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Abstract. The Rho/ROCK pathway plays important roles 
in the modulation of the cytoskeletal integrity of cells, the 
synthesis of extracellular matrix components in the aqueous 
humor outflow tissue and the permeability of Schlemm's canal 
endothelial cells. The activation of the Rho/ROCK pathway 
results in trabecular meshwork (TM) contraction, and the inhi-
bition of this pathway would provoke relaxation of TM with 
subsequent increase in outflow facility and, thereby, decrease 
intraocular pressure (IOP). ROCK inhibitors also serve as 
potent anti‑scarring agents via inhibition of transdifferentia-
tion of tenon fibroblasts into myofibroblasts. Furthermore, the 
RhoA/ROCK pathway is involved in optic nerve neuroprotec-
tion. Inactivation of Rho/ROCK signaling increase ocular 
blood flow, improve retinal ganglion cell (RGC) survival and 
promote RGC axon regeneration. Considering the IOP modu-
lation, potent bleb anti‑scarring effect and neuroprotective 
properties of ROCK inhibitors, the Rho/ROCK pathway is an 
attractive target for anti‑glaucoma therapy, and it may be used 
for human therapy in the near future.
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1. Introduction

Glaucoma is a leading cause of permanent blindness and is char-
acterized by progressive retinal ganglion cell (RGC) death that 
produces characteristic optic nerve head damage and visual field 
loss (1,2). Some risk factors are related with glaucoma patho-
genesis. These include intraocular pressure (IOP), age, family 
history, clinical appearance of the optic nerve, race and potential 
vascular disease (3‑6). Of these, elevated IOP is considered as 
a major risk factor for glaucoma, and lowering IOP is the most 
effective treatment method available for glaucoma (1,2).

Several prospective randomized multi‑center studies have 
identified that IOP reduction with either medicines or surgery 
can reduce the development and progression of vision loss in 
glaucoma patients (7‑13). The precise mechanisms that lead to 
the death of RGCs in glaucoma have not been identified conclu-
sively, but might involve the blockade of both anterograde 
and retrograde axonal transport leading to the deprivation of 
neurotrophic signals (2). If IOP is beyond the tolerable range 
of the optic nerve, RGCs axons degenerate at the optic nerve 
head in the region of the lamina cribrosa, a process that occurs 
in parallel to the apoptotic death of RGCs. The glaucomatous 
neuropathy might occur in parallel to a remodeling of the 
extracellular matrix (ECM) of the optic nerve head (2,14,15).

IOP is determined by the equilibrium between the secre-
tion of aqueous humor by the ciliary body and the drainage 
of aqueous humor from the eye. There are two main aqueous 
humor outflow pathways, trabecular (conventional) and uveo-
scleral (unconventional). The unconventional route of this 
drainage is through the interstitial spaces of the ciliary muscle 
and the supraciliary space, whose physiological role is not fully 
understood. The conventional outflow pathway is composed of 
the trabecular meshwork (TM), juxtacanalicular tissue (JCT), 
Schlemm's canal (SC), and the episcleral veins on a continuous 
basis, and in humans, this pathway represents a predominant 
route of aqueous humor drainage (16,17). The ciliary secretion of 
aqueous humor usually remains normal in glaucoma (18), there-
fore, it is thought that impaired drainage through the trabecular 
pathway caused by increased resistance is the primary cause for 
increased IOP in primary open‑angle glaucoma (POAG) (18). 
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The normal aqueous humor outflow resistance resides in the 
inner wall region of the trabecular meshwork outflow pathways 
(19,20). The site of highest resistance remains uncertain (21,22), 
but likely resides at the confluence of the TM, JCT and SC inner 
wall (21,23). It has been proposed that abnormal accumulation 
of extracellular material/ECM (ECM hypothesis), and changes 
in contractile activity and cell adhesive interactions of the 
cells of aqueous outflow pathway (contractility hypothesis) 
are contributed to increases resistance to drainage of aqueous 
humor through the conventional pathway (16‑18,24‑26). 
The ECM hypothesis is supported by the observation that 
perfusion of anterior eye segments in organ cultures with metal-
loproteinases that digest ECM components leads to a reversible 
increase in outflow facility (27). The contractility hypothesis is 
supported by the observation that experimental disruption of 
the actin cytoskeleton of the trabecular meshwork decreases 
outflow resistance (28,29) and by recent findings which provide 
evidence that the trabecular meshwork of patients with primary 
open angle glaucoma is stiffer than that of age-matched controls 
(30). The two hypotheses can exist simultaneously, since it is 
possible that trabecular meshwork cells that increase their 
contractile capabilities simultaneously synthesize more fibrillar 
matrix to transmit more force.

