otolaryngology-Head 
and Neck Surgery (AAOHNS). Thus, class A was defined 
as PTA <30 dB and SDS >70%; class B, PTA 31‑50 dB and 
SDS 50‑100%; class C, PTA 51‑100 dB and SDS 50‑100%; and 
class D, any PTA and SDS <50%. Size was evaluated by the 
KOOS scale and characterized as stage 1 (intracanalicular) in 1 
case (3%), stage 2 [15 mm in its greatest diameter in the cerebel-
lopontine angle (CPA)] in 8 cases (26%), stage 3 (16‑30 mm in 
the CPA) in 16 cases (52%) and stage 4 (>30 mm in the CPA) 
in 6 cases (19%). Tumor appearance was homogeneous (64%), 
heterogeneous (23%) and cystic (13%) as shown by MRI. The 
fundus of the internal auditory channel was affected in 65% 

of cases. All tumor tissues obtained at surgery were fixed 
in 10% formalin and embedded in paraffin. Staining with 
hematoxylin and eosin was performed for routine microscopic 
diagnosis. Antoni  type A regions consisted of interwoven 
bundles of long bipolar spindle cells, whereas Antoni type B 
regions exhibited a loose myxoid background containing more 
stellate tumor cells. The percentage of the different tissue types 
(A, B, or mixed) in each tumor sample was independently 
determined by 2 pathologists. The results were grouped in 
2 types: type A, >70% of the tumor composed of type A tissue 
and type B, <70% of the tumor composed of type A tissue.

Results

Microarray analysis. PCA and hierarchical clustering depicted 
a clear distinction between control nerves and schwannomas 
(Fig. 1). The most distinct sample shown in the PCA corre-
sponded to the control of cultured human Schwann cells, which 
was different from other controls due to additional material 
present at the non-tumoral nerves. Pearson's correlation grouped 
all 31 schwannomas into a large cluster, with small differences 
among the tumors (Fig. 2), whereas the control nerves exhib-
ited greater differences. The hierarchical cluster analysis also 
recognized 2 schwannoma expression groups (1 and 2) that 
displayed only 16 differentially expressed genes. Likewise, 
tumors in group 2 were classified into subgroups 2-I and 2-II, 
that displayed 66 differentially deregulated genes, including 
SEMA3D, MERTK, RELN and CD36. No Bonferroni-adjusted 
genes were obtained in any of these groups.

An analysis of variance (ANOVA)/Welch's t-test (p<0.05 
and 2-fold changes) was performed to establish a list of 
1,516 genes (Fig. 3), 1,105 of which were upregulated �������(avail-
able upon request) and 411 downregulated (available upon 
request) (89 were upregulated and 15 downregulated following 
a Bonferroni adjustment). Using more stringent methods, such 
as the significance analysis of microarrays (SAM) statistical 
technique, 922  deregulated genes were obtained vs. the 
1,516 genes obtained by the t-test. A list of the 30 top fold 
change of upregulated (Table I) and downregulated (Table II) 
genes using the SAM method is shown.

The main results obtained using the database web tools are 
as follows:

DAVID. The clusters in DAVID were very similar when 
using a p‑value cut-off <0.05 or <0.001, presenting variation 
primarily at the enrichment level. For the 1,065 upregulated 

Figure 1. Three‑dimensional representation of principal component analysis. 
Grey points represent 31 vestibular schwannomas, while the 9 controls are 
shown in white. The more remote control corresponds to human Schwann 
cell culture. Schwannomas appear tight together, contrary to the controls, 
which are less uniform.

Figure 2. Cluster of samples. Hierarchical cluster of Euclidean distances of NM set of probes from RefSeq annotation. Controls and tumors are clearly grouped, 
whereas schwannomas show a similar pattern.



INTERNATIONAL JOURNAL OF ONCOLOGY  42:  848-862,  2013852

Table I. Top 30 upregulated genes by SAM method.

			   Location
Gene symbol	 RefSeq	 Description	 (chromosome)	 Fold change

C12orf69	 NM_001013698	 Chromosome 12 open reading frame 69	 12	 11.72
L1CAM	 NM_000425	 L1 cell adhesion molecule	 X	 11.68
GPR83	 NM_016540	 G protein-coupled receptor 83	 11	 10.26
GPR34	 NM_001097579	 G protein-coupled receptor 34	 X	 9.71
FCGBP	 NM_003890	 Fc fragment of IgG binding protein	 19	 9.19
SCN7A	 NM_002976	 Sodium channel, voltage-gated, type VII, alpha	 2	 9.08
ADAM23	 NM_003812	 ADAM metallopeptidase domain 23	 2	 8.46
GPR155	 NM_001033045	 G protein-coupled receptor 155	 2	 7.90
CDH19	 NM_021153	 Cadherin 19, type 2	 18	 7.81
MOXD1	 NM_015529	 Monooxygenase, DBH-like 1	 6	 7.74
ANKRD22	 NM_144590	 Ankyrin repeat domain 22	 10	 7.66
GRB14	 NM_004490	 Growth factor receptor-bound protein 14	 2	 7.25
GFRA3	 NM_001496	 GDNF family receptor alpha 3	 5	 7.07
RGS1	 NM_002922	 Regulator of G protein signaling 1	 1	 6.85
C10orf114	 NM_001010911	 Chromosome 10 open reading frame 114	 10	 6.43
SLC16A12	 NM_213606	 Solute carrier family 16, member 12	 10	 6.35
P2RY12	 NM_022788	 Purinergic receptor P2Y, G-protein coupled, 12	 3	 6.29
CHL1	 NM_006614	 Cell adhesion molecule with homology to L1CAM	 3	 6.23
FCGR3A	 NM_000569	 Fc fragment of IgG, low affinity IIIa, receptor	 1	 5.89
NLGN4X	 NM_020742	 Neuroligin 4, X-linked	 X	 5.81
ARHGEF26	 NM_015595	 Rho guanine nucleotide exchange factor	 3	 5.78
ALDH1A1	 NM_000689	 Aldehyde dehydrogenase 1 family, member A1	 9	 5.72
NCAM2	 NM_004540	 Neural cell adhesion molecule 2	 21	 5.69
ARHGAP15	 NM_018460	 Rho GTPase activating protein 15	 2	 5.58
IFI44	 NM_006417	 Interferon-induced protein 44	 1	 5.57
RASSF4	 NM_032023 	 Ras association domain family member 4	 10	 5.52
CX3CR1	 NM_001337	 Chemokine C-X3-C motif receptor 1	 3	 5.50
IFIT1	 NM_001548	 Interferon-induced protein with tetratricopeptide repeats 1	 10	 5.48
RSAD2	 NM_080657	 Radical S-adenosyl methionine domain containing 2	 2	 5.47
PDGFD	 NM_025208	 Platelet‑derived growth factor D	 11	 5.21

