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Abstract. The linear-quadratic model (LQ model) provides a 
biologically plausible and experimentally established method 
to quantitatively describe the dose-response to irradiation in 
terms of clonogenic survival. In the basic LQ formula, the 
clonogenic surviving fraction Sd̸S0 following a radiation dose 
d (Gy) is described by an inverse exponential approximation: 
Sd̸S0 = e-(αd+βd2), wherein α and β are experimentally derived 
parameters for the linear and quadratic terms, respectively. 
Radiation is often combined with other agents to achieve radio-
sensitisation. In this study, we reviewed radiation enhancement 
ratios of hyperthermia (HT), halogenated pyrimidines (HPs), 
various cytostatic drugs and poly(ADP-ribose) polymerase‑1 
(PARP1) inhibitors expressed in the parameters α and β derived 
from cell survival curves of various mammalian cell cultures. 
A significant change in the α/β ratio is of direct clinical interest 
for the selection of optimal fractionation schedules in radiation 
oncology, influencing the dose per fraction, dose fractionation 
and dose rate in combined treatments. The α/β ratio may 
increase by a mutually independent increase of α or decrease of 
β. The results demonstrated that the different agents increased 
the values of both α and β. However, depending on culture 
conditions, both parameters can also be separately influenced. 
Moreover, it appeared that radiosensitisation was more effec-
tive in radioresistant cell lines than in radiosensitive cell lines. 
Furthermore, radiosensitisation is also dependent on the cell 
cycle stage, such as the plateau or exponentially growing phase, 
as well as on post-treatment plating conditions. The LQ model 
provides a useful tool in the quantification of the effects of 
radiosensitising agents. These insights will help optimize frac-
tionation schedules in multimodality treatments.
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1. Introduction

The treatment of cancer by ionizing radiation is frequently 
combined with chemotherapy as well as with other agents, 
in an effort to increase effectiveness. The selection of these 
combinations has been considerably based on experimental 
studies with cells in culture and experimental tumours in 
animals. These studies were designed to obtain insights into 
the mechanisms of interaction and to derive quantitative infor-
mation on potential methods of enhancing effectiveness, either 
through a decrease in cell survival in vitro or an increase in 
tumour response in vivo.

The results of experiments on combined treatments of cells 
or tumours are generally expressed in a single sensitisation 
or enhancement factor (ER), as calculated from dose‑effect 
relationships for the endpoints assessed, following treatment 
with or without the combined agents. However, such a single 
sensitisation factor provides only part of the information that 
can be derived from the complete experimentally assessed 
dose-effect relationships. Different plating conditions were 
investigated. Cells were plated prior to irradiation or combined 
treatment (ppi), plated immediately after irradiation or 
combined treatment (ip) or plated with a 24‑h delay (dp) to 
establish potentially lethal damage repair (PLDR).

Quantitative information derived from numerous studies 
on cultured cells, tumours and normal tissues in animals, 
can be conveniently analysed in terms of mathematical 
dose-effect relationships based on the linear-quadratic (LQ) 
model of cell reproductive death as a function of the radiation 
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dose (1-4). The LQ formula for cell reproductive death, the 
surviving fraction (Sd) of cells exposed to radiation dose (d), 
compared to the survival of unirradiated cells (S0) is described 
by an inverse exponential approximation: Sd̸S0 = e-(αd+βd2) and 
contains two parameters, α (Gy-1) and β (Gy-2). The initial 
slope of cell survival curves and the effectiveness at low 
doses is determined by α, while β represents the increasing 
contribution from cumulative damage, presumably due to the 
interaction of two or more lesions induced by separate ionizing 
radiations (1). DNA double‑strand breaks (DSBs) are generally 
assumed to be the most relevant lesions.

The α/β ratio represents the dose at which the two terms 
contribute equally to the total effect. Data from numerous 
studies on cells, tumours and normal tissues have demonstrated 
that the values of α/β usually range between 3 and 10 Gy. Since 
the dose fractions applied in cancer radiotherapy are mostly in 
the 1.5‑2.5 Gy range, it seems clear that the clinical effect of 
radiotherapy on tumours is largely determined by the linear 
parameter α.

However, in experimental studies on the enhancement 
of radiation treatments by chemical or physical agents, the 
enhancement ratios are typically calculated as the ratio of 
doses required to obtain equal effects at dose levels for which 
the effects can be most easily assessed experimentally, namely 
at doses between 5 and 10 Gy. At these high‑fraction doses, 
the effectiveness is largely determined by the quadratic term 
βd2 and not by the linear term αd. The common use of a single 
ER is based on the implicit assumption that any radiosensitiser 
changes both LQ parameters equally, although this assump-
tion may not hold for all radiosensitising agents. It is therefore 
of interest to analyse enhancement factors for the linear and 
quadratic parameters separately, to evaluate their impact at 
the doses commonly applied in radiotherapy. The parameters 
α and β were determined from survival curves using SPSS 
statistical software performing a fit to the data according to the 
LQ formula by multiple regression analysis.

In this review, radiosensitisation data from our own labora-
tory are presented and subsequently discussed and compared 
to the data from the literature. In a number of former studies 
conducted by our laboratory, radiation sensitisation by a 
variety of agents in different types of mammalian cells has 
been investigated and cell survival curves have been analysed 
using the LQ model (5-11). Radiation enhancement could thus 
be assessed in separate α- and β-values and in the α/β ratio. 
The results for various radiosensitising agents are presented in 
the following sections.

2. Hyperthermia

Radiosensitisation by hyperthermia. Hyperthermia (HT) 
refers to heat treatment of cancer cells or tumours by increasing 
the temperature to a level between 39 and 45˚C. It is used in 
combination with chemo- and/or radiotherapy and it is has 
been shown to enhance their anticancer effects experimentally 
and clinically (12-16). A number of in vitro studies on the 
combination of HT and radiation have demonstrated a syner-
gistic interaction between the two modalities, particularly at 
higher temperatures (>42˚C) (17‑19). This interaction possibly 
results from the inhibition of the repair of radiation‑induced 
DNA damage by HT (20,21). The sequence of combined radia-

tion and HT treatment is important. Optimal sensitisation is 
achieved when radiation and HT are applied simultaneously or 
within a short time interval (22). Radiotherapy with concomi-
tant HT is not always feasible in clinical practice. Therefore, 
in our experiments, HT was also applied sequentially, imme-
diately following radiation treatment.

