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Abstract. Expression of the transmembrane-4-L-six-family-1 
(TM4SF1) is high in human pancreatic cancer cells, but the 
underlying mechanism remains unclear. In this study, we 
aimed to identify and characterize microRNAs that regulate 
TM4SF1 expression in PC cells. Western blot analysis and 
quantitative polymerase chain reaction were used to detect 
TM4SF1 and hsa-miR-141 levels in four PC cell lines. SW1990 
and BxPc-3 cells were transfected with the inhibitor miR-141, 
the inhibitor negative control, the miR-141 mimic and the 
mimic negative control; and cell invasion, migration, prolif-
eration, cell cycle progression and apoptosis were detected by 
Transwell, MTT and flow cytometry assays, respectively. The 
miR-141 levels negatively correlated with the TM4SF1 protein 
levels in PC cells. The TM4SF1 protein levels were lower in 
the 141M group but higher in the 141I group, although the 
TM4SF1 mRNA levels had no significant changes, compared 
to the negative controls. Luciferase assays demonstrated that 
hsa-miR-141 directly targeted the 3'-untranslated region of the 
TM4SF1 gene. In addition, miR-141 downregulated TM4SF1 
expression to inhibit invasion and migration of PC cells but 
had no effects on cell proliferation, cell cycle progression or 
apoptosis. TM4SF1 is a direct target of miR-141. Our findings 
that TM4SF1 expression was inhibited by miR-141 provide 
new insights into the oncogenic mechanism of TM4SF1 and 
suggest that miR-141 represents a novel molecular target for 
PC therapy.

Introduction

Pancreatic cancer (PC) is one of the most lethal malignant 
diseases with a poor prognosis. PC is the fourth leading cause 
of cancer-related deaths in Western countries and has the 
lowest patient survival rate among all solid cancers. It has been 
estimated that 43,920 people were newly diagnosed with PC in 
2012 (1). Although great efforts have been made in PC treatment 
using surgery, radiation therapy and chemotherapy, the 5-year 
survival rate of PC patients is still disappointing. Therefore, it 
is important to explore the molecular mechanisms that regulate 
PC development in order to develop effective therapies for PC.

Transmembrane-4-L-six-family-1 (TM4SF1), a small 
22 kDa four-transmembrane-domain protein also known as 
L6-Ag, is a surface protein highly expressed in human lung, 
breast, colon, ovarian, renal and prostate carcinomas, and 
it is weakly expressed in normal vascular endothelium (2). 
Due to its unique expression pattern, TM4SF1 has attracted 
much attention as a therapeutic target for monoclonal 
antibody‑based cancer therapy (2). TM4SF1 belongs to a 
distinct family that includes five other structurally similar 
proteins: TM4SF4/IL-TMP, TM4SF5/L6H, TM4SF18/L6D, 
TM4SF19/OCTM4 and TM4SF20/TCCE518 (3). TM4SF1 has 
been shown to be associated with the growth, motility, invasion 
and metastasis of tumor cells (4-7). In particular, recent studies 
have shown that TM4SF1 is highly expressed in PC tissues and 
cell lines and that downregulation of TM4SF1 can decrease 
migration, invasion and chemoresistance of PC cells in vitro; 
increase the effectiveness of gemcitabine treatment; and inhibit 
tumor angiogenesis and metastasis in orthotopic tumor models 
in vivo (8). However, the molecular mechanisms that regulate 
TM4SF1 expression and function in PC remain unclear.

MicroRNAs (miRNAs) are a new class of endogenous, 
non‑coding and short (19-24 nucleotides) single-stranded 
RNAs. miRNAs regulate gene expression by binding to the 
3'-untranslated region (UTR) of the target gene leading to 
either downregulation of the mRNA transcript or inhibition of 
the protein translation process (9). miRNAs can regulate many 
cellular processes, such as apoptosis, cell cycle progression, 
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proliferation, differentiation, invasion and migration, and either 
promote or inhibit tumorigenesis, depending on the genes they 
target and their differential expression in normal and cancer 
tissues (10-17).

hsa-miR-141, a member of the miR-200 family, is over
expressed in ovarian cancer, colorectal cancer, thyroid 
papillary carcinoma, pancreatic ductal adenocarcinoma, 
nasopharyngeal carcinoma, prostate tumor, cholangiocarci-
noma and endometrial carcinoma, but it is downregulated in 
gastric cancer, renal cell carcinoma and breast cancer (18-28). 
These results lead to a controversial issue regarding the func-
tion of hsa-miR-141 in cancer progression.