Figure 3. Volcano plot resulting from the comparison of schwannomas to controls. Dotted lines represent 2-fold (vertical) and p<0.05 cut-off (horizontal). Only 
grey points matched these criteria.
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genes in the schwannomas, the main clusters of GO annotation 
were referred to as intrinsic to membrane, lysosomes, vacuoles, 
cell adhesion, axonogenesis and neuron development (Table III). 
For the 400 downregulated genes (Table IV), the clusters of GO 
annotation were extracellular region, cell adhesion, response 
to wounding, proteinaceous extracellular matrix and plasma 
membrane. The most significant deregulations were observed 
in the SP and PIR protein databases and the upregulated genes 
included glycoprotein, disulfide bond, membrane, lysosome 
and actin-binding. The downregulated genes were signal, 
secreted, cell adhesion, EGF-like domain, heparin-binding and 
chemotaxis. Comparisons between the schwannoma groups of 
the 16 differentially expressed genes between groups 1 and 2 
showed no significant clusters. Otherwise, the differences 
observed between subgroups 2-I and 2-II included enriched 
extracellular regions and response to wounding.

Reactome. Using NM_ annotation, the average expression 
of control nerves and schwannomas for every deregulated gene 
was entered into this web tool. Upregulation of axon guidance 
(Table V) and signal transduction pathways (Table VI) were 

the most significative events registered using this tool and 
deregulated genes included ErbB2, NRG1, EGFR, L1CAM, 
DCX and ERBB2IP. Other deregulated signal pathways in our 
study included cytokine signaling in the immune system �������(avail-
able upon request) and cell metabolism (available upon request).

WebGestalt. The transcription factor target analysis showed 
significant enrichment of the forkhead  box  O4 (FOXO4), 
neurofibromin 1 (NF1) and lymphoid enhancer-binding factor 1 
(LEF1) genes with the algorithm used in this program, when 
compared with the 1,465 deregulated genes. When the upregu-
lated genes were analyzed individually, only FOXO4 was 
significant, whereas the downregulated genes exhibited more 
than 20 significant transcription factor target sites, even after 
statistical adjustment. These downregulated genes included 
NF1, FOXO4, androgen receptor (AR) and zinc finger protein, 
subfamily 1A, 1 (IKZF1). By WikiPathways analysis and using 
the list of upregulated genes in schwannomas, focal adhesion 
and Toll-like receptor signaling were significantly affected. 
When only the downregulated genes were analyzed, the most 
significantly affected were adipogenesis, hedgehog signaling 

Table II. Top 30 downregulated genes by SAM method.

			   Location
Gene symbol	 RefSeq	 Description	 (chromosome)	 Fold change

FABP4	 NM_001442	 Fatty acid-binding protein 4	 8	 -28.98
MFAP5	 NM_003480	 Microfibrillar-associated protein 5	 12	 -13.40
DPT	 NM_001937	 Dermatopontin	 1	 -9.36
PLA2G2A	 NM_000300	 Phospholipase A2, group IIA	 1	 -9.00
SFRP2	 NM_003013	 Secreted frizzled-related protein 2	 4	 -8.69
PRRX1	 NM_006902	 Paired related homeobox 1	 1	 -8.39
SLC22A3	 NM_021977	 Solute carrier family 22 , member 3	 6	 -8.37
G0S2	 NM_015714	 G0/G1 switch 2	 1	 -7.93
SLC14A1	 NM_001128588	 Solute carrier family 14	 18	 -7.82
PI16	 NM_153370	 Peptidase inhibitor 16	 6	 -7.42
SLPI	 NM_003064	 Secretory leukocyte peptidase inhibitor	 20	 -6.87
SELE	 NM_000450	 Selectin E	 1	 -6.70
CHI3L2	 NM_001025199	 Chitinase 3-like 2	 1	 -6.35
CCDC80	 NM_199511	 Coiled-coil domain containing 80	 3	 -6.26
ANPEP	 NM_001150	 Alanyl aminopeptidase	 15	 -6.05
S100A12	 NM_005621	 S100 calcium binding protein A12	 1	 -6.02
PDGFRL	 NM_006207	 Platelet-derived growth factor receptor-like	 8	 -5.95
CRABP2	 NM_001878	 Cellular retinoic acid-binding protein 2	 1	 -5.80
APLNR	 NM_005161	 Apelin receptor	 11	 -5.76
FAM171B	 NM_177454	 Family with sequence similarity 171, B	 2	 -5.68
AQP9	 NM_020980	 Aquaporin 9	 15	 -5.48
CXCR1	 NM_000634	 Chemokine C-X-C receptor 1	 2	 -5.41
ADCYAP1R1	 NM_001118	 Adenylate cyclase activating polypeptide 1	 7	 -5.27
IL1R2	 NM_004633	 Interleukin 1 receptor, type II	 2	 -5.20
DSG2	 NM_001943	 Desmoglein 2	 18	 -5.11
HSPB8	 NM_014365	 Heat shock protein 8	 12	 -5.08
HHIP	 NM_022475	 Hedgehog interacting protein	 4	 -5.06
THBS4	 NM_003248	 Thrombospondin 4	 5	 -4.97
PAK3	 NM_002578	 p21 protein-activated kinase 3	 X	 -4.94
CAV1	 NM_001753	 Caveolin-1	 7	 -4.90
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Table III. DAVID clusters obtained with upregulated genes.