Despite the clinical goal to realise cytotoxic temperatures 
as high as 43˚C, in practice, tumour temperature distributions 
are heterogeneous. In large areas of the tumour, temperatures 
are often <43˚C. Nonetheless, satisfactory results have been 
obtained in locally advanced cervical cancers treated with 
radiotherapy plus mild HT <43˚C  (13). Mild temperatures 
may have more subtle effects than high temperatures, such as 
tumour reoxygenation (23-26). We recently discovered that 
mild HT (42˚C for 1 h) transiently breaks down the BRCA2 
protein (27). In the following sections, the effects of HT for 1 h 
at 41 or 43˚C on the LQ parameters are summarized. Several 
different cell types have been studied.

Effect of HT on radiosensitivity of SiHa and RKO cells. The 
SiHa cell line is derived from a human cervical carcinoma. 
The cells were plated prior to treatment. Mild HT alone (41˚C 
for 1 h) had almost no effect and resulted in a surviving frac-
tion of 0.95±0.2. As can be observed in Fig. 1 and Table I, 
1 h at 41.0˚C exclusively enhanced the quadratic parameter, 
β, by a factor of 3.9. The value of the linear parameter, α, was 
hardly influenced. HT treatment at 43˚C for 1 h significantly 
increased the values of both parameters.

The RKO cell line, derived from a human colon cancer, 
is relatively sensitive to HT treatment. HT alone for 1 h at 
43˚C decreased the relative survival to <0.01 and combination 
with radiation doses in excess of 5 Gy always resulted in the 
complete absence of colony formation. Mild HT alone (41˚C 
for 1 h) had little effect and resulted in a surviving fraction of 
0.8±0.4 in immediately plated (ip) and of 0.9±0.1 in delayed 
plated (dp) cells. When the cells were heated to 41˚C for 
1 h immediately prior to irradiation, a significant (P<0.001) 
enhancement of cellular radiosensitivity was observed in both 
ip (Fig. 1, left panel) and dp (Fig. 1, right panel) cells (25,28).

The effects of HT on the LQ parameters are summarized 
in Table I. The value of α increased by a factor of 1.7 to 1.8, 
while the value of β increased by a factor as high as 2.5 to 7.0. 
One must bear in mind that the quadratic component βd2 in this 
cell line is quite small and small absolute changes can result in 
large relative changes of the numerical values of β.

Effect of HT on radiosensitivity of SW-1573 cells. SW-1573 
cells are derived from a human lung tumour and are much less 
sensitive to HT than RKO cells. Studies have been carried out 
to evaluate whether pre-treatment with HT at 41 or 43˚C can 
enhance the radiosensitivity of SW-1573 cells (25). HT at 41˚C 
for 1 h without irradiation did not result in a further decrease of 
the surviving fraction for ip and dp cells, compared to irradia-
tion alone. One‑hour HT at 43˚C decreased survival to 0.5±0.1 
for ip and to 0.4±0.2 for dp cells. Pre-treatment of cells at 41˚C 
for 1 h did not affect cellular radiosensitivity of either ip or dp 
cells (Fig. 2, left panel). However, 1‑h treatment at 43˚C resulted 
in a significant radiation enhancement in both ip and dp cells 
(p<0.001; Fig. 2, right panel). In Table I, the values of the LQ 
parameters for radiation alone and for combined treatments 
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Figure 1. Radiation dose-survival curves of confluent cultures of RKO cells (human colon cancer cells) plated immediately after irradiation (ip, left panel) or 24 h 
after irradiation (dp, right panel), with or without hyperthermia pre-treatment at 41˚C for 1 h. Means with standard errors of at least three experiments are shown.

Figure 2. Radiation dose-survival curves of confluent cultures of SW-1573 cells (human lung tumour cells) plated immediately after irradiation (ip) or 24 h 
after irradiation (dp), with or without hyperthermia pre-treatment at 41˚C (left panel) or at 43˚C (right panel) for 1 h. Means with standard errors of at least 
three experiments are shown.

Table I. Values of the linear-quadratic parameters α and β, α/β ratio and enhancement factors from cells treated with ionizing 
radiation only and following combined radiation and hyperthermia (HT) treatment.

	 Treatment	 α (Gy-1)	 β (Gy-2)			 
Cells	 ˚C (h)	 control	 control	 α/β	 α-EF	 β-EF

SiHa ppi	 Sham	 0.33±0.06	 0.02±0.01	 13.8±6.2
	 HT 41 (1)	 0.31±0.05	 0.09±0.02	 3.3±0.7	 0.9±0.2	 3.9±1.6
	 HT 43 (1)	 0.76±0.04	 0.09±0.01	 8.7±0.8	 1.4±0.1	 2.7±0.5
RKO ip	 Sham	 0.55±0.09	 0.02±0.01	 27.5±14.1
	 HT 41 (1)	 0.93±0.09a	 0.05±0.02	 18.6±7.7	 1.7±0.3	 2.5±1.6
RKO dp	 Sham	 0.47±0.09	 0.01±0.01	 47.0±47.6b

	 HT 41 (1)	 0.83±0.08a	 0.07±0.02	 11.9±3.6	 1.8±0.4	 7.0±7.3
SW-1573 ip	 Sham	 0.21±0.02	 0.06±0.02	 3.5±1.2
	 HT 41 (1)	 0.06±0.02	 0.11±0.03	 0.6±0.2	 0.3±0.1	 1.8±0.8
	 HT 43 (1)	 0.49±0.04a	 0.12±0.03	 4.1±1.1	 2.3±0.3	 2.0±0.8
SW-1573 dp	 Sham	 0.09±0.02	 0.06±0.02	 1.5±1.6
	 HT 41 (1)	 0.05±0.02	 0.08±0.02	 0.6±0.6	 0.6±0.3	 1.3±0.6
	 HT 43 (1)	 0.40±0.04a	 0.11±0.03	 3.6±1.1	 4.4±1.1	 1.8±0.8

Sham, control (radiation only); ppi, plating prior to irradiation; ip, immediately plated; dp, delayed plated. aSignificant from sham P<0.05. bThe 
α/β has a large variation due to the high uncertainty of the β‑value. EF, enhancement factor.
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are summarised. HT for 1 h at 41˚C resulted in an increase 
of the β‑value by a factor of 1.3 to 1.8, while the α‑value was 
decreased. HT treatment for 1 h at 43˚C resulted in an increase 
of the α‑value by a factor of 2.3 to 4.4, while the β‑value was 
increased by a factor of 1.8 to 2.0.