In this study, we first investigated the correlation between 
the expression level of TM4SF1 and miR-141 in PC cells. 
Next, we demonstrated whether TM4SF1 is a direct target 
of miR-141. In addition, we determined whether the miR-141 
mimic could affect invasion, migration, cell proliferation, cell 
cycle progression or apoptosis of PC cells.

Materials and methods

Cell culture. The human PC cell lines SW1990, PANC-1, 
BxPC-3 and CFPAC-1 cells were obtained from the Shanghai 
Cell Bank (Shanghai, China) and cultured in Dulbecco's modi-
fied Eagle's medium (DMEM, Wisent, St. Bruno, QC, Canada) 
supplemented with 10% fetal bovine serum (FBS, Wisent), 
2 mM glutamine, 100 µg/ml penicillin, and 100 µg/ml strepto-
mycin in a humidified chamber at 37˚C with 5% CO2.

miRNAs transfection. Inhibitor miR-141 (141I), the inhibitor 
negative control (141I-NC), the miR-141 mimic (141M) and 
the mimic negative control (141M-NC) were designed and 
synthesized by GenePharma (Shanghai, China). SW1990 
and BxPc-3 cells were seeded in 6-well plates at a density 
of 50%, 24 h later the cells were transfected with miRNAs 
using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) 
following the manufacturer's instructions.

Quantitative real-time polymerase chain reaction (qRT-PCR). 
Total RNA was extracted from SW1990 and BxPc-3 cells by 
using TRIzol (Invitrogen). Primescript RT Reagent (Takara, 
Dalian, China) was used to synthesize cDNA. qRT-PCR was 
performed using SYBR‑Green (Takara) on a 7500 Real-Time 
PCR System (Applied Biosystems, Foster City, CA, USA). The 
primers were as follows: TM4SF1 forward, 5'-ACCACTATG 
TCTTGATTCCCTC-3'; and reverse, 5'-ATTGTGGCTCTG 
TCCTGGGT-3'; GAPDH forward, 5'-TCACCCACACTGTG 
CCCATCTACGA-3'; and reverse, 5'-CAGCGGAACCGC 
TCATTGCCAATGG-3'; hsa-miR-141 forward, 5'-CGCTAA 
CACTGTCTGGTAAAG-3'; and reverse, 5'-GTGCAGGGT 
CCGAGGT-3'; U6 forward, 5'-ATTGGAACGATACAGAGA 
AGATT-3'; and reverse, 5'-GGAACGCTTCACGAATTTG-3'. 
The conditions were as follows: 95˚C for 3 min; 35 cycles of 
94˚C for 30 sec, 60˚C for 30 sec and 72˚C for 30 sec; and 72˚C 
for 5 min. GAPDH mRNA and U6 were used as internal 
controls for determining the relative expression level of 
TM4SF1 mRNA and hsa-miR-141, respectively. The compara-
tive ∆∆Ct method was used to calculate relative expression 
levels of mRNAs and miRNAs, and the fold changes were 
analyzed by 2-∆∆Ct.