	 Enrichment			   Fold
Cluster	 score	 Category	 Term	 enrichment	 p-value

1	 15.7	 SP_PIR_KEYWORDS	 Glycoprotein	 1.56	 5.74e-19
		  UP_SEQ_FEATURE	 Glycosylation site:N-linked (GlcNAc)	 1.58	 5.04e-18
		  SP_PIR_KEYWORDS	 Disulfide bond	 1.60	 1.48e-11
2	 12.7	 SP_PIR_KEYWORDS	 Glycoprotein	 1.56	 5.74e-19
		  UP_SEQ_FEATURE	 Glycosylation site:N-linked (GlcNAc)	 1.58	 5.04e-18
		  SP_PIR_KEYWORDS	 Membrane	 1.35	 1.20e-12
3	 9.8	 GOTERM_BP_FAT	 GO:0007155-cell adhesion	 2.10	 1.15e-07
		  GOTERM_BP_FAT	 GO:0022610-biological adhesion	 2.10	 1.25e-07
		  SP_PIR_KEYWORDS	 Cell adhesion	 2.38	 1.79e-06
4	 9.3	 SP_PIR_KEYWORDS	 Lysosome	 4.17	 1.45e-10
		  GOTERM_CC_FAT	 GO:0000323-lytic vacuole	 2.93	 5.08e-07
		  GOTERM_CC_FAT	 GO:0005764-lysosome	 2.93	 5.08e-07
5	 4.8	 GOTERM_BP_FAT	 GO:0009611-response to wounding	 1.88	 0.006957
		  GOTERM_BP_FAT	 GO:0006954-inflammatory response	 2.02	 0.106629
		  GOTERM_BP_FAT	 GO:0006952-defense response	 1.70	 0.116900
6	 4.7	 GOTERM_BP_FAT	 GO:0048666-neuron development	 2.14	 0.007170
		  GOTERM_BP_FAT	 GO:0048812-neuron projection morphogenesis	 2.46	 0.011071
		  GOTERM_BP_FAT	 GO:0007409-axonogenesis	 2.54	 0.011999
7	 4.5	 GOTERM_CC_FAT	 GO:0044459-plasma membrane part	 1.36	 6.55e-04
		  GOTERM_CC_FAT	 GO:0005887-integral to plasma membrane	 1.42	 0.054804
		  GOTERM_CC_FAT	 GO:0031226-intrinsic to plasma membrane	 1.41	 0.057849

Table IV. DAVID clusters obtained with downregulated genes.

	 Enrichment			   Fold
Cluster	 score	 Category	 Term	 enrichment	 p-value

1	 19.0	 SP_PIR_KEYWORDS	 Signal	 2.16	 2.39e-19
		  UP_SEQ_FEATURE	 Signal peptide	 2.16	 8.97e-19
		  UP_SEQ_FEATURE	 Disulfide bond	 2.39	 2.56e-18
2	 9.5	 GOTERM_BP_FAT	 GO:0009611-response to wounding	 3.28	 1.14e-07
		  GOTERM_BP_FAT	 GO:0006952-defense response	 3.01	 5.49e-07
		  GOTERM_BP_FAT	 GO:0006954-inflammatory response	 3.80	 5.78e-06
3	 7.8	 SP_PIR_KEYWORDS	 Glycoprotein	 1.95	 2.13e-17
		  UP_SEQ_FEATURE	 Glycosylation site:N-linked (GlcNAc)	 1.97	 2.00e-16
		  UP_SEQ_FEATURE	 Topological domain:Extracellular	 1.88	 2.68e-06
4	 7.4	 GOTERM_CC_FAT	 GO:0005578-proteinaceous extracellular matrix	 3.55	 5.92e-06
		  GOTERM_CC_FAT	 GO:0031012-extracellular matrix	 3.40	 7.90e-06
		  SP_PIR_KEYWORDS	 Extracellular matrix	 4.14	 3.77e-05
5	 5.6	 GOTERM_CC_FAT	 GO:0005886-plasma membrane	 1.53	 9.68e-06
		  GOTERM_CC_FAT	 GO:0005887-integral to plasma membrane	 1.91	 6.95e-04
		  GOTERM_CC_FAT	 GO:0031226-intrinsic to plasma membrane	 1.87	 0.001409
6	 4.7	 SP_PIR_KEYWORDS	 Cell adhesion	 3.03	 7.46e-04
		  GOTERM_BP_FAT	 GO:0007155-cell adhesion	 2.13	 0.111463
		  GOTERM_BP_FAT	 GO:0022610-biological adhesion	 2.13	 0.113672
7	 4.5	 SP_PIR_KEYWORDS	 EGF-like domain	 5.62	 9.60e-10
		  INTERPRO	 IPR013032:EGF-like region, conserved site	 4.10	 3.54e-06
		  INTERPRO	 IPR000742:EGF-like, type 3	 5.03	 4.69e-06
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and regulation of actin cytoskeleton. When both up- and down-
regulated genes were analyzed, focal adhesion, α6β4 integrin 
signaling and type II interferon signaling were significantly 
affected. With cytogenetic band analysis, we found chromo-
somal arm 4q and 1q31 band to be significantly enriched in the 
list of upregulated genes. Those on the downregulated list were 
enriched at the 12p12 band.

qRT-PCR validation. Validation of the expression pattern 
of 48 genes obtained by microarray analysis was performed 
by qRT-PCR (available upon request). In all cases, the trend 
observed in the microarrays (upregulation, downregulation or 
no deregulation) was confirmed by our experiments (Fig. 4). 
The fold change was usually larger in the qRT-PCR than in the 

microarray analysis, a phenomenon that is well-established due 
to the wider dynamic range of the qRT-PCR technique (40 and 
available upon request).