3. Cisplatin

Cisplatin is a widely used anticancer drug that is often 
combined with radiotherapy (29). Cisplatin‑based chemora-
diotherapy has become standard treatment for, among others, 
locally advanced cervical carcinoma (30) and locally advanced 
non-small‑cell lung cancer (NSCLC) (31). There have been 
numerous studies on the radiation‑sensitising effect of cisplatin; 
however, the results vary from a clear cisplatin-induced radio-
sensitisation (24,25,32-34) to a merely additive effect on cell 
survival (35). Cisplatin and radiation share a common cellular 
target, DNA (36).

Cisplatin causes DNA damage by inducing the formation of 
inter- and intrastrand adducts (37). The cisplatin-DNA adducts 
may cause cell cycle arrest, inhibition of DNA replication and 
transcription and eventually, apoptosis (38). Repair inhibition 
of DNA has also been implicated (39). The most important 
repair pathways reported to be involved in cisplatin-induced 
DNA damage repair are nucleotide excision repair (NER) 
and̸or homologous recombination (HR) (40,41). An additional 
route for the repair of cisplatin-DNA interstrand adducts is the 
post‑replication̸translation repair pathway which assists the 
cell in tolerating or bypassing the lesion (42).

Irradiation causes repairable (potentially lethal) and 
non‑repairable (lethal) DNA lesions, which are independently 
induced. The ultimate effect of the repairable lesions depends 
on the competing processes of repair and misrepair. The 
PLDR is reflected by the difference in survival between ip 
and dp cells. The inhibition of PLDR has been implicated in 
cisplatin-induced radiation sensitisation (25). More specifi-
cally, cisplatin-induced radiation sensitisation is caused by the 
inhibition of the non-homologous end joining (NHEJ) pathway 
and recombination repair (38,40,43).

In this section, the radiation sensitisation of cisplatin on the 
SW‑1573 lung tumour cell line and the SiHa cervical tumour cell 
line is quantified by changes in the LQ parameters (25). Survival 
curves for SW‑1573 lung tumour cells following radiation alone 
and radiation combined with cisplatin (1 µM for 1 h) are presented 
in Fig. 3. Cisplatin was added to the cultures immediately prior 
to irradiation. The survival curves were obtained directly (ip) 
and 24 h after (dp) treatment to determine PLDR. A slight, but 
statistically significant effect of cisplatin on radiosensitivity was 
only observed in the dp cells (P=0.02). This was also described 
by an increase in the α- and β‑values (Table II). An increase 
in the α-value by a factor of 2.5 was achieved in the dp cells 
by cisplatin treatment, whereas an increase in the β‑value by a 
factor of 1.2 was observed under both plating conditions. The 
effects on the LQ parameters of different plating conditions, 1‑h 
incubation with 1 or 5 µM cisplatin and continuous incubation 
with cisplatin during the complete duration of the clonogenic 
assay, are also presented in Table II. The radiosensitizing effects 
are more evident in the SiHa cervical tumour cell line with 
1 µM continous cisplatin incubation compared to the SW‑1573 
lung tumour cell line.

4. Gemcitabine

Gemcitabine (dFdC, difluorodeoxycytidine) is a deoxy-
cytidine analogue with clinical activity in NSCLC and 
pancreatic cancer  (44-47). It requires phosphorylation to 
its active metabolites, gemcitabine-diphosphate (dF-dCDP) 
and gemcitabine-triphosphate (dF-dCTP), with the initial 
phosphorylation by deoxycytidine kinase (dCK) being the 
rate‑limiting step (48,49). dF-dCTP inhibits ribonucleotide 
reductase, the enzyme regulating the production of deoxy-
nucleotides, which are necessary for DNA synthesis and 
repair (50). Deoxynucleotide depletion leads to the increased 
incorporation of dF-dCTP into DNA, thereby blocking DNA 
synthesis (masked chain termination). Following the incorpora-
tion of dF-dCTP into DNA, an increase in the number of DNA 
single-strand breaks (SSBs), chromosome breaks and micronu-
clei has been observed (51).

In  vitro and in  vivo studies have demonstrated that 
gemcitabine is a potent radiosensitiser (39,49,52-59). However, 
in a previous study on NSCLC patients, radiotherapy with 
concurrent gemcitabine resulted in unacceptable pulmonary 
toxicity, due to the large amount of radiation delivered to the 
lungs (60). Phase I trials have demonstrated that radiotherapy 
combined with gemcitabine at lower doses is feasible without 
severe pulmonary toxicity (45,61). Its unique mechanism of 
action, lack of overlapping toxicity and favourable toxicity 
profile make gemcitabine an ideal candidate for combination 
therapy (45). There are numerous ongoing randomized studies 
in which radiotherapy is combined with gemcitabine.

Gemcitabine radiosensitisation has been investigated in 
gemcitabine-sensitive and -resistant human lung tumour cells, 
SWp and SWg, respectively, as well as in gemcitabine‑sensi-
tive and -resistant human ovarian tumour cells, A2780 and 
AG6000, respectively (62-64). Gemcitabine was administered 
24 h prior to radiation treatment (64). The SWp cell line is 
similar to the SW‑1573 cell line described above. It is termed 
SWp to distinguish it from SWg, the gemcitabine‑resistant 
counterpart which was developed by van Bree et al (64). Lung 
tumour cells exhibit different sensitivities to radiation alone as 
compared to ovarian cancer cells (62-64).

Table III summarizes the LQ parameters of the different 
cell lines obtained following analyses of the radiation 
dose‑survival curves for irradiation alone and following 
combined irradiation and gemcitabine. SWp and SWg cells 
were almost equally sensitive to ionizing radiation alone with 
respect to the low‑dose region described by the α‑value. A 
slight increase in survival was observed in the SWg cells under 
the high‑radiation dose region (>4 Gy), which was reflected 
by a slightly lower β‑value (0.040±0.006 vs. 0.055±0.008). 
The A2780 human ovarian carcinoma cell line and its 
gemcitabine-resistant variant, AG6000, were equally sensitive 
to ionizing radiation. The surviving fractions of the different 
cell lines following incubation with gemcitabine alone were 
as follows: SWp cells: 10 nM, 0.52±0.06; SWg cells: 10 µM, 
0.95±0.03; 100 µM, 0.24±0.11; A2780 cells: 2 nM, 0.82±0.08; 
10 nM, 0.21±0.08; AG6000 cells: 20 µM, 0.62±0.07; 50 µM, 
0.22±0.04.