Over the past few years, many studies have shed light on 
the important role of Rho/Rho‑associated kinase (ROCK) 
pathway in the pathogenesis and treatment of glaucoma. The 
purpose of this review is to summarize the role of Rho/ROCK 
pathway in the IOP modulation, subconjunctival scarring of 
the filtering bleb and neuroprotection of glaucoma.

2. Rho/ROCK pathway

Rho is a member of Rho family of small molecular guanosine 
triphosphatase (GTPase) superfamily related to Ras. Rho has 
three isomer types: RhoA, RhoB and RhoC (31). ROCK is 
a serine/threonine kinase and one of the major downstream 
effectors of Rho GTPases (32). ROCK has two isomer types: 
ROCK1 and ROCK2. The structures of ROCK1 and ROCK2 
are conserved with 64% overall amino acid identity (33,34). 
The kinase domain containing both extension segments is more 
highly conserved between these two proteins (83% identical), 
suggesting that they may have similar substrate specificity 
(33,34). Both Rho‑kinase proteins are ubiquitously expressed 
in most tissues; however, higher levels of ROCK2 are found in 
brain and muscles whereas higher levels of ROCK1 are found 
in non‑neuronal tissues including liver, lung and testis (33,35). 
ROCK1 is specifically cleaved by caspase‑3, whereas ROCK2 
is cleaved by granzyme B (36‑38). The Rho GTPases act as 
molecular switches by cycling between an active GTP‑bound 
and an inactive GDP‑bound form. In the GTP‑bound form, 
the Rho GTPase interact with specific downstream effector 
proteins - ROCK, which include Rho kinase, regulators of 
actin polymerization and adaptor proteins (32). The activity 
of Rho GTPase is regulated by signaling input originating 
from different classes of cell surface receptors, including the 
heterotrimeric G protein-coupled receptors tyrosine kinase 
receptors, cytokine receptors, frizzled receptors, and adhesion 
receptors (32,39). Rho/ROCK pathway has critical functions in 
the formation of actin stress fibers and focal adhesions (40‑43), 
and the regulation of actomyosin cytoskeletal organization, 

cell adhesion, cell morphology, cell motility, smooth muscle 
contraction, neurite elongation and neuronal architecture and 
cytokinesis (44‑55).

Rho/ROCK pathway is involved in various cellular func-
tions through phosphorylation of their specific substrates. 
The main substrates of Rho/ROCK pathway is the myosin 
light chain (MLC), LIM kinase 1 (LIMK1), LIMK2 and 
myosin phosphatase target subunit 1 (MYPT1) (56‑58). Gene 
silencing experiments suggest ROCK1 appears to be essential 
for the formation of stress fibers, whereas ROCK2 appears to 
be necessary for cytoskeletal rearrangements, cell motility 
and cell contraction, both of which are dependent on MLC 
phosphorylation (59,60). The phosphorylation status of MLC 
is controlled not only by myosin light chain kinase (MLCK), 
but also by myosin light chain phosphatase (MLCP). MLC 
is phosphorylated by Ca2+/calmodulin‑dependent MLCK 
and dephosphorylated by Ca2+‑independent MLCP, and the 
balance between these two enzyme activities is a critical deter-
minant of MLC phosphorylation (61‑63). Phosphorylation of 
MLC subsequently results in stimulation of the myosin‑actin 
interactions. Increased and decreased MLC phosphorylation 
induces contraction and relaxation responses of the cell and 
influences the formation of actin stress fibers and smooth 
muscle contraction. ROCK is implicated in the RhoA-mediated 
inhibition of MLCP (64). Inhibition of ROCK results in an 
increased activity of MLCP and dephosphorylation of MLC. 
Thus, Rho/ROCK pathway is a master regulator of the actin 
cytoskeleton and cell contractility (32,51,65,66). Growth 
factors, mechanical stretch, cytokines and ECM can activate 
Rho GTPase through guanine nucleotide exchange factors. 
This subsequently activates ROCK, which then leads to MLC 
phosphorylation that enhances actomyosin cross‑bridging and 
contractility, thereby regulating many cell processes including 
contraction, cytoskeleton organization, adhesive interactions, 
trafficking and permeability (48,51,65,67‑70).