NF2 mutational analysis by PCR/dHPLC, MLPA and LOH 
of the 22q status. A total of 17 tumors (55%) displayed NF2 
sequence variations by PCR/dHPLC, 3 of which had 2 muta-
tions, with a total of 20 mutations detected. Ten small deletions 
between 1 and 15 bp were the most common alteration (50%), 
followed by 9 point mutations (45%) and 1 small insertion 
(3%). The most frequent mutation detected was the nonsense 
p.Arg57Stop (nucleotide change c.169C>T), which was present 
in 3 tumors at exon 2 of the NF2 gene. Tumor 399, present in 
a patient with NF2, also showed the mutation in the peripheral 

Table V. Axon guidance in vestibular schwannomas.

Pathway	 Description

Semaphorin interactions	 The semaphorins 7A, 6D and 5A were overexpressed, as was the 5A receptor
	 plexin-B3. In this pathway, Talin-1 (TLN1) also appeared to be overexpressed.

Neural cell adhesion	 NCAM1 gene, ribosomal protein S6 kinase, 90 kDa, polypeptide 5 (RPS6KA5) and
molecule 1 (NCAM) signaling	 son of sevenless homolog 1 (SOS1) were overexpressed, presumably upregulating
for neurite outgrowth	 MAP/kinases cascades according to this pathway.

Netrin-1 signaling	 These genes play a vital role in axon guidance and neural migration during the
	 development of the nervous system. The NCK1 [which associates with the actin
	 cytoskeleton mediated by DCC (deleted in colorectal cancer) and recruits Rac,
	 Cdc42 and their effectors Pak and N-WASP in neurons] and the NTN4 genes were
	 overexpressed.

L1 cell adhesion molecule	 L1CAM, activated leukocyte cell adhesion molecule (ALCAM), NCAM1 and
(L1CAM) interactions	 contactin 1 (CNTN1) were upregulated, while EGFR and doublecortin (DCX)
	 were downregulated.

Robo receptor signaling	 The slit homolog 2 (SLIT2) was upregulated in this pathway, while its receptor,
	 ROBO1, appeared to be downregulated.

Table VI. Signal transduction in vestibular schwannomas.

Pathway	 Description

G protein-coupled receptor	 There are more than 800 GPR genes in the genome. These receptors activate adenyl
(GPCR) signaling	 cyclase to produce cAMP from ATP, or in the phosphatidylinositol pathway to pro-
	 duce a cell response, depending on the context. Sixteen of these receptors were
	 deregulated in our tumor series (available upon request).

EGFR signaling	 This receptor was markedly downregulated. In addition, SOS1 (present in cytosol)
	 was upregulated in this pathway.

ErbB2 signaling	 The ligand NRG1 and its receptors ErbB2 and ErbB3 were upregulated. The ErbB2
	 interacting protein (ERBB2IP) was also upregulated. However, the ErbB4 signaling
	 pathway was not deregulated.

Integrin cell surface interactions	 Integrin αIIb β3 signaling presented four upregulated elements. The amyloid β (A4)
	 precursor protein-binding family B member 1-interacting protein (APBB1IP) and
	 downstream effector Talin-1 (TLN1) were upregulated. This upregulation provoked
	 the activation of integrin αIIb β3 and the subsequent activation of tyrosine-protein
	 kinase SYK (SYK), which was also upregulated, by Src.
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blood sample. No other mutation was detected in more than 
one sample. Most sequence changes were at exon 4 (5 cases), 
followed by exon 2 (4 cases) and exon 5 (2 cases); exons 3, 
6 and 9 were not affected by any mutation. The first half of 
the NF2 gene (exons 2‑8) accumulated 65% of the total muta-
tions. Using 5 microsatellites markers, an LOH of 22q11-q12.3 
occurred in 18 of the 31 (58%) tumors. In 13 cases, the LOH 
appeared along with a PCR/dHPLC alteration. In addition to 
the cases that were compatible with the total loss of an NF2 
allele, the MLPA for analysis of the NF2 gene (SALSA P044), 
showed deletions of at least one exon in 6 tumors (19%). In 
2 of these cases, the MLPA deletion corresponded to exon 2, 
which also displayed both sequence variations (at exon 2) and 
LOH of 22q, suggesting that this particular finding by MLPA 
could be considered an artifact. Alternatively, the presence of 
mosaicism in these tumors should not be discarded.

In conclusion, we found at least 2 inactivating hits in the 
NF2 tumor suppressor gene in 16 (52%) specimens (Table VII). 
Two of these specimens were exclusively due to 2 mutations in 
the NF2 sequence; 2 of the tumors had 2 hits due to an MLPA 
alteration (excluding the possible artifact) adding to the LOH 
of 22q. The remainder presented this pattern due to a combina-
tion of LOH of 22q and a sequence mutation found by MLPA 
and/or PCR/dHPLC. Seven cases (23%) displayed a single 
hit; 4 with LOH of 22q, 2 with a mutation detected by PCR/
dHPLC and 1 with a deletion found by MLPA. Eight out of 
the 31 (26%) tumors in our series did not show any molecular 
alteration in the NF2 gene.