As depicted in Fig. 4 and Table III, radiosensitisation is 
observed in both gemcitabine-sensitive and gemcitabine-
resistant cells. However, much higher gemcitabine doses were 
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Table II. Values of the linear-quadratic parameters α and β, α/β ratio and enhancement factors from SW-1573 and SiHa cells 
treated with ionizing radiation only and following combined radiation and cisplatin (1 µM for 1 h; 1 µM continuously; 5 µM 
continuously) treatment.

		  α (Gy-1)	 β (Gy-2)			 
Cells	 Treatment	 control	 control	 α/β	 α-EF	 β-EF

SW-1573 ip	 Sham	 0.21±0.09	 0.061±0.016	 3.4±1.7
	 1 µM cisplatin (1 h)	 0.21±0.08	 0.072±0.018	 2.9±1.3	 1.0±0.6	 1.2±0.4
SW-1573 dp	 Sham	 0.10±0.09	 0.063±0.016	 1.6±1.5
	 1 µM cisplatin (1 h)	 0.25±0.09a	 0.077±0.017	 3.3±1.4	 2.5±2.4	 1.2±0.4
SW-1573 ppi	 Sham	 0.37±0.12	 0.014±0.034	 26.4±64.8b

	 1 µM cisplatin (cont)	 0.41±0.08	 0.019±0.025	 21.6±28.7b	 1.1±0.4	 1.4±3.8
	 5 µM cisplatin (cont)	 0.58±0.20a	 0.030±0.008a	 19.3±8.4	 1.6±0.7	 2.1±5.2
SiHa ppi	 Sham	 0.41±0.04	 0.01±0.01	 41.0±41.2b

	 1 µM cisplatin (cont)	 0.81±0.12a	 0.02±0.02	 40.5±41.0b	 2.0±0.4	 2.0±2.8

Sham, radiation only; ip, immediately plated; dp, delayed plated; ppi, plated prior to irradiation. aSignificant from sham P<0.05. α/β values 
show that in SW-1573 cells the quadratic term is affected more than the linear term, while in SiHa cells only the linear term is significantly 
increased. bThe α/β has a large variation due to the high uncertainty of the β‑value. EF, enhancement factor; cont, continuously.

Table III. Values of the linear-quadratic parameters α and β, α/β ratio and enhancement factors from cells treated with ion-
izing radiation only and gemcitabine-sensitised radiation dose-survival curves of gemcitabine-sensitive (SWp and A2780) and 
gemcitabine-resistant (SWg and AG6000) cells.

		  α (Gy-1)	 β (Gy-2)			 
Cells	 Treatment	 control	 control	 α/β	 α-EF	 β-EF

SWp	 Sham	 0.10±0.03	 0.055±0.008	 1.8±0.6
	 10 nM gemcitabine	 0.30±0.06a	 0.053±0.007	 5.7±1.4	 3.0±2.8	 0.96±0.2
SWg	 Sham	 0.09±0.02	 0.040±0.006	 2.3±0.6
	 100 µM gemcitabine	 0.09±0.03	 0.090±0.041b	 1.0±0.6	 1.0±0.5	 2.3±1.1
A2780	 Sham	 0.80±0.10	 Na
	 10 nM gemcitabine	 1.10±0.15a	 Na			  1.4±0.3	
AG6000	 Sham	 0.83±0.13	 Na
	 50 µM gemcitabine	 1.11±0.20b	 Na			  1.3±0.3	

Significant difference with aP<0.01; bP<0.05; Na, not applicable. EF, enhancement factor.

Figure 3. Radiation dose-survival curves of confluent cultures of SW-1573 cells plated immediately after irradiation, (ip, left panel) or 24 h after irradiation, 
(dp, right panel), with or without 1 µM cisplatin treatment for 1 h. Means with standard errors of at least three experiments are shown.
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required for the radiation sensitisation of gemcitabine-resistant 
cells to result in similar cytotoxicity. Both gemcitabine-sensi-
tive cell lines (SWp and A2780) were sensitised by incubation 
with 10 nM of gemcitabine for 24 h prior to irradiation, while 
the SWg and AG6000 cell lines were not radiosensitised 
by this dose of gemcitabine. Radiosensitisation of the two 
gemcitabine-sensitive cell lines was reflected by an increase in 
the α‑values by a factor of 3 and 1.4, respectively, whereas the 
β‑values were not significantly altered. Higher concentrations 
of gemcitabine (50 and 100 nM) were required to sensitise the 
gemcitabine‑resistant AG6000 and SWg cells to irradiation. 
For the SWg cells, the radiosensitisation was reflected by an 
increase in the β‑value by a factor of 2.25 in, whereas in the 
AG6000 cells, only the α-value was increased by a factor of 1.3.

5. Temozolomide

The combination of fractionated radiotherapy with temo-
zolomide (TMZ) has significantly improved the survival 
of patients with newly diagnosed glioblastoma multiforme 
(GBM)  (65,66). The combination of radiotherapy and 
TMZ has become standard therapy for GBM patients. The 
benefits of TMZ are most prominent for tumours with a methy- 
lated O6-methylguanine-DNA methyltransferase (MGMT) 
promoter: methylation of the MGMT promoter has been 
associated with a longer overall survival of GBM patients 
treated with radiotherapy and TMZ, compared to radiotherapy 
alone (67,68). Van Nifterik et al (10) demonstrated a relatively 
lower cell survival in methylated GBM cell lines following 
treatment with radiotherapy and TMZ, which suggests an 
interaction between TMZ and irradiation.

TMZ is a chemotherapeutic prodrug that transforms 
under physiological conditions into its active unstable 
methylating metabolite, 5-(3-methyl-1-triazeno)imidazole-
4-carboxamide (MTIC). Methylation of DNA by MTIC results 
in the formation of O6-methylguanine adducts. These adducts 
are considered to be responsible for the cytotoxic effects of 
TMZ (69,70). O6-methylguanine adducts can result in failure 
of the mismatch repair system, leading to DNA double‑strand 
breakage and eventually, cell death (71,72).

O6-methylguanine-DNA methyltransferase is a cytoprotec-
tive DNA repair protein that can remove the methyl group from 
the O6 position of guanine. Therefore, presence of this repair 
protein may undo, in part, the cytotoxic effect of alkylating 
agents, hence resulting in tumour resistance to TMZ (73,74). 
Hypermethylation of the CpG islands in the promoter region 
of the MGMT gene has been found to be associated with 
transcriptional silencing (74,75) and, subsequently, with a good 
clinical response to alkylating agents in glioma patients (76,77).