3. The expression of Rho/ROCK in aqueous humor outflow 
pathways

In vitro and in vivo studies have shown that Rho and ROCKs 
are expressed in the cells of outflow pathway (53,71‑74). 
Immunoblot analyses have shown that RhoA and ROCKs 
are present in cultured human TM cells (71‑73), SC cells (73) 
and bovine ciliary muscle (CM) tissues (72). Using RT‑PCR 
analysis, Nakajima and collaborators found ROCK1 and 
ROCK2 in TM and CM (53). Both in humans and in monkeys 
ROCKs were expressed in TM more abundantly than in CM 
(53). Goldhagen et al using immunohistochemical analysis 
found RhoA, ROCK1 and ROCK2 were all distributed in the 
human aqueous outflow pathway including TM, JCT and SC, 
and observed no significant difference in Rho/ROCK pathway 
expression in the outflow tissue between normal eyes and 
those with glaucoma (74). It is hypothesized that there would 
be increased expression of the Rho/ROCK pathway in the 
outflow tissue in glaucomatous eyes. However, the results of 
Goldhagen et al showed no significant expression difference 
of Rho/ Rho kinase between normal eyes and glaucomatous 
eyes (74), it can be explained that many medications used for 
the management of glaucoma may be affecting the expression 
of Rho/Rho kinase within the outflow pathway.
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4. Rho/ROCK pathway and the cytoskeletal integrity of 
cells in the outflow tissue

The TM beams have been characterized as connective 
tissue containing elastic and collagen fibers surrounded 
by endothelial‑like trabecular cells resting on a basement 
membrane (16). The outermost JCT or cribriform region 
has no collagenous beams, but rather several cell layers 
immersed in a loose web of ECM fibrils. The adjacent SC 
is a continuous endothelium-lined channel that drains 
aqueous humor to the general venous circulation (29). The 
TM cells exhibit a smooth muscle‑like phenotype, based on 
their expression of various smooth muscle‑specific proteins, 
including α‑smooth muscle actin (α‑SMA) and CPI‑17 (the 
17 kDa protein kinase C-potentiated protein phosphatase 1 
inhibitor protein) (24,28,29,75,76). The actomyosin system, 
composed of actin microfilaments and associated proteins, 
is present in essentially all cells, and is highly organized in 
TM and SC cells. There are numerous microfilament‑based 
structures in cells along the trabecular outflow pathway. 
These structures primarily include focal contacts, adherens 
cell‑cell junctions and bundles of microfilaments (77). A 
physiologically contracted state of the JCT‑SC region is 
required to maintain the microfilament‑related structures in 
the outflow pathway (29). Microfilaments are involved in a 
variety of cellular processes from cell adhesion and motility to 
organelle traffic to adhesion‑mediated signal transduction. As 
discussed above, ROCK mainly promotes myosin II activity 
by inhibiting MLCP as well as by phosphorylating the myosin 
regulatory light chain. This, in turn, induces the assembly of 
contractile actomyosin bundles that generate strong tensile 
forces (65). A specific Rho kinase inhibitor, Y‑27632, induces 
reversible changes in cell shape and decreases in actin stress 
fibers, focal adhesions, and protein phosphotyrosine staining 
in human TM cells and SC cells (72,73). In isolated bovine 
TM strips, Y‑27632 completely blocks Ca2+-independent 
phorbol myristate acetate or endothelin‑1‑induced contrac-
tion (71,78,79). A morphological study in bovine eyes 
indicates that, with Y‑27632, the inner wall of SC and the JCT 
are significantly distended compared to control eyes, with 
discernible separation between the inner wall of SC and JCT, 
which suggests that the structural correlate to the increase in 
outflow facility of non‑human eyes after Y‑27632 is physical 
separation between the JCT and inner wall of SC (80).