Alternative splicing analysis. In addition to gene analysis, 
gene ST arrays offer the possibility of a limited analysis of 
alternative splicing in several genes. Therefore, we performed 
the analysis on individual gene probes. We found neurexin 
genes showing alternative splicing in tumors compared with 
the pattern shown by controls. All 3 neurexins presented a 

long (α) and short (β) form coded by 2 different promoters, 
which may generate more than 1,000 isoforms through 
alternative splicing. In the neurexin-1 gene (NRXN1), tran-
script α (NM_004801) showed upregulation, while there was 
no variation in the expression of specific probes for tran-
script NM_138735. The neurexin‑2 gene (NRXN2) showed 
downregulation of 3 out of the 23 probes of the α isoform 
(NM_015080) and no change in the β isoform (NM_138734). 
The neurexin‑3 gene (NRXN3) showed upregulation of the 
β isoform NM_138970 and downregulation of the α isoform 
NM_004796-specific probes. Finally, the neuroligin‑4X gene 
(NGLN4X) presented an overexpressed NM_181332 isoform 
and showed no changes in NM_020742.

Molecular and clinical correlation with arrays. The correla-
tions between the molecular information of the tumor and the 
data from the microarray study were as follows: NF2 mutated 
by dHPLC analysis vs. not mutated; NF2 mutated by both 
dHPLC and MLPA P044 vs. not mutated; 22q LOH present 
vs. no 22q LOH; 2 or more hits in NF2 vs. 1 or no hits. In 
each comparison, a group of 1 to 15 genes with significant 
p-values appeared to be deregulated (available upon request); 
however, none of the genes were deregulated when the p-value 
was Bonferroni‑corrected.

The correlations with clinical features included the 
following: male vs. female; homogeneous vs. heterogeneous 
vs. cystic tumor; NF2 syndrome‑associated tumor vs. sporadic; 
smokers vs. non-smokers; high body mass index (BMI) 
vs. normal or low BMI; all variations in the 4 grades of the 
KOOS scale; involvement of the internal auditory canal or lack 
thereof; brainstem compression or lack thereof; pre-operative 
audiological class (in 4 groups); and left-side vs. right-side 
tumor. No significant Bonferroni-adjusted deregulated genes 
were found using these clinical outcomes, with the excep-
tion of Y-chromosome genes when males and females were 

Figure 4. Microarray and qRT-PCR comparison. Fold change of 33 genes obtained by both microarray (black lines) and qRT-PCR analysis (grey lines). Values 
more than or equal to 1 represent upregulation and more than 1 downregulation in schwannomas. By the qRT-PCR method, gene deregulation was usually 
higher, due to the wider dynamic range of this technique compared to the microarray analysis.
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compared. No exclusive clinicopathological similarities were 
found within schwannoma groups 1, 2-I and 2-II, even with the 
3 NF2-associated samples distributed among all groups.

Discussion

We performed a microarray analysis and validation by 
qRT‑PCR on 31 vestibular schwannomas and 9 control samples, 
in order to reveal targets and clues for the treatment of this 

neoplasm. Describing a global mRNA status in a single article 
is an impossible goal. We therefore selected genes that were 
well‑established as deregulated in these tumors to verify our 
results and then focused on deregulated genes in other tumors, 
as well as in our series, that had been insufficiently studied or 
not studied at all in schwannomas, such as MET, AR or CAV1.

NRG1 and ErbB2-ErbB3 signaling pathway, a verification 
of deregulation. In 2003, malignant peripheral nerve sheath 

Table VII. Alterations detected in each tumor sample.

				    Peripheral		  NF2 hits
Sample	 22q statusa	 Nucleotide	 Codon	 blood status	 MLPAb	 detectedc

350	 LOH	 169C>T	 p.Arg57Stop	 -	 -/del ex.2	 2
352	 LOH	 447G>A	 p.=	 -	 +/-	 2
354	 LOH	 -/-	 -	 -	 +/del ex.14-17	 2
369	 N	 -/-	 -	 -	 -/-	 0
371	 LOH	 1592delA		  -	 -/-	 2
			   p.Lys531Argfs*

373	 LOH	 663C>G	 p.Tyr221Stop	 -	 +/-	 2
374	 LOH	 IVS10+1G>A	 -	 -	 +/-	 2
399	 LOH	 169C>T	 p.Arg57Stop	 Mutated	 +/del ex.2	 2
407	 N	 -/-	 -	 -	 -/-	 0
417	 N	 -/-	 -	 -	 -/-	 0
422	 LOH	 737delC	 p.Pro246Leufs*	 -	 +/-	 2
437	 LOH	 401delC	 p.Pro134Leufs*	 -	 +/del ex.4	 3
444	 LOH	 IVS4-1 G>A	 -	 -	 +/-	 2
447	 LOH	 1439_1446+19del27	 p.Thr480Serfs*	 -	 +/-	 2
449	 LOH	 436_443del8	 p.Val146Glnfs*	 -	 -/-	 2
450	 LOH	 1076insT	 p.R359Mfs*	 -	 +/-	 2
458	 LOH	 469G>A	 p.Ser156Asn	 -	 +/del ex.5.14	 4
		  467_476del10	 p.P155Qfs*