Few studies have been published on the radiosensitising 
potential of TMZ for glioma cell lines using different treatment 
protocols. In certain cell lines, an enhancement of the radiation 
effect has been demonstrated, whereas other cell lines have 
shown no interaction, but merely an additive effect (78-83).

In this review, we present the results of combined 
TMZ‑radiation treatment on three long-term primary 
TMZ‑sensitive glioma cell lines (Table IV). These three cell 
lines contain a MGMT promoter region that is for the most part, 
methylated and do not express the MGMT protein (10,84,85).

The cells were exposed to isotoxic doses of TMZ for 96 h 
prior to γ-irradiation. A significant radiosensitising effect 
(P<0.05) of TMZ was demonstrated in the AMC-3046 glioma 

Figure 4. Radiation sensitisation following a 24‑h incubation with different concentrations of gemcitabine in gemcitabine‑sensitive SWp and -resistant SWg 
lung tumour cells and in gemcitabine‑sensitive A2780 and -resistant AG6000 ovarian cancer cells. Surviving fractions are corrected for gemcitabine toxicity 
alone (for values see text). Cells are plated immediately after irradiation. Means with SEM of at least three separate experiments are shown.
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cell line (Fig. 5, left panel). The shoulder of the survival curve 
for irradiated cells disappeared as a result of pre‑treatment 
with TMZ. This was also reflected by TMZ‑induced changes 
in both the α and β parameters of the LQ model (Table IV). 
No radiosensitisation was observed in the VU‑109 glioma 
cells (P=0.054; Fig. 5, middle panel), as demonstrated by the 
unaffected α and β parameters (Table IV). The VU‑122 glioma 
cells displayed a small but significant radiosensitising effect of 
TMZ (P<0.05; Fig. 5, right panel), which was most obvious in 
the lower‑radiation dose range. This difference was reflected 
by an increase in the α parameter without any change in the β 
parameter (Table IV).

6. Halogenated pyrimidines

Incorporation of halogenated pyrimidines (HPs), chloro-, 
bromo- and iodo-deoxyuridine (CldUrd, BrdUrd, IdUrd) 
into DNA is known to sensitise cells to ionizing radiation 
(6,8,11,86‑93). The induced radiosensitisation increases with 
the degree of thymidine replacement. The mechanism of 
radiosensitisation by the HPs has been suggested to be due to 
an increase in the amount of DNA damage induced by radia-
tion, an influence on repair of sublethal damage (SLD), or an 
enhanced expression of potentially lethal damage (PLD) (6,94). 

Since different processes are involved in these phenomena, 
several mechanisms may contribute to the radiosensitisation.

HPs have been suggested to provide an advantage in radio-
therapy as radiosensitisers of cells in rapidly growing tumours, 
particularly under clinical conditions in which critical normal 
tissues show limited proliferation, and as a consequence, take 
up less HP. Labelling depends on the growth fraction, cell 
loss, cell cycle time and potential doubling time. Of particular 
importance for sensitisation is the rate at which non-cycling 
cells are recruited into the proliferative compartment during 
exposure to HPs and a course of radiotherapy. However, even 
in rapidly growing tumours, cells may, following proliferative 
cycles, retreat into a non-proliferative state. This may compro-
mise the degree of radiation sensitisation, since resting cells 
are less affected by HPs, or are better able to cope with addi-
tional damage by PLDR.

In this review, we present the results of radiosensitisation 
following incubation with 4 µM of IdUrd for 72 h. IdUrd‑induced 
radiosensitisation was observed in all the studied cell lines, 
SW‑1573, RUCII (rat ureteral carcinoma), R1 (rat rhabdomyo-
sarcoma) and V79 (Chinese hamster lung cells), in exponentially 
growing and in plateau-phase cells. Values of α and β derived 
by LQ analysis of the survival curves of exponentially 
growing and plateau‑phase cells are summarized in Table V. 

Table IV. Values of the linear-quadratic parameters α and β, α/β ratio and enhancement factors from cells treated with ionizing 
radiation only and temozolomide-sensitised radiation dose‑survival curves of three glioma cell lines AMC-3046, VU-109 and 
VU-122 with different sensitivities to temozolomide (10).

Cell line	 Treatment	 α (Gy-1)	 β (Gy-2)	 α/β (Gy)	 α-EF	 β-EF

AMC‑3046	 Sham	 0.014±0.033	 0.065±0.007	 0.22±0.06
	 Temozolomide	 0.43±0.025a	 0.009±0.005	 47.6±26.7	 30.7±7.5	 0.14±0.8
VU-109	 Sham	 0.14±0.031	 0.037±0.006	 3.8±1.0
	 Temozolomide	 0.19±0.038	 0.032±0.008	 6.0±1.9	 1.4±0.4	 0.9±0.3
VU-122	 Sham	 0.11±0.025	 0.063±0.005	 1.8±0.4
	 Temozolomide	 0.21±0.047b	 0.067±0.010	 3.1±0.8	 1.9±0.6	 1.1±0.2

Significant difference with aP<0.01, bP<0.05. EF, enhancement factor.

Figure 5. Radiation dose‑survival curves of glioblastoma cells AMC-3046, VU-109 and VU-122 without (closed symbols) or with (open symbols) incubation 
with temozolomide (TMZ). Cells were incubated with 10 µM (AMC-3046), 3 µM (VU109) and 2.5 µM (VU-122) TMZ for 96 h (daily refreshed) followed by 
irradiation.
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Fig. 6 depicts the survival curves of SW and V79 cell lines. 
The plating conditions of the V79 cells, i.e., exponentially 
growing cells plated prior to or after irradiation (ppi or pai, 
respectively), and plateau‑phase cells, plated immediately or 
6-24 h after irradiation (ip or dp, respectively), had no influence 
on the enhancement factor of the α-value. It is demonstrated 
that the α‑value can be enhanced by a factor of 1.9 to 7.5 and 

that, in general, low α‑values are more enhanced than higher 
α‑values. The value of β is less enhanced and its enhancement 
factor ranges from 0.7 to 2.4.