Regulation of mechanical and contractile properties of the 
pressure‑sensitive TM cells is recognized to play a significant 
role in modulation of aqueous humor outflow and ocular pres-
sure homeostasis (20,24,81‑83). There is growing evidence, 
that contraction of TM reduces aqueous humor outflow and 
thus enhances intraocular pressure, whereas relaxation exerts 
the opposite effect (24,29,72,75,76,84). The activation of 
Rho/ROCK pathway could result in TM contraction, and the 
inhibition of this pathway would provoke relaxation of TM 
with subsequent increase in outflow facility (53,72,73,82). 
As expected, ROCK inhibitors, such as Y‑27632, Y‑39983, 
HA‑1077, H‑1152, increase outflow facility and/or decrease 
IOP in animals (72,85‑88). Conversely, agents that activate 
Rho GTPase and myosin II activity, including lysophos-
phatidic acid (LPA), sphingosine‑1‑phosphate, TGF‑β2, 
and endothelin‑1, decrease aqueous humor outflow facility 

concomitant with increased contractile activity of the TM 
cells, indicating a potential importance of actomyosin 
organization and the contractile force generated by the acto-
myosin system in the regulation of aqueous humor drainage 
(76,84,89‑91). In addition to the effect on the contractility 
of cells in trabecular (conventional) outflow, Rho/ROCK 
pathway may also modulate the contractility of tissues in 
uveoscleral (unconventional) outflow (72,92). CM is one of 
the main tissues in the uveoscleral outflow pathway, and CM 
cells morphologically and electrophysiologically express 
properties that are typical of smooth muscle cells (93). The 
ROCK inhibitor Y‑27632 has been shown to induce inhibi-
tion of smooth muscle contraction and alter various cellular 
behavior (94,95). Moreover, Y‑27632 can relax the excised 
ciliary muscle which is previously constricted by carbachol, 
suggesting that the inhibitor acts to increase the uveoscleral 
outflow (92). However, there is also evidence to the contrary. 
ROCK and its substrates show higher expression in TM 
compared to CM (53), and ROCK inhibitor Y‑39983 leads 
to relaxation of TM, but Y‑39983 is only slightly effective 
in CM (86). Honjo et al also reported that only a modest 
increase in the uveoscleral outflow was found in rabbit eyes 
by Y‑27632, and its effects were not statistically significant 
(72). These results suggest that the mechanism for decreased 
IOP by ROCK inhibitor is largely mediated by enhancement 
of aqueous outflow facility through relaxation of TM in the 
conventional outflow pathway (24).