Western blot analysis. Total protein was extracted from 
SW1990 and BxPc-3 cells using RIPA buffer supplemented 
with 1% phenylmethylsulfonyl fluoride (PMSF), and the protein 
concentration was estimated using a BCA kit (Keygen, Nanjing, 
China). Protein was separated by 12% sodium dodecyl sulfate 
polyacrylamide gel electrophoresis (SDS-PAGE) and transferred 
to polyvinylidene difluoride (PVDF) membranes. The membranes 
were blocked in Tris-buffered saline (TBS) with 5% non‑fat dry 
milk at 4˚C for 15 h then incubated with primary antibodies 
against TM4SF1 (Abcam, Cambridge, MA, USA) or GAPDH 
(Beyotime, Jiangsu, China) at 4˚C overnight. Membranes were 
incubated with anti-rabbit (or mouse) IgG-horseradish peroxi-
dase-conjugated secondary antibody (Santa Cruz Biotechnology, 
Santa Cruz, CA, USA) for 2 h at room temperature, washed three 
times, developed with an electrochemiluminescence kit (Pierce, 
Rockford, IL, USA), and exposed to X-ray film to visualize the 
images. GAPDH served as a loading control.

Luciferase reporter assay. Four oligonucleotides corresponding 
to the 3'UTR of TM4SF1 were synthesized as follows: wild‑type 
forward, 5'-CTAGATAAAGACTGGCATCTTCACAGGAT 
GTCAGTGTTTAAATTTAGTAGGCCGG-3'; and reverse, 
5'-CCTACTAAATTTAAACACTGACATCCTGTGAAGAT 
GCCAGTCTTTAT-3'; and mutant‑type forward, 5'-CTAGAT 
AAAGACTGGCATCTTCACAGGATGTTGATGCTTAAA 
TTTAGTAGGCCGG-3'; and reverse, 5'-CCTACTAAATTT 
AAGCATCAACATCCTGTGAAGATGCCAGTCTTTAT-3'. 
The oligonucleotides were cloned into the Xbal site of the 
pGL3 luciferase reporter gene (Promega, Madison, WI, USA) 
to generate pGL3-TM4SF1-3'UTR and pGL3‑TM4SF1-
3'UTR‑mut vector. SW1990 and BxPc-3 cells were cultured in 
24-well plates and co-transfected with 200 ng of pGL3‑TM4SF1 
or pGL3-TM4SF1-mut and 20 ng of pRL-SV40 (Promega) 
containing Renilla luciferase and 20 pmol of 141M or 141NC. 
At 48 h after transfection, cells were collected and luciferase 
activity was measured by using a Dual-Luciferase Reporter 
assay kit (Promega) following the manufacturer's instructions. 
All experiments were repeated three times.

Cell invasion and migration assay. Invasion and migration of 
cells were measured by a Matrigel invasion chamber assay, 
using a chamber of 6.5 mm in diameter with 8‑µm pore size 
Transwell chambers (Corning, Corning, NY, USA). SW1990 
and BxPc-3 cells were seeded into the upper chamber 
(1.0x105 cells per Transwell) pre-coated with 1  mg/ml 
Matrigel for the invasion assay or without Matrigel for the 
migration assay, and the bottom wells were filled with 500 µl 
of 10% FBS-DMEM. After incubation for 24  h at 37˚C, 
non‑invading or non‑migrating cells were removed with 
cotton swabs, and cells that had invaded or migrated to the 
underside of the membrane were stained with 0.1% crystal 
violet for 15 min at 37˚C. Then, the membranes were washed 
with phosphate‑buffered saline (PBS), and the invaded or 
migrated cells were counted under an inverted microscope. 
All experiments were carried out in triplicate.

Cell proliferation assay. SW1990 and BxPc-3 cells were seeded 
in 96-well culture plates (Costar, Cambridge, UK) at a density 
of 2x103 cells/well, 24 h later the cells were transfected with 
miRNAs, and 48 h later cell proliferation was detected by using 
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Figure 1. Relative expression levels of miR-141 and TM4SF1 in four PC cell lines. (A) Western blot analysis of the TM4SF1 protein level. Shown are representa-
tive blots from three independent experiments. GAPDH was used as a loading control. (B) The TM4SF1 mRNA level was detected by qPCR and normalized by 
GAPDH mRNA. (C) The miR-203 level was detected by qPCR and normalized to U6.