467	 N	 -/-	 -	 -	 -/-	 0
471	 N	 -/-	 -	 -	 -/-	 0
473	 LOH	 -/-	 -	 -	 -/-	 1
474	 N	 -/-	 -	 -	 -/del ex.4	 1
482	 LOH	 -/-	 -	 -	 +/-	 1
486	 N	 169C>T	 p.Arg57Stop	 -	 -/-	 2
		  IVS14-26del22	 -
488	 N	 -/-	 -	 -	 -/-	 0
490	 N	 1230_1243del14	 p.Gln410Hisfs*	 -	 -/-	 1
491	 N	 -/-	 -	 -	 -/-	 0
505	 N	 206delA	 p.Lys69Argfs*	 -	 -/-	 1
506	 N	 -/-	 -	 -	 -/-	 0
507	 N	 414delT	 p.Val139Cysfs*	 -	 -/-	 2
		  1600C>T	 p.His534Tyr	 Mutated
509	 LOH	 -/-	 -	 -	 +/-	 1
510	 LOH	 -/-	 -	 -	 -/-	 1

Consequences of mutations are predicted based on nucleotide change detected by PCR/dHPLC. aLOH, loss of heterozygosity; N, normal 
constitution. bA ‘-’ suggest normal constitution, while a ‘+’ supports the LOH by MLPA. cNF2 hits are calculated adding each alteration. MLPA 
deletions, regardless of the number of exons, are considered as +1. When exon 2 showed deletion by MLPA in conjunction with mutation of 
this exon and LOH, it was not taken into account when counting the NF2 hits.
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tumors were found with constitutively activated NRG1/ErbB 
signaling (41). This pathway was later reported to be activated in 
schwannomas (42,43). Our results concur with those of previous 
studies regarding gene expression values compatible with 
overexpression (NRG1: 28.6-fold, p=2.94e-5; ErbB2: 4.38‑fold, 
p=2.94e-5; ErbB3: 6.87-fold, p=8.54e-5). Ligand NRG1 binds 
to the ErbB2 receptor, which causes the ligand to bind with 
ErbB3 and downstream signaling leads to Schwann cell 
survival, migration, proliferation and differentiation (reviewed 
in 44). Merlin, which is presumably absent in all schwan-
nomas, has been found to block ErbB2-Src signaling (45). We 
therefore validated the NRG1 and ErbB2-ErbB3 signaling 
pathway, which was previously reported and well-established 
as deregulated in schwannomas, using arrays and qRT-PCR, 
demonstrating that although we obtained control nerves from 
different regions (including the sensory and motor branches), 
our results are in agreement as regards this pathway.

TGFβ and PAK signaling. A member of this pathway is the 
ErbB2 interacting protein (ERBB2IP), which was upregulated 
in our series (2.41-fold, p=0.023). This protein regulates 
signaling and myelination (46) and has been found to cooperate 
with merlin by blocking PAK2 activation induced by TGFβ 
signaling (47). Our results demonstrated that PAK2 was slightly 
upregulated (1.45-fold, p=0.006805) and TGFβ3 was down-
regulated (-8-fold, p=2.25e-5). Moreover, TGFβ1, TGFβR1 and 
TGFβR2 were upregulated in schwannomas, in contrast with 
previous reports, where no evident changes were observed (48). 
In contrast to PAK2 expression, PAK3 was downregulated 
(-76‑fold, p=4.02e-7) and PAK1 was not affected. Thus, TGFβ 
and PAK signaling may cooperate in schwannoma develop-
ment and/or maintenance, although further research is required 
to elucidate the underlying mechanism.

EGFR downregulation, a controversial state. In contrast to 
ErbB2 and ErbB3, EGFR (another receptor of this family) 
was downregulated in schwannomas (-17.3-fold, p=2.26e‑12). 
Previous studies have suggested that this receptor is mediated 
for internalization and is retained in an insoluble membrane 
compartment by merlin via NHE-RF1 (SLC9A3R1) (11,49). 
The expression of EGFR seems to be restrained in schwan-
nomas. However, its function as an activator of cell 
proliferation cannot be ruled out, since EGFR may still be 
signaling downstream in a merlin-absent context, despite the 
lack of proliferation of the human schwannoma cells following 
exposure to the ligand EGF (50), in contrast to non-tumoral 
vestibular cells (51). Previous studies have described no EGFR 
expression (52,53), whereas other studies have shown EGFR 
upregulation (54). Therefore, no firm conclusion was reached 
as regards the role of this receptor in schwannomas.

CAV1 downregulation: A broad spectrum of mechanisms. 
Another proposed pathway for the internalization of EGFR is 
CAV1-mediation followed by DNA damage (55). CAV1 encodes 
for caveolin-1, a protein involved in caveolae formation. We 
demonstrated that this gene is downregulated in schwan-
nomas (-12.4-fold, p=2.27e-5), in agreement with the results 
of Aarhus et al (25). CAV1 loss accelerates proliferation and 
cooperates in oncogenic transformation  (56). Furthermore, 
Brennan et al (57) proposed a model by which desmoglein 2 

(DSG2) could be cleared from the plasma membrane and 
possibly activate mitogenic cell signaling through its interaction 
with CAV1. In a CAV1-loss context, these desmogleins could 
disrupt and affect cell-cell adhesion. Our results showed the 
downregulation of both DSG2 (-70-fold, p=2.94e-5) and CAV1 
genes. Thus, the role of CAV1-DSG2 does not appear to be 
paramount in schwannomas, suggesting that expression changes 
in these genes must be related to other biological consequences. 
CAV1 expression variants may participate in other pathways 
through different mechanisms, as explained below.

Heat shock protein deregulation; a consequence of the lack 
of caveolin-1? Recently, Ciocca et al (58) showed that breast 
tumor onset and reduced apoptosis driven by Her-2̸neu 
expression were accelerated in mice lacking CAV1; the 
absense of CAV1 alters the expression of several stress‑related 
proteins, such as heat shock proteins (HSPs). In our series, 
5 HSPs were deregulated (HSPA12A: 3.31-fold, p=4.34e-4; 
HSPA13: 2.54-fold, p=0.0035; HSPA4L: 2.38-fold, p=1.17e-4; 
HSPB6: -2.19-fold, p=5.76e-4; HSPB8: -3.77-fold, p=0.001), 
suggesting that the CAV1/HSPs interaction may also play a 
role in schwannomas.