5. Rho/ROCK pathway and ECM in the outflow tissue

Alterations in ECM content and organization have been found 
to be associated with increased resistance in the outflow 
pathway of human glaucomatous eyes (96‑100). Rho/ROCK 
pathway has an important role for modulating the synthesis of 
ECM components in the trabecular pathway. Pattabiraman and 
Rao found that human TM cells expressing a constitutively acti-
vated form of RhoA (RhoAV14) demonstrated increased levels 
of fibronectin, fibronectin fibril formation, laminin, tenascin C 
and α‑SMA (101). Furthermore, the changes in expression 
of ECM proteins could be suppressed by the Rho GTPase 
inhibitor (C3 transferase) and ROCK inhibitor (Y‑27632), 
in association with decreased MLC phosphorylation, actin 
stress fibers, focal adhesions and fibronectin fibrils (101). 
Zhang et al reported that TM cells expressing a constitutively 
activated form of RhoA had increased expression of various 
ECM‑related genes and cytokines such as TGF‑β, interleukin-1, 
and connective tissue growth factor (CTGF) in TM cells (91). 
The stimulation of TM cells with physiological agonists such 
as LPA and TGF‑β2, which are known to induce Rho GTPase 
activation and MLC phosphorylation in TM (90,102), leads to 
an increase in levels of fibronectin, fibronectin fibrils, laminin 
and α‑SMA in a RhoA‑ and Rho kinase‑dependent manner. 
In the case of TGF-β2, increased resistance to aqueous humor 
outflow is reported to be associated with increased levels of 
synthesis of ECM components (25,98,103). CTGF has also an 
important role in ECM synthesis, Iyer et al reported that stimu-
lation of human TM cells with CTGF treatment for 24 h led 
to an increase in the levels of laminin, fibronectin, and in the 
levels of phosphorylated MLC in human TM cells, and that the 
expression of CTGF is regulated closely by Rho GTPase (104).
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There is a potential interplay among the contractile 
activity, ECM synthesis and Rho GTPase activation (105‑109). 
As mentioned above, the activation of Rho GTPase and ROCK 
was able to promote myosin II phosphorylation and contractile 
activity (53,72,73,82), and to induce ECM synthesis/assembly 
in TM cells (91,101,104). On the other hand, the actomyosin‑
derived contractile force induced ECM synthesis/assembly 
and, conversely, ECM assembly/rigidity could influence 
actomyosin contraction and induce Rho GTPase activation 
(91). ECM rigidity has been reported to increase fibronectin 
fibril formation, Erk activation, focal adhesion kinase activity, 
α‑SMA, and actin stress fibers in TM cells (110). The inter-
play among contractile activity, ECM synthesis/assembly and 
Rho GTPase activation in the cells of aqueous humor outflow 
pathway, including TM, JCT and SC cells, represents a crucial 
regulatory component in the homeostasis of aqueous humor 
outflow resistance (101).

6. Rho/ROCK pathway and permeability of the SC 
endothelial cells

The permeability of SC endothelial cells is suggested to play 
important roles in the regulation of aqueous outflow (17,111). 
Breaks have been found in the endothelial lining of the SC 
and aqueous plexus after perfusion with certain cytoskeletal 
drugs (112‑114). Additionally, SC endothelial cells have 
transcellular pores accompanied by giant vacuoles (111,115). 
ROCK inhibitor Y‑27632 resulted in Rho/ROCK‑dependent 
filamentous actin reorganization and disruption of proteins 
associated with tight junction, increased SC endothelial‑cell 
monolayer permeability, which may lead to increased aqueous 
humor outflow facility (73,111).

7. Rho/ROCK pathway and IOP modulation

Rho/ROCK pathway has a crucial role in IOP modulation. 
In general, the activation of Rho/ROCK pathway in the 
outflow tissue results in reduction of aqueous humor outflow, 
and thereby increase IOP, whereas the inhibition of Rho/
ROCK pathway tissue results in increase of aqueous humor 
outflow, and thereby decrease IOP. Organ‑cultured anterior 
segments from porcine eyes expressing RhoAV14 exhibited 
significant reduction of aqueous humor outflow (91). However, 
inhibiting RhoA expression in TM with siRNA is effective in 
suppressing elevated IOP in mice (116). Furthermore, several 
ROCK inhibitors, such as Y‑27632, Y‑39983, HA‑1077 and 
H‑1152, increase outflow facility and/or decrease IOP in living 
rabbits, mouse, rat, monkeys, human and enucleated porcine 
eyes (72,73,76,85‑88,92,117‑120). In monkey eyes, 0.05% 
Y‑39983 induces significant IOP reduction almost equal to 
that obtained with 0.005% latanoprost (86). SNJ‑1656, an 
ophthalmic solution of Y‑39983, has been proved as a safe 
topical agent that is effective in reducing IOP in healthy adult 
volunteers (87). Thus, ROCK inhibitors might be a candidate 
for the next generation of glaucoma therapy (53,119).