Figure 2. miR-141 inhibits TM4SF1 protein expression. Cells were transfected as indicated, 48 h later the cells were collected and subjected to western blot and 
qPCR analyses. (A and D) Western blot analysis of the TM4SF1 protein level. Shown are representative blots from three independent experiments. GAPDH was 
used as a loading control. (B and E) The TM4SF1 mRNA level was analyzed by qRT-PCR and normalized to GAPDH mRNA. (C and F) The hsa-miR-141 level 
was detected by qPCR and normalized to U6. *P<0.05.
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an MTT kit (Keygen) following the manufacturer's instructions 
daily for 5 days. Briefly, 20 µl of MTT solution (5 mg/ml) was 
added to each well, cells were incubated for 4 h at 37˚C, then 
the medium in each well was replaced with 150 µl of dimethyl 
sulfoxide (DMSO), and the plate was oscillated for 10 min. 
The optical density (OD) was detected by a microplate reader 
(Tecan, Shanghai, China) at 490 nm with 650 nm as a refer-
ence wavelength. Each assay was performed in triplicate and 
repeated independently three times.

Flow cytometry analysis of cell cycle progression and apop-
tosis. Cell cycle progression and apoptosis were assessed by 
flow cytometry (Becton‑Dickinson, San Jose, CA, USA). 
SW1990 and BxPc-3 cells were grown and transfected with 
miRNAs. For cell cycle analysis, cells were collected and 
washed twice with PBS and fixed with 70% ethanol at -20˚C 
overnight. Cells were washed twice with PBS and resuspended 
in 500 µl of PBS with 0.2% Triton X-100, 10 mM EDTA, 
100 µg/ml RNase A, and 50 µg/ml propidium iodide (PI). The 
samples were incubated at room temperature for 30 min. For 
apoptosis, cells were collected and washed twice with PBS, 

suspended in 100 µl of 1X binding buffer, and stained with 
5 µl of Annexin V fluorescein isothiocyanate (FITC) and 5 µl 
of PI at room temperature for 15 min in the dark. Then, the 
samples were analyzed by flow cytometry (Becton‑Dickinson). 
All experiments were carried out in triplicate.

Statistical analysis. Each experiment was conducted at least 
three times. All data were expressed as mean ± standard devia-
tion (SD). Differences between each group were analyzed by a 
Student's t-test. Statistical analysis was performed with SPSS 
software (version 16.0, SPSS Inc., Chicago, IL, USA). P<0.05 
was considered statistically significant.

Results

The TM4SF1 protein level negatively correlates with the hsa-miR-
141 level in PC cell lines. First, we examined the protein level of 
TM4SF1 in four PC cell lines (SW1990, PANC-1, BxPC-3 and 
CFPAC-1). Western blot analysis showed that the protein level 
of TM4SF1 was the highest in SW1990 cells and the lowest in 
BxPC-3 cells (Fig. 1A). However, qRT-PCR analysis showed that 
there was no significant relationship between TM4SF1 protein 
and mRNA levels (Fig. 1B). Notably, qRT-PCR analysis showed 
that the expression level of miR-141 was the highest in BxPc-3 
cells and the lowest in SW1990 cells (Fig. 1C). These data 
suggest that the TM4SF1 protein level is negatively correlated 
with the hsa-miR-141 level in PC cells.

TM4SF1 is a target of hsa-miR-141 in PC cells. Next, we 
detected protein and mRNA expression levels of TM4SF1 in 
SW1990 and BxPc-3 cells transfected with miR-141 mimic 
(141M), miR-141 inhibitor (141I), or the corresponding nega-
tive control (141M-NC or 141I-NC). Western blot analysis 
showed that the TM4SF1 protein level was lower in the 141M 
group and higher in the 141I group (Fig. 2A and D), compared 
to the negative controls, respectively. In addition, the TM4SF1 
protein level negatively correlated with the hsa-miR-141 level 
(*P<0.05, Fig.  2C and  F). qRT-PCR analysis showed that 
there was no obvious change in the TM4SF1 mRNA level 
(Fig. 2B and E). These data indicate that miR-141 post‑tran-
scriptionally inhibits TM4SF1 expression.