The direct comparison between immediate and delayed 
plating of plateau-phase cells and between plateau‑phase and 
exponentially growing cells shows significant quantitative 
differences. The data on the LQ parameters presented herein 

Table V. Values of the linear-quadratic parameters α and β, α/β ratio and enhancement factors of several cell lines treated with 
ionizing radiation only and after sensitisation with iododeoxyuridine (IdUrd) (incubation with 4 µM of IdUrd for 72 h).

	 α (Gy-1)	 β (Gy-2)	 α (Gy-1)	 β (Gy-2)	 α/β	 α/β		
Cell line	 control	 control	 IdUrd-sens	 IdUrd-sens	 control	 IdUrd-sens	 α-EF	 β-EF

SW‑1573 cells	 0.22±0.01	 0.022±0.001	 0.83±0.06	 Na	 10.0±0.6	 Na	 3.8±0.3	 Na
Exp growing ip
SW‑1573 cells	 0.17±0.03	 0.042±0.004	 0.31±0.03	 0.047±0.005	 4.1±0.8	 6.6±1.0	 1.8±0.4	 1.1±0.2
Plateau‑phase ip
SW‑1573 cells	 0.09±0.02	 0.046±0.002	 0.37±0.04	 0.033±0.006	 2.0±0.4	 11.2±2.4	 4.1±1.0	 0.7±0.1
Plateau‑phase dp
RUCII cells	 0.008±0.007	 0.025±0.001	 0.06±0.02	 0.026±0.001	 0.3±0.3	 2.3±0.8	 7.5±7.0	 1.0±0.1
Exp growing ppi
R1 cells	 0.23±0.01	 0.068±0.003	 0.44±0.05	 0.075±0.016	 3.4±0.2	 5.9±1.4	 1.9±0.3	 1.1±0.2
Exp growing ppi
V79 cells	 0.18±0.02	 0.017±0.003	 0.38±0.04	 0.023±0.007	 10.6±2.2	 16.5±5.3	 2.1±0.3	 1.4±0.5
Exp growing ip
V79 cells	 0.15±0.02	 0.013±0.003	 0.29±0.03	 0.016±0.004	 11.5±3.1	 18.1±4.9	 1.9±0.3	 1.2±0.4
Exp growing ppi
V79 cells	 0.09±0.03	 0.026±0.004	 0.17±0.02	 0.062±0.005	 3.5±1.3	 2.7±0.4	 1.9±0.7	 2.4±0.4
Plateau‑phase ip
V79 cells	 0.07±0.02	 0.020±0.002	 0.30±0.03	 0.024±0.004	 3.5±1.1	 12.5±2.4	 4.3±1.3	 1.2±0.2
Plateau‑phase dp

Means with SEM of at least three separate experiments are shown. ip, immediately plated after irradiation; dp, delayed plated after irradiation; 
ppi, plated prior to irradiation; Na, not applicable. EF, enhancement factor; IdUrd-sens, sensitisation with iododeoxyuridine; Exp growing, 
exponentially growing.

Figure 6. Radiation dose-survival curves of exponentially growing cells (left) without IdUrd (open triangles) and after incubation with 4 µM IdUrd (closed 
triangles) and plateau-phase cells (right) plated immediately after irradiation (dashed lines) and plated 24 h after irradiation (solid lines) without IdUrd (open 
symbols) and after incubation with 4 µM of IdUrd (closed symbols). Control curve ip: open circles; control curve dp: open squares; idUrd ip: closed circles; 
idUrd dp: closed squares. Each point represents the mean value of three different experiments ± SEM.
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provide various new insights into the interpretation of radio-
sensitisation of dp plateau‑phase cells. It is demonstrated that 
in dp HP-sensitised plateau‑phase cells PLD is not abolished.

7. PARP1 inhibitors

The effect of inhibition of poly(ADP-ribose) polymerase-1 
(PARP1) by olaparib on the LQ parameters was examined in 
mouse embryonic fibroblasts (MEFs). PARP1 is an enzyme 
which is involved in the repair of DNA SSBs. The DNA SSBs 
induced by ionizing radiation are mostly repaired by the 
base excision repair (BER) system, whereas the DNA DSBs 
are repaired by NHEJ or by HR. Inhibiting PARP1 activity 
reduces the repair of SSBs (95). Apart from its role in BER, 
PARP1 is further involved in a number of nuclear processes, 
such as DNA replication, transcription, DSB repair, apoptosis 
and genome stability (95-97). It was recently hypothesised that 
cells deficient in BRCA2 or BRCA1 are particularly sensitive 
to PARP1 inhibition (27,96). SSBs are induced during DNA 
replication. In the absence of PARP1, these SSBs transform 
into DSBs. These DSBs are repaired with HR. Therefore, 
cells deficient in HR (e.g., BRCA1 or BRCA2 tumours) may 
be sensitive to PARP1 inhibitors. Since PARP1 is involved in 
numerous DNA repair processes, PARP1 inhibitors may func-
tion effectively as radiosensitisers (97). As can be observed in 
Fig. 7, we achieved a modest sensitisation effect by the PARP1 
inhibitor NU-1025 in the MEF cell lines. The increase of the 
α‑value in the repair‑deficient cell line was greater than in the 

repair‑proficient cell line, 1.4 vs. 1.2, respectively (Table VI). 
The radiation dose‑survival curves of these MEF cells did not 
exhibit a shoulder and therefore the quadratic parameter β 
could not be determined.

8. Discussion

Radiosensitisation by a variety of chemotherapeutic agents is 
in most cases reflected by an increase of the linear or α compo-
nent of the LQ model, which corresponds to an enhanced direct 
PLD at low radiation doses (1,4-7,98,99). The β component, 
which presumably depends on the interaction of repairable 
SLD, is affected by HT treatment. Furthermore, it appears that 
radiosensitisation is more pronounced in radioresistant than in 
radiosensitive cell lines. In addition, it can be concluded that 
the extent of radiosensitisation also depends on cell cycle stage 
(plateau or exponentially growing phase) and post‑treatment 
plating conditions.

Hyperthermia. Hyperthermia (HT) is a very potent radiosensi-
tiser, already effective at mild temperatures. HT for 1 h at 41˚C 
without radiation exerted only a slight cytotoxic effect in both 
heat‑sensitive and heat‑resistant cell lines. This is in agreement 
with the general idea of cell kill induction at temperatures 
≥42˚C for 1 h or more (23). HT at 43˚C for 1 h did not have 
a significant cytotoxic effect in heat‑resistant SW-1573 cells. 
Radiosensitisation by HT at 41˚C was observed in SiHa 
and RKO, but not in SW-1573 cells. The ability of mild HT 

Figure 7. Radiation dose-survival curves of mouse embryonic fibroblasts (MEFs). Ligase IV- and RAD54-positive (LigIV+/+, Rad54+/+, left panel) and Ligase IV- 
and RAD54‑deficient (LigIV-/-, Rad54-/-, right panel) MEFs. Open circles, radiation only curves; closed squares, radiation with PARP inhibitor (parpi). Cells 
were treated with 100 µM of Nu-1025 for 24 h prior to irradiation.