8. Rho/ROCK pathway and wound healing of filtration canal

Filtration surgery, such as trabeculectomy, is the most widely 
used anti-glaucoma surgery. The most frequent cause of 

failure of glaucoma filtration surgery is postoperative scar-
ring in the filtering bleb. Fibroblasts from the subconjunctival 
space play a key role in the scarring process. Perioperative 
administration of antimetabolites such as 5‑fluorouracil 
and mitomycin C (MMC) is effective in limiting the scar-
ring process. However, use of these antiproliferative agents 
is accompanied by severe side‑effects (121,122). Therefore, 
alternative anti-scarring agents that do not cause extensive 
tissue damage are needed.

Subconjunctival scarring of the filtering bleb site is 
mainly mediated by tenon fibroblasts (TFs) proliferation, 
migration, and contraction (123‑125). Transdifferentiation 
of fibroblasts into myofibroblasts is a crucial step in wound 
healing and scar formation (126), which is associated with 
expression of α‑SMA (127). Enhanced α‑SMA expression 
indicates the presence of activated fibroblasts with increased 
synthesis of ECM proteins, growth factors and integrins 
(128,129). Myofibroblasts are responsible for fibrosis via 
increased ECM synthesis, for granulation tissue formation, 
wound contraction and scar formation (126,130‑132). TFs are 
stimulated by growth factors to differentiate into myofibro-
blasts both in vitro (133), and in vivo (134). LPA and serum, 
as well as TGF-β, could activate myofibroblast differentia-
tion (135‑138), which is supposedly one of the most potent 
stimulators of TFs (124). After glaucoma filtration surgery, 
TFs are likely to be exposed to LPA via serum and/or plasma, 
because the blood‑aqueous humor barrier breaks down, and 
circulating aqueous humor bathes the wound site (139).

ROCK inhibitors can inhibit cell migration, invasion 
(140) and cytokinesis (141,142), all of which have a role in 
wound healing and scar formation, therefore, the Rho/ROCK 
pathway has critical functions in regulation of wound healing 
of filtration canal. ROCK inhibitors (Y‑27632, HA‑1077 and 
H‑1152) have been reported to reduce or block LPA‑induced 
and TGF-β-induced α‑SMA expression in TFs (133,143‑146), 
which suggests that ROCK inhibitors serve as a potent 
anti‑scarring agent via inhibition of transdifferentiation of 
TFs into myofibroblasts (146). Meyer‑ter‑Vehn et al found 
that ROCK inhibitors did not alter the Smad2 phosphoryla-
tion pattern, but inhibited TGF‑β-induced phosphorylation 
of p38 in TFs (133). Honjo et al (146) reported that Y‑27632 
induced profound changes in cultured human TFs without 
significant toxicity or inhibition of human TFs proliferation. 
In addition, topical instillation of Y-27632 was effective in 
preventing fibroproliferation and scar formation in a rabbit 
model of glaucoma surgery (146). Therefore, the ROCK 
inhibitors have potential to be anti‑scarring agents after 
glaucoma filtering surgery.

