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Abstract. �����������������������������������������������Tumor protein D52 (TPD52) is located at chromo-
some 8q21, a region that is frequently gained or amplified 
in multiple human cancer types. TPD52 has been suggested 
as a potential target for new anticancer therapies. In order 
to analyze TPD52 expression in the most prevalent human 
cancer types, we employed quantitative PCR to measure 
TPD52 mRNA levels in formalin-fixed tissue samples from 
more than 900 cancer tissues obtained from 29 different 
human cancer types. TPD52 was expressed at varying levels 
in all tested normal tissues, including skin, lymph node, lung, 
oral mucosa, breast, endometrium, ovary, vulva, myometrium, 
liver, pancreas, stomach, kidney, prostate, testis, urinary 
bladder, thyroid gland, brain, muscle and fat tissue. TPD52 
was upregulated in 18/29 (62%) tested cancer types. Strongest 
expression was found in non-seminoma (56-fold overexpres-
sion compared to corresponding normal tissue), seminoma 
(42-fold), ductal (28-fold) and lobular breast cancer (14-fold). 
In these tumor types, TPD52 upregulation was found in the 
vast majority (>80%) of tested samples. Downregulation was 
found in 11 (38%) tumor types, most strongly in papillary 
renal cell cancer (-8-fold), leiomyosarcoma (-6-fold), clear 
cell renal cell cancer (-5-fold), liposarcoma (-5-fold) and lung 
cancer (-4-fold). These results demonstrate that TPD52 is 
frequently and strongly upregulated in many human cancer 
types, which may represent candidate tumor types for poten-
tial anti-TPD52 therapies.

Introduction

Copy number increase involving chromosome 8q belong to the 
most frequent aberrations in human solid cancers, including 

for example tumors of the breast, ovary, endometrium, lung, 
colon, head and neck, urinary bladder, kidney and prostate 
(1,2). Whereas gains often affect large portions of 8q or 
even the entire q-arm, high-level amplifications are typically 
focused on the chromosomal bands 8q21 (3-5) and 8q24 (6,7), 
thus highlighting the loci of putative oncogenes, including 
MYC at 8q24. Several candidate oncogenes have been 
suggested to reside inside the 8q21 region, including tumor 
protein D52 (TPD52) (3,8-13). TPD52 has been suggested to 
play a role for vesicle trafficking and Ca2+ dependent exocy-
totic secretion, and has been shown to facilitate cytokinesis in 
rapidly proliferating cells (14,15).

In line with an oncogenic role, TPD52 overexpression has 
been described from a multitude of cancer types, including 
breast (9), lung prostate (2), ovarian (8), pancreatic cancer (16), 
multiple myeloma (17,18), Burkitt's lymphoma (19), melanoma 
(20) and testicular germ cell tumors (21), and has been linked 
to poor prognosis in breast, medulloblastoma, lung and prostate 
cancer patients (22). Moreover, cell line experiments and in vivo 
analysis in mice support the implication of TPD52 in tumori-
genesis and progression to metastasis (23,24). Accordingly, 
TPD52 has been suggested as a promising target for antitumor 
therapies in breast (25) and prostate cancer (24), and it seems 
likely that also other tumor types showing TPD52 overexpres-
sion could profit from a TPD52 specific therapy.

A systematic analysis of TPD52 expression in human 
cancers in order to identify tumor types that might benefit 
from potential anti-TPD52 therapies is lacking. In this study, 
we have employed quantitative real-time PCR in more than 
900 tumor samples to compare the prevalence and expression 
levels of TPD52 across 29 important human cancer types and 
corresponding normal tissues.

Materials and methods

Tissue specimens. Formalin-fixed, paraffin embedded tissues 
were selected from the archive of the Institute of Pathology, 
University Medical Center Hamburg-Eppendorf (Hamburg, 
Germany). A total of 999 cancer samples and 40 normal 
tissue samples were included into the study. A detailed list 
of all samples is given in Table I. One pathologist reviewed 
all hematoxylin and eosin stained sections of all tissues and 
selected one block per tumor for RNA isolation. For tumor 
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samples areas with high tumor cell content (≥60% tumor 
cells) were marked on the slide. A hollow needle was used 
to take two tissue cylinders (diameter from 0.5 mm) from 
each tissue block for nucleic acid isolation. The local ethics 
committee approved usage of the human tissue samples for 
research purposes.

RNA extraction and cDNA synthesis. Punched tissue mate-
rial was deparaffinized with xylene and 80% ethanol. After 
digestion with proteinases K at 56˚C overnight, total RNA 
was isolated using the RNeasy FFPE kit (Qiagen) in a full-
automated nucleic acid isolation device (QIAcube, Qiagen). 
cDNA was synthesized in a 96-well plate format using the 
high‑capacity cDNA reverse transcription kit (Applied 
Biosystems) following the manufacturer's instructions. Total 
RNA (1 µg) was used for reverse transcription of all samples.