Table VI. Values of the linear parameter α and the enhancement factors from repair-proficient and repair-deficient MEF cells. 

	 Treatment
MEF cells	 with PARPi	 α (Gy-1)	 β (Gy-2)	 α-EF

LigIV+/+, Rad54+/+	 No	 0.28±0.01	 Na
LigIV+/+, Rad54+/+	 Yes	 0.33±0.03	 Na	 1.2
LigIV-/-, Rad54-/-	 No	 1.59±0.18	 Na
LigIV-/-, Rad54-/-	 Yes	 2.28±0.42	 Na	 1.4

The quadratic parameter β could not be determined in these MEF cells. Na, not applicable; EF, enhancement factor. PARPi, PARP inhibitor.
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(40‑42˚C) to increase radiosensitivity of human tumour cells 
has been shown to be cell line‑dependent (8,26,100-105). In a 
study by Xu et al, pre-treatment of cells at 41.1˚C for 1 h did not 
induce radiosensitisation, whereas treatment for 2 h or more 
resulted in radiosensitisation in the HT‑resistant but not in the 
HT‑sensitive cell line (106). However, simultaneous treatment 
of the sensitive cell line with 1‑h 41.1˚C HT combined with 
irradiation increased cellular radiosensitivity (107). In vivo 
radiosensitisation by mild HT is usually attributed to reoxy-
genation of tumours by an increase in blood flow (108‑110). 
We recently discovered that the BRCA2 protein is transiently 
inhibited by mild HT (27). Translocation of the Mre11 DSB 
repair protein from the nucleus to the cytoplasm has also 
been implicated (106,111). However, disappearance of Mre11 
protein foci at the sites of irradiation‑induced DNA DSBs was 
not observed by pre-incubation of cells at 41˚C (24,27). A role 
for mitotic catastrophe, occurring as a result of G2/M check-
point abrogation, has also been suggested (112). It has been 
demonstrated that radiosensitisation by HT at 41-43˚C corre-
lates with an increased number of chromosomal fragments, 
but not of colour junctions, 24 h after treatment, compared to 
radiation alone (101). HT at clinically reachable temperatures 
mainly enhances the quadratic parameter, β, which represents 
the frequency of induction‑repairable SLD. The fact that HT 
breaks down the repair protein BRCA2 and in this way influ-
ences DNA DSB repair correlates well with the effect on the 
repairable factor β.

Cisplatin. Cisplatin causes radiosensitisation as measured by 
clonogenic survival, but only after allowing a PLDR time of 
24 h. These results are in agreement with those of Wilkins 
et al (113), who investigated the effect of cisplatin and radiation 
on PLDR in confluent cultures of two different brain tumour 
cell lines (113). Wilkins et al did not observe radiosensitisation 
by cisplatin in ip cells, whereas a cisplatin‑induced radiosensi-
tisation was observed in dp cells 8 h following irradiation (114). 
Their results indicate that the radiosensitising effect of cispl-
atin is caused by the inhibition of post-irradiation recovery. 
The strongest inhibition of PLDR was achieved when cisplatin 
was administered shortly before or after irradiation (113,114). 
In our experiments, cells were irradiated with cisplatin present 
in the medium.

Results from studies using exponentially growing cell 
cultures vary from a cisplatin-induced radiosensitisation 
(31-33,115), to a merely additive effect (29,31,116-118). The 
effect of cisplatin treatment on radiosensitivity may depend on 
the cell type used. Loprevite et al (31) observed synergism in a 
squamous lung carcinoma cell line when exposed to cisplatin, 
whereas an adenocarcinoma of the lung was not sensitised by 
cisplatin (31). Even cell lines derived from a single biopsy can 
differ in their response to combined treatment with cisplatin 
and irradiation (116).

Although dependence on cell cycle phase  (119,120), 
cisplatin incubation time and sequence of treatment modali-
ties have been implicated (29,119,120), there is currently no 
consensus to account for the varying response of cells to 
cisplatin and irradiation.

The mechanism of cisplatin‑induced radiosensitisation 
may be due to the inhibition of the DNA repair NHEJ and 
HR pathways (38,43). The Ku protein complex, which plays an 

important role in NHEJ, was demonstrated to show a reduced 
ability to translocate on DNA containing cisplatin‑DNA 
adducts compared with undamaged DNA. This resulted in 
a decreased interaction between Ku and DNA-dependent 
protein kinase catalytic subunit (DNA-PKcs) (121). However, 
the biochemical processes that cisplatin undergoes in the cell 
are complex and its intracellular fate may be linked to copper 
transport (122). Therefore, other processes, such as the forma-
tion of peroxy complexes inside the cell, may be involved in 
cisplatin-induced radiosensitisation  (123). Bergs et al  (34) 
demonstrated an increase in the induction of apoptosis 24 h 
after combined treatment as compared to radiation or cisplatin 
alone. This was confirmed by several other studies (124,125). 
These apoptotic effects observed by Bergs et al correlated with 
clonogenic survival (34). Fujita et al (126) also observed an 
inhibitory effect of the combination of cisplatin and radiation 
on the survival of lung tumour cells and ascribed this effect to 
the induction of tumour cell apoptosis (126).

In conclusion, the radiosensitising effect of cisplatin on cell 
survival was observed in confluent cultures when cells were 
replated after a 24‑hour incubation period during which PLDR 
was allowed to occur. By contrast, cisplatin did not induce a 
significant radiosensitisation after immediate plating.