To confirm that hsa-miR-141 directly targets the 3'UTR of 
the TM4SF1 gene, we used TargetScan to predict the 3'UTR of 
TM4SF1 and the binding site of miR-141 (Fig. 3A). Based on this 
program, we generated pGL3-TM4SF1 and pGL3‑TM4SF1-
mut vectors as the luciferase reporter and control, respectively, 
and transfected them into SW1990 and BxPc-3 cells, together 
with 141M or 141M-NC. The luciferase assay showed that 
luciferase activity was approximately 48% and 43% less in 
the 141M group compared with the control (*P<0.05, Fig. 3B 
and C). These results suggest that miR-141 directly targets 
TM4SF1 via the binding site in its 3'UTR region.

hsa-miR-141 inhibits invasion and migration of PC cells 
in vitro. Matrigel invasion and Transwell assays were used to 
detect the effects of hsa-miR-141 on the invasion and migration 
of SW1990 and BxPc-3 cells in vitro. As shown in Fig. 4A, B, 
E and F, transfection with 141I could promote invasion, while 
141M inhibited invasion of SW1990 and BxPc-3 cells (P<0.05). 
Similarly, as shown in Fig. 4C, D, G and H, transfection with 

Figure 3. hsa-miR-141 directly targets TM4SF1. (A) The binding site of miR‑141 
in the 3'UTR region of TM4SF1 was predicted by TargetScan. (B and C) SW1990 
and BxPc-3 cells transfected with the pGL3-TM4SF1 reporter vector together 
with 141M led to significantly reduced luciferase activity. The data were nor-
malized by the ratio of Renilla luciferase activities. *P<0.05.
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141I could promote migration, while 141M could inhibit migra-
tion of SW1990 and BxPc-3 cells (P<0.05). These data suggest 
that hsa-miR-141 was able to inhibit invasion and migration of 
PC cells in vitro.

miR-141 has no effects on proliferation, cell cycle progression, 
and apoptosis of PC cells in vitro. To clarify whether hsa-miR-
141 could affect cell proliferation, cell cycle progression, 
or apoptosis in SW1990 and BxPc-3 cells, we performed an 
MTT assay and found that transfection of 141M or 141I caused 

no significant difference in cell proliferation in each group 
(Fig. 5A and F). Flow cytometry analysis of cell cycle progres-
sion and apoptosis showed that the percentage of cells in the 
S+G2 phase and the total apoptosis rate were not significantly 
different in each group (Fig. 5D, I, E and J).

Discussion

TM4SF1 is a member of the tetraspanin superfamily and was 
first described as a tumor-specific antigen in many human epithe-

Figure 4. miR-141 inhibits the invasion and migration of SW1990 and BxPc-3 cells. (A, D, E and H) Representative photographs of invading or migrating 
cells. (B and F) The number of invading cells from three independent experiments (*P<0.05). (C and G) The number of migrating cells from three inde-
pendent experiments (*P<0.05).
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lial malignancies such as lung, breast, colon, ovarian, renal and 
prostate carcinomas (2,4). Janes and Watt found that TM4SF1 
could interact with integrin family members to form transmem-

brane complexes that affect cell adhesion, migration and tumor 
metastasis (29). TM4SF1 is overexpressed in the endothelium of 
human cancers, and it has been proposed that TM4SF1 acts as a 

Figure 5. miR-141 has no obvious effects on proliferation, cell cycle progression, or apoptosis of SW1990 or BxPc-3 cells. SW1990 and BxPc-3 cells were trans-
fected as indicated and then collected for the MTT assay and flow cytometry analysis. (A and F) The proliferation ability of SW1990 and BxPc-3 cells was detected 
by an MTT assay. (B, D, G and I) Cell cycle progression of SW1990 or BxPc-3 cells was measured by flow cytometry. (C, E, H and J) Apoptosis of SW1990 or 
BxPc-3 cells was monitored by flow cytometry. LR+UR is the total apoptosis rate.
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‘molecular organizer’ to facilitate the gathering of specific cell 
surface proteins and the formation and stability of functional 
signaling complexes in tumor angiogenesis (30,31).