9. Rho/ROCK pathway and optic nerve neuroprotection

Normal human optic nerve head (ONH) express RhoA, 
ROCK1 and ROCK2 (74). The cultured glaucomatous ONH 
astrocytes exhibit upregulated expression of Rho GTPase 
and certain ECM proteins (147), and the RhoA expression in 
the ONH of human glaucoma eyes is increased significantly 
when compared with age‑matched normal subjects, indi-
cating a possible involvement of RhoA/ROCK pathway in the 
pathophysiology of the optic nerve damage from glaucoma 
(74).
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Increase in ocular blood flow. The Rho/ROCK pathway is 
expressed in vascular smooth muscles (148‑151), and ROCK 
inhibitors have been known to relax various vascular smooth 
muscles (152‑156), which may enhance ocular and retinal 
blood flow by inducing vasodilatation and, thus, provide 
neuroprotective action. Cell culture experiments and studies 
using isolated vessel preparations demonstrated that the 
constrictor effects of endothelin and angiotensin II and the 
generation of myogenic tone are mainly mediated by ROCK 
activation (157‑160), thus the inhibition of ROCK activation 
could eliminate the vessel contraction induced by endothelin 
and angiotensin II. The experiment in vitro showed that 
selective ROCK inhibitors (Y‑27632 and Y‑39983) induced 
concentration‑dependent relaxation of isolated rabbit ciliary 
arteries (161), and demonstrated that the mechanism of 
relaxation may decrease the Ca2+ sensitivity of key intracel-
lular contractile protein(s) and/or alter regulation of Rho 
kinases (161). The studies in vivo also demonstrated that 
topical application of ROCK inhibitor (Y‑27632, Y‑39983 
and fasudil) increased ONH blood flow in rabbit (161‑163). 
Okamura et al reported that systemic administration of 
fasudil had vasodilator effects on retinal arterioles in stroke-
prone spontaneously hypertensive rats (164). Sugiyama 
et al also found that systemic or topical fasudil suppressed 
impairment of ONH blood flow, function and morphology 
induced by NG‑nitro‑L‑arginine methyl ester (L‑NAME) or 
endothelin‑1 (163), and the amelioration could be inhibited 
by a specific inhibitor of Akt/PI‑3 kinase, which suggests 
that these actions of fasudil might be caused by inhibition 
of ROCK, leading to phosphorylation and activation of Akt 
via the PI‑3 kinase (165). Decreased perfusion is thought to 
be one of the causative factors in loss of vision in glaucoma 
(166‑169), ROCK inhibitors could increase blood f low 
velocity in optic nerve head, which suggests that Rho/ROCK 
signaling may be a promising target for the treatment of 
glaucoma optic neuropathy.

Improved RGC survival. There is increasing evidence 
demonstrating the protective effects of RhoA/ROCK-
inhibition on adult retinas. The intraocular injection of the 
RhoA antagonist C3 is reported to increase both axonal 
regeneration and RGC survival after optic nerve axotomy in 
rats (170). The inhibition of ROCK (fasudil) was shown to 
decrease the extent of N‑methyl‑D‑aspartic acid (NMDA)‑
induced neurotoxicity in rat retinas (171). In an in vivo rat 
model of glaucoma, intraperitoneal injection of the Rho 
kinase inhibitor fasudil protected against neuronal loss 
(172,173), which suggested that abnormal activity of Rho/
Rho kinase pathway may participate in the pathophysiology 
of glaucoma (82). Inactivation of Rho/ROCK signaling 
also contributes to the neuroprotectivity of neuronal cells 
in the retinal ischemia/reperfusion injury. Retinal isch-
emia/reperfusion injury leads to a loss of neuronal cells 
in the inner retinal layers such as RGCs and amacrine 
cells (174,175), and neuronal cell apoptosis induced by 
transient retinal ischemia progresses through the reperfu-
sion phase rather than the ischemic phase. Injury during 
reperfusion is caused by the infiltration of leukocytes into 
the neural tissue through vascular endothelial cells (176). 
The Rho/Rho kinase pathway contributes to leukocyte 

extravasation by regulating the leukocyte cytoskeleton and 
tight junction of endothelial cells (177,178). ROCK inhibi-
tors attenuate the ischemia/reperfusion induced apoptosis 
of retinal cells in the inner retinal layers (including RGCs) 
by decreasing Bax/Bcl‑2 mRNA ratio and the expression 
of caspase‑3 and iNOS (179), and by regulating leukocyte 
infiltration in the neural tissue (180,181). The treatment with 
the ROCK inhibitor Y‑27632 could promote the viability 
of primary RGCs, the RGCs‑5 cell line (182). Moreover, 
ROCK inhibition also rescues RGCs from axotomy‑induced 
apoptosis in vivo, and the neuroprotective effects of the 
ROCK inhibitor Y‑27632 are mediated by the activation 
of well‑established cell survival pathways, such as the Akt 
and MAPK pathways (182). Furthermore, Tura et al found 
that the neuroprotective effect of H‑1152P on retinal cells, 
particularly in RGCs, was associated with a decrease in the 
reactivity of astrocytes, Müller cells, and microglia both 
in retinas cultured under serum deprivation and after optic 
nerve crush, which suggested the neuroprotective effect of 
H‑1152P‑mediated ROCK‑inhibition on retinal cells under 
stress may rely partly on the attenuation of glial cell reac-
tivity (183).