Gemcitabine. A number of previous studies have demonstrated 
that gemcitabine is a potent sensitiser to ionizing radiation 
(49,55,127). Among other proposed mechanisms of action, 
the effect of gemcitabine on cell cycle distribution may be the 
most important (55,57). In our study, the gemcitabine-sensitive 
cell lines SWp and A2780 were sensitised to irradiation 
following administration of cytotoxic gemcitabine treatments. 
The radiosensitisation was accompanied by a clear arrest of 
cells in early S phase, which has been argued to be vital for 
gemcitabine-induced radiosensitisation (54). Both cell lines 
showed an increase in the α‑value, indicating the efficacy 
of gemcitabine-induced radiosensitisation in the clinically 
relevant dose range. The gemcitabine‑resistant cells were 
also sensitised, although with only much higher gemcitabine 
doses. In the resistant AG6000 ovarian carcinoma cell line, 
this was demonstrated by an increase in the α‑value. By 
contrast, in the gemcitabine‑resistant lung tumour cell line 
an increase in the β‑value was observed, while the α‑value 
was not affected. In both gemcitabine‑resistant cell lines the 
sensitivity to ionizing radiation alone was not altered. It is 
reported that gemcitabine‑resistant tumours are cross-resistant 
to related drugs like Ara-C (128,129). In the AG6000 and SWg 
gemcitabine-resistant cell lines, this was indeed the case (64). 
Moreover, the AG6000 cells were more resistant to cisplatin 
and taxoids as well (62). However, no altered sensitivity was 
observed in SWg cells for cisplatin, paclitaxel, methotrexate 
(MTX) and 5-fluorouracil (5‑FU), while AG6000 cells were 
2.5-fold more sensitive to MTX (62). These findings indicate 
that patients previously treated with gemcitabine may still 
benefit from radiotherapy combined with cisplatin or paclitaxel.

Temozolomide. The potential of TMZ to enhance the radia-
tion response in long-term primary GBM cell lines has been 
clearly demonstrated (10) and therewith, the rationale for the 
clinical use of this drug concomitantly with radiotherapy. A 
distinct increase of the α parameter is shown following treat-
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ment with TMZ. The three MGMT promoter methylated cell 
lines discussed above responded differently to the combina-
tion treatment, even though they were treated at similar TMZ 
sensitivity levels. The combined effect of TMZ and radiation 
was found to be synergistic and is at least additive.

Halogenated pyrimidines. Radiosensitisation by halogenated 
pyrimidines (HPs) is mainly due to an increase in the linear 
parameter α. The quadratic parameter β is rarely influenced. 
Different radiosensitisation mechanisms induced by HPs have 
been described. Wang et al  (130) suggested that increased 
DNA damage was the major component of radiosensitisation 
in exponentially growing cells, while in plateau-phase cells, 
radiosensitisation occurred through inhibited repair and̸or 
enhanced fixation of PLD (6,90). The increase of the α‑values 
for exponentially growing cells, as presented in our study, indi-
cates an increase in the number of directly lethal events due to 
the HPs. This is in agreement with the observations of Webb 
et al (131) and Jones et al (94), which suggested that an impor-
tant mechanism of radiosensitisation involves an increase of 
effective DNA DSBs (87,89,130). Miller et al (92,93) suggested 
that radiation‑induced damage in cells which have HPs incor-
porated into the DNA after low-LET radiation resembles the 
damage produced by high-LET radiation. In plateau-phase 
cells plated immediately after irradiation, the increase of α 
might be due to the same mechanism as involved in exponen-
tially growing cells. In these cells an increase of β was also 
observed, indicating that accumulation of SLD was a major 
contributor (2). Due to the immediate plating after irradiation 
this SLD may be fixated.

The most significant increases in the α value were observed 
in dp plateau-phase cells. This radiosensitisation may be 
interpreted as an enhanced fixation of PLD due to immediate 
DNA damage and̸or to damaged DNA repair function in these 
cells, expressed during the interval before delayed plating. The 
value of β in these cells returned to values found in cells not 
containing HPs. This demonstrates that SLD was repaired in 
HP‑containing plateau-phase cells.

PARP1 inhibitors. Since PARP1 has been implicated in 
several DNA repair processes, PARP1 inhibitors may be good 
radiosensitisers. Several studies have already demonstrated the 
radiosensitising effect of PARP1 inhibitors (27,95,132). Löser 
et al (97) concluded that the effects of PARP1 inhibitors are 
more pronounced on rapidly dividing and̸or DNA repair‑defi-
cient cells (95). In our study, at the time of treatment most of 
the cells in culture were accumulated in G1 phase. Therefore, 
radiosensitisation effects were modest. However, the increase 
in the α‑value in repair‑deficient cells was more pronounced 
following PARP1 inhibition than in repair‑proficient cells.

9. Conclusion

The increase in the α parameter by the various radiosensitising 
agents yields promising perspective for clinical practice. The 
radiation tolerance dose is generally expressed quantitatively 
in terms of the biologically effective dose (BED), as defined by 
the LQ model. BED takes total dose, dose per fraction, dose 
rate and overall treatment time into account. By definition, 
BED is the total dose required to obtain an equal biological 

effect E (isoeffect) for a certain endpoint, e.g., few log cell 
kill (e.g., 10-2 cell survival), a normal tissue effect (e.g., 1% 
complication rate) or tumour response (e.g., tumour cure rate 
of 50%) when applying an infinite number (∞) of tiny dose 
fractions (~0). At this point, the α parameter is inversely 
proportional to BED [BED = E̸α; (133)]. With increasing α, 
BED is decreasing, resulting in a lower radiation tolerance 
dose for a certain isoeffect.

The radiosensitising effect of HT on the LQ para- 
meters seems to be temperature‑dependent. HT for 1 h at 
41˚C increases the β‑value while HT for 1 h at 43˚C increases 
both the α- and β‑values. Increase of the β‑value consequently 
lowers the α/β ratio, which makes the tumour more sensitive 
to higher fraction doses. The effects of HT on BED remain to 
be elucidated.

Radiosensitising agents that selectively sensitise tumour 
cells and not normal tissue cells will be of therapeutic benefit. 
This is due to the increase of the α parameter of tumour cells 
only and, as a consequence, the decrease in tumour response 
dose proportionally to the relative increase in α. This effect 
could be further exploited using smaller sized fractions in 
external beam radiotherapy or by lowering the dose rate in 
brachytherapy. With lower fraction size or lower dose rate, 
normal tissue cells with low α/β ratios will tolerate a higher 
total dose. Tumour tissues with high α/β ratios will not exhibit 
an increased sparing effect, since an increase in α by a radio-
sensitising agent will further increase the α/β ratio, resulting in 
even less sensitivity to a modification in fraction size. However, 
since an increase in the number of fractions or a lower dose 
rate might increase the overall treatment time, tumour cell 
repopulation rate should be taken into account.
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