Immunoglobulin superfamily and L1 family proteins. The 
HEPACAM gene, which encodes a cell adhesion molecule 
of the immunoglobulin family, was upregulated (14.9-fold, 
p=6.58e-4), in contrast to malignant tumors such as hepatocel-
lular carcinoma, in which it is usually downregulated (59). This 
protein interacts with the F-actin cytoskeleton and cell-extra-
cellular matrix and is required to modulate cell motility (60). 
CAV1 downregulates HEPACAM signal transduction in lipid 
rafts/caveolae (61), a common mechanism of action for this 
gene. Other members of the immunoglobulin superfamily, in 
particular L1 family proteins, were also upregulated in our 
experiments. These members included L1 (L1CAM: 38.31-fold, 
p=2.94e-5), CHL1 (CHL1: 8.51-fold, p=1.52e-4) and NrCAM 
(NRCAM: 5.50-fold, p=2.26e-4). These results coincide with 
those previously reported (62). Neurofascin (NFASC), the last 
L1 family member, presented a normal expression level, while 
its associated protein doublecortin (DCX) was downregulated 
(-2.46-fold, p=5.93e-4). The L1 family has been shown to 
participate mainly in nervous system processes, such as neurite 
outgrowth (63), but has also been involved in non-neural roles, 
such as cancer progression (64). Therefore, HEPACAM gene 
overexpression concomitant with CAV1 downregulation may 
participate in schwannoma development and/or maintenance 
and some members of the immunoglobulin superfamily 
appear deregulated in schwannomas.

Androgen receptor downregulation: A hormonal cause or 
consequence of schwannomas? Androgen receptor for dihy-
drotestosterone (AR), which was downregulated in our series 
(-15.7-fold, p=2.94e-5), is a steroid hormone nuclear receptor 
and is a target in prostate cancer treatment by androgen 
deprivation. This type of cancer frequently evolves into a 
resistant androgen-independent prostate cancer by mutations 
in AR (65). An androgen-dependent interaction has been estab-
lished between the NH2 terminus region of CAV1 and the 
NH2 terminal domain and ligand-binding domain of AR (66). 
CAV1 is also a co-activator of AR and may enhance AR 
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ligand-dependent transcriptional activation in the presence of 
androgen (67). Our results demonstrated that the mRNA levels 
of both transcripts were downregulated, suggesting that there 
may be a mechanism by which AR and CAV1 are related to 
the development and/or maintenance of schwannomas. There 
were no differences between males and females in terms of AR 
at the mRNA level. Dexamethasone, frequently used as post-
operative treatment to decrease brainstem and cranial nerve 
inflammation, may downregulate AR levels. In the present 
series, none of the patients received this drug prior to surgery.

Apoptotic PAWR downregulation. In the absence of androgen 
signaling or AR silencing, the apoptotic pathway should be 
activated by prostate apoptosis response 4 (PAWR) through 
the transcription of c-FLIP, as previously reported  (68). 
PAWR is also an activator of myosin phosphatase (69) and can 
dephosphorylate merlin in non-mutated tissues and recover 
its anti-tumor function. In our study, PAWR was found to be 
underexpressed (-11.9-fold, p=2.94e-5), as previously reported 
in other tumors, such as renal cell carcinoma (70) and neuro-
blastoma  (71). Likewise, PAWR-null mice were shown to 
exhibit an increased rate of developing tumors, particularly in 
hormone-dependent tissues (72). Therefore, in schwannoma 
cells, apoptosis mediated by CAV1-AR-PAWR does not seem 
to occur due to the downregulation of PAWR mRNA in the 
tumor cells. There must, therefore, be another role for these 
downregulated molecules in schwannoma.

MET pathway, a core network in schwannomas. At the 
protein level, the AKT1 signaling pathway has been shown to 
restrain PAWR in the cytosol by phosphorylation, inhibiting 
its function as a proapoptotic factor in the nucleus (73). In 
schwannomas, the AKT pathway has been found to be acti-
vated (74) and it is well established that PI3K is an activator 
of AKT (75). Phosphoinositide-3-kinase interacting protein 1 
(PIK3IP1)  (76), an inhibitor of PI3K, was upregulated 
(4.76‑fold, p=2.94e-5) as was the PI3K activator MET (4.5-fold, 
p=2.94e-5) and related genes. Therefore, PI3K activation of 
AKT seems possible via MET signaling based on the mRNA 
analysis, although PIK3IP1 is supposed to block PI3K. MET is 
a tyrosine kinase receptor involved in the activation of several 
cellular mechanisms, such as proliferation, motility, migration 
and invasion through different pathways, depending on the acti-
vating signal. MET is transactivated by several mechanisms, 
such as its ligand HGF, ErbB3 receptor, α6β4 integrins, CD44 
and G-coupled proteins (reviewed in 77). In schwannomas, 
MET and its ligand HGF were expressed in all analyzed 
samples, as determined by qRT-PCR and immunohistochem-
istry (78), although no healthy tissue was used as the control; 
therefore, no alterations of expression were established. CAV1, 
which is downregulated in schwannomas, has been found to 
inhibit MET signaling in osteosarcoma transformation (79), 
which suggests that if this mechanism is analogous, CAV1 
downregulation could trigger MET signaling in schwannomas. 
Moreover, the neural development molecules semaphorin 5A 
and plexin-B3 were overexpressed (SEMA5A: 3.14‑fold, 
p=3.64e-5; PLXB3: 2.28‑fold, p=5.05e-5) and able to trigger the 
intracellular signaling of MET (80). Finally, secreted phospho-
protein 1̸osteopontin (SPP1), an enhancer of MET activator 
protein CD44, is upregulated (5.8‑fold, p=9.23e‑4). Due to its 

involvement in several deregulated signals, the MET pathway 
seems to exert a pivotal role in schwannoma development and 
CAV1 may also exert its protumoral effect in this manner.