The specific mechanism by which TM4SF1 is over-
expressed in epithelial tumors remains unclear. By using 
TargetScan, we predicted that hsa-miR-141 could target 
TM4SF1 and regulate its expression. First, we detected the 
levels of TM4SF1 and hsa-miR-141 in four PC cell lines and 
found that TM4SF1 protein levels negatively correlated with 
hsa-miR-141 levels in different PC cell lines. Furthermore, 
western blot analysis showed that the TM4SF1 protein level was 
lower in the miR-141 mimic group and higher in the miR-141 
inhibitor group, compared to the negative controls, respec-
tively. Importantly, in these cells the TM4SF1 protein level but 
not the TM4SF1 mRNA level negatively correlated with the 
hsa-miR-141 level. These data suggest that hsa-miR-141 down-
regulates TM4SF1 expression at the post-transcriptional level. 
Next, we performed a luciferase assay and provided evidence 
that TM4SF1 is a direct target gene of hsa-miR-141.

hsa-miR-141 belongs to the miR-200 family, which 
consists of the following members: miR-141, miR-200a, 
miR-200b, miR-200c and miR-429 (32). Overexpression of 
hsa-miR-141 has been shown to inhibit invasion and migra-
tion of breast cancer, colorectal cancer and pancreatic cancer 
(33-35). Consistent with these previous studies, in this study 
we employed Matrigel invasion and Transwell migration 
assays to demonstrate that the miR-141 mimic resulted in a 
significant decrease of cell invasion and migration, while the 
miR-141 inhibitor led to a significant increase of cell invasion 
and migration. Given the crucial role of the cell surface protein 
TM4SF1 in tumor invasion and metastasis (29), it is reasonable 
to expect that miR-141 could directly target and downregu-
late the expression of TM4SF1, leading to loss of oncogenic 
function of TM4SF1. Our findings satisfactorily explain the 
downregulation of miR-141 and overexpression of TM4SF1 in 
PC and support current opinions that TM4SF1 is an oncopro-
tein and that miR-141 is a tumor-suppressive miRNA.

Notably, the effects of hsa-miR-141 on cancer cell prolif-
eration have been studied, but the role of hsa-miR-141 in 
cell proliferation of different cancers is controversial. The 
miR-200 family has been reported to be overexpressed in 
pancreatic ductal adenocarcinoma (PDAC) cells and enhance 
cell proliferation (21). Similar results have been reported in 
cholangiocarcinoma, ovarian carcinoma and choriocarcinoma 
(24,36,37). However, overexpression of hsa-miR-141 can 
significantly inhibit the proliferation of gastric cancer cells 
(26). In this study, we performed an MTT assay and flow 
cytometry analysis and found that miR-141 had no obvious 
effects on cell proliferation, cell cycle progression, or apop-
tosis in our experimental settings. SW1990 and BxPC-3 cells 
are derived from pancreatic adenocarcinoma, while CFPAC 
and PANC-1 cells originate from PDAC. The different sources 
of PC cells may lead to different results with regard to the 
role of hsa-miR-141 in the regulation of cell proliferation and 
apoptosis. Further studies that employ a variety of different PC 
cell lines and in vivo xenograft mouse models will help clarify 
the controversial results.

In conclusion, in this study we showed that the miR-141 
level negatively correlated with TM4SF1 protein in PC cells. By 
using gain and loss of function approaches, we demonstrated 

that miR-141 downregulated TM4SF1 expression to inhibit 
the metastatic potential of PC cells but had no effects on cell 
proliferation, cell cycle progression or apoptosis. Furthermore, 
for the first time, we identified TM4SF1 as a direct target of 
miR-141. Our findings that TM4SF1 expression is inhibited 
by miR-141 provide new insight into the oncogenic function 
mechanism of TM4SF1 and suggest that miR-141 represents a 
novel molecular target for PC therapy.
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