Promotion of RGC axon regeneration. The failure of axon 
regeneration after injury to the mammalian CNS is attribut-
able to the limited availability of neurotrophic factors (NTF) 
which promote neuron survival and axon regeneration, and 
the presence of myelin‑ and scar‑derived inhibitory molecules 
such as Nogo‑A, myelin associated glycoprotein (MAG), 
oligodendrocyte‑myelin glycoprotein (Omgp), chondroitin 
sulphate proteoglycan (CSPG), ephrins and semaphorins 
(184‑191). After binding to their cognate receptors, these 
inhibitory molecules converge on the Rho/ROCK pathway 
to change actin dynamics and initiate growth cone collapse 
(184,186,187,192). The Rho/ROCK pathway has been mainly 
associated with inhibitory signaling for neurite elongation 
(193), and inactivation of Rho/ROCK pathway can promote 
the regeneration (193). As discussed above, ONH expresses 
RhoA, ROCK1 and ROCK2 (74), and their presence in the 
optic nerve suggests a potential role for the Rho/ROCK 
pathway in neurite outgrowth and axon regeneration through 
actin cytoskeletal reorganization (147). Inhibition of Rho and 
ROCK has been shown to increase RGC axon regeneration 
(193,194). It has been shown that intraocular delivery of 
C3‑exoenzyme, an inactivator of Rho GTPase, can promote 
the regeneration of RGC axons in the optic nerve after a 
microcrush lesion (193,195). On the other hand, ROCK 
inhibitors have also been shown to increase regeneration in 
different optic nerve lesion models (182,195‑198). In terms of 
their intensity, the effect of Y-39983 in promotion of neurite 
outgrowth was stronger than that of Y-27632, fasudil and 
dimethylfasudil (194,196). In addition to a ROCK inhibitor 
used alone, the treatment with ROCK inhibitor (Y‑27632) in 
combination with CNTF and/or raised cAMP levels has addi-
tive effects, and promotes robust RGCs axon regeneration 
(182,197). We recently found that RhoA/ROCK signaling 
pathway was involved in the erythropoietin (EPO) effect to 
promote RGC axon regeneration after optic nerve crush, and 
EPO and Y‑27632 had additive effects in promoting RGC 
axon regeneration (199).
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10. Conclusion

Rho/ROCK pathway has important roles for modulating 
the cytoskeletal integrity of cells, the synthesis of ECM 
components in the outflow tissue, and the permeability of the 
SC endothelial cells. The activation of Rho/ROCK pathway 
in the outflow tissue results in reduction of aqueous humor 
outflow, and thereby increase IOP, whereas the inhibition of 
Rho/ROCK pathway in the outflow tissue results in increase 
of aqueous humor outflow, and thereby decrease IOP. ROCK 

inhibitors also serve as a potent anti‑scarring agent via 
inhibition of transdifferentiation of TFs into myofibroblasts. 
Furthermore, RhoA/ROCK pathway is involved in optic 
nerve neuroprotection. Inactivation of Rho/ROCK signaling 
could increase ocular blood flow, improve RGCs survival 
and promote RGCs axon regeneration. Considering the IOP 
modulation, potent bleb anti‑scarring effect and neuropro-
tective properties of ROCK inhibitors (Fig. 1), Rho/ROCK 
pathway is an attractive target for anti-glaucoma therapy, and 
it may be used for human therapy in the near future.

Figure 1. The diagram of Rho/ROCK effect on IOP, filtering bleb and optic nerve. ROCK, Rho/Rho‑associated kinase; MYPT1, myosin phosphatase target 
subunit 1; MLC, myosin light chain; P‑MLC, phosphorylation of MLC; LIMK1/2, LIM kinase1/2; P‑Cofilin, phosphorylation of cofilin; TM, trabecular meshwork; 
ECM, extracellular matrix; JCT, juxtacanalicular tissue; TFs, Tenon fibroblasts; IOP, intraocular pressure; RGCs, retinal ganglion cells.
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