Absence of merlin may be due to more than just mutational 
mechanisms. We detected 22q LOH alterations in 58% of 
the samples, a finding that agrees with previous reports (4). 
Furthermore, 64.5% of the tumors had at least 1 hit in the 
sequence analysis by the combination of PCR̸dHPLC and 
MLPA. This is also in agreement with previously reported 
data (4), although the percentage is lower in comparison to other 
studies (25). Despite the molecular analysis performed, 26% of 
the samples did not exhibit mutations and NF2 mRNA expres-
sion was not manifestly deregulated (available upon request), as 
in previous reports (25). Therefore, other mechanisms may cause 
the complete absence of merlin in schwannomas (5). The merlin 
protein is degraded by ubiquitination in advanced breast cancer 
due to osteopontin-initiated signaling via AKT (14). As PI3K/
AKT activation occurs through ErbB3 and MET (77), which, as 
mentioned above, was upregulated in our series, we suggest that 
SPP1 upregulation, in addition to the mutations of the NF2 gene 
and 22q LOH, may lead to the complete absence of the merlin 
protein in schwannomas, even in samples with no hits in the NF2 
gene and taking into consideration that epigenetic inactivation of 
this gene seems to be a rare event in schwannomas (17-21).

Schwannoma cells are pre-myelinated cells. The development 
of myelinating and non-myelinating Schwann cell lineages 
includes 3 states: Neural crest cells that give rise to the Schwann 
cell precursors, which evolve into the immature Schwann 
cells (81). Our results using the database web tools demonstrate 
enriched axonogenesis and neuronal development, suggesting 
that schwannoma cells may be in a pre-differentiation state, as 
previously reported (62). In light of our results, the expression 
pattern obtained in schwannomas seems to be intermediate 
between the Schwann cell precursor and the neural crest cell. 
Both states, as well as schwannomas, exclusively overexpress 
α4-integrin (ITGA4, 1.8-fold, p=0.003), AP2a (TFAP2A, 
1.41-fold, p=0.009) and Ncad (CDH2, 4.5-fold, p=5.42e-4). 
Cad19 (CDH19), which is only expressed in the Schwann cell 
precursor (82), is overexpressed in schwannomas (10.8-fold, 
p=6.54e-5). However, BFABP, DHH, P0, PMP22 and PLP are 
not overexpressed in schwannomas or neural crest cells, but 
only in Schwann cell precursors. Therefore, based on these 
findings, it is difficult to specify which state (between the 
neural crest and Schwann cell precursor) is most similar to that 
found in schwannomas; however, it seems clear that the gene 
expression pattern of these tumors corresponds to a previous 
state of myelinating Schwann cells.

Vestibular schwannoma grouping; fact or artifact? Similarly 
to previous reports (25,83), 2 mRNA expression groups in 
schwannoma were found in our study; however, although 
several genes were differentially expressed between groups of 
schwannomas, no major differences were observed between 
the groups. Furthermore, the absence of deregulated genes at 
the Bonferroni-adjusted level (except for males vs. females) 
between different tumor characteristics (e.g., homogeneous, 
heterogeneous or cystic; schwannomas from NF2 patients and 
sporadic; and different tumor sizes) indicate that, at least at the 
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mRNA expression level, there are no significant differences 
among vestibular schwannomas based on our experiments. 
Although 2 groups were identified, the homogeneity of the 
expression exhibited by several genes suggests that a potential 
therapeutic target could be suitable for all NF2 and sporadic 
vestibular schwannoma patients.

Gene NF1. NF1 was faintly upregulated (1.88-fold, p=0.012). 
The transcription factor target analysis using the WebGestalt 
tool showed that this gene was enriched, suggesting that schwan-
nomas may also be related to NF1 deregulation.

Alternative splicing; a possible mechanism of tumorigenesis 
in schwannomas. Neurexins and neuroligins play essential 
roles in the development and function of the synapses in the 
nervous system, as well as in vessel tone and angiogenesis 
in the vascular system (84). Our results demonstrate a clear, 
distinct pattern in tumors compared with controls in the 
various isoforms available in the Gene 1.0 ST arrays. Thus, 
different isoforms of neurexins and neuroligins may appear 
in schwannomas compared with non-tumoral nerves. Further 
studies are warranted, with more specific arrays for alternative 
splicing, to identify other genes exhibiting this phenomenon.

Conclusions. In conclusion, based on our array expression 
pattern of 31 tumors and 9 controls and the validation of 
48 genes by qRT-PCR, we discovered that the expression 
profile of vestibular schwannomas returns to a prior state which 
is similar to a Schwann precursor cell state rather than to mature 
myelinating Schwann cells. Our findings also demonstrate that 
the MET signaling pathway, which is possibly enhanced by the 
upstream signaling of SPP1, ITGA4̸B6, PLEXNB3̸SEMA5A 
and CAV1, appears to play a paramount role in the develop-
ment and maintenance of vestibular schwannoma. A hormonal 
effect may also be involved in tumor formation, based on the 
deregulation of androgen receptor (AR). In addition, there 
were no expression differences between NF2-associated 
and sporadic tumors. Finally, osteopontin upregulation may 
contribute to merlin degradation in schwannomas with no 
apparent genetic (22q LOH and/or mutation) NF2 inactivation.
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