Quantitative PCR analysis. Real-time PCR was performed 
using the LightCycler LC480 (Roche) detection system, and 
the QuantiTect SYBR‑Green PCR Kit (Qiagen). For specific 

amplification of TPD52 and the housekeeping gene TBP the 
QuantiTect Primer Assay (Qiagen) was used. The following 
conditions were used for PCR: i) initial denaturation step at 
95˚C for 10 min; and ii) 40 cycles at 95˚C for 20 sec and 
55˚C for 40 sec. Relative quantity of TPD52 expression in 
tumor samples was calculated by the 2-∆∆Ct method standard-
ized to TPD52 expression in corresponding normal tissue. 
A fold change of 2 was used to determine the frequency of 
significant TPD52 regulated cancers.

Results

Technical issue. A total of 894 cancer samples from 29 different 
tumor types and 40 normal tissue samples from 20 different 
normal tissue types were included in the analysis (Table I). A 
total of 105 (10.5%) tumor samples and 3 (7.5%) normal tissue 
samples were excluded from analysis because either the refer-
ence gene TBP or the target gene TPD52 showed a Ct value 
exceeding 35, indicating that too little cDNA was generated 
for reliable TPD52 expression analysis.

Table I. Tissue samples for TPD52 expression analysis.

Tissue type	 Organ	n	  Organ	n

Normal	 Skin	     2	Pancreas	    1
	 Lymph node	     2	 Stomach	   2
	 Lung	     2	 Kidney	   2
	 Oral cavitiy	     2	Prostate	    2
	 Breast	     1	 Testis	   3
	 Endometrium	     2	 Bladder	   2
	 Ovar	     2	 Thyroid gland	   2
	 Vulva	     2	 Brain	   2
	 Myometrium	     2	 Skeletal muscle	   2
	 Liver	     3	 Adipose tissue	   2

Cancer	 Malignant melanoma	   11	 Liver cancer	 50
	 Larynx carcinoma	   39	Pancreatic  cancer	 38
	 Lung cancer, large cell (24),
	adeno  (68), small cell (17)
	and  squamous cell (25)	 134	 Stomach cancer 	 50
	 Oral cavity cancer	   56	 Renal cell cancer	 59
	 Breast cancer, ductal (26)
	and  lobular (27)	   53	Prostate  cancer	 48
	 Endometrium carcinoma	   31	 Testis cancer, seminoma (30)
			and    non-seminoma (29)	 59
	 Ovarian cancer	   33	 Urinary bladder cancer,
			non   -invasive (pTa 27)
			   and invasive (≥pT2 28)	 55
	 Uterus cervix carcinoma	   28	 Thyroid gland cancer	 40
	 Vulva cancer	   39	 Leiomyosarcoma	 42
	 Colon cancer	   50	 Liposarcoma	 36
	 Esophageal cancer,
	s quamous cell (23)
	and  adenocarcinoma (25)	   48
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TPD52 expression in normal tissues. TPD52 transcript was 
found in all analyzed normal tissues. Average ∆Ct was 2.4±0.4. 
For a direct comparison of the TPD52 expression levels of the 
different normal tissues, the expression levels were normalized 
to the TPD52 expression level in testis, which had the lowest 
expression level of all analyzed normal tissues. Accordingly, 
highest TPD52 expression levels [≥32 (25) -fold overexpression 
as compared to normal testis] were found in normal oral cavity 
mucosa (104-fold overexpression), pancreas (91-fold), thyroid 
gland (79-fold), kidney (76-fold), prostate (69-fold), stomach 
(56-fold), vulva (45-fold), liver (39-fold), lymph node (38-fold), 
and breast (32-fold). All data are summarized in Fig. 1.

TPD52 expression in cancer. To compare TPD52 expression 
across the different tumor types, average expression levels 
in the cancer samples were normalized to the corresponding 
normal tissue. For cancer types without available corresponding 
normal tissues, the average expression level of all normal tissues 
(∆Ct=2.4±0.4) was used for normalization. These cancer types 
included tumors of the larynx, cervix, esophagus and colon. 
This analysis revealed ≥1.5-fold TPD52 overexpression in 18/29 
(62%) analyzed tumor types, with highest levels in non‑semi-
noma (56-fold overexpression compared to corresponding 
normal tissue), seminoma (42-fold), ductal breast cancer 
(28-fold) and lobular breast cancer (14-fold). Downregulation 
as compared to the corresponding normal tissues was found 
in 11 (38%) of the analyzed tumor types, including papillary 
renal cell cancer ( -8-fold), leiomyosarcoma ( -6-fold), clear 
cell renal cell cancer (-5-fold), liposarcoma (-5-fold) and lung 
cancer (-4-fold) as the tumor types with the strongest down-
regulation. All data are summarized in Fig. 2.

Prevalence of TPD52 expression in cancer. In order to estimate 
the variability of TPD52 expression in the analyzed tumor types, 
we determined the fraction of samples showing at least 2-fold 
up- or downregulation. This analysis revealed that TPD52 over-
expression was particular frequent (80% of samples showing 
≥2-fold overexpression) in germ cell tumors (non-seminoma 
and seminoma), bladder cancer, esophageal carcinoma and 
mamma carcinoma, whereas cancer types typically showing 
TPD52 downregulation included renal cell carcinoma (90% 
papillary and 68% clear cell), leiomyosarcoma (69%) and lipo-
sarcoma (52%). All data are shown in Fig. 3.

Discussion

The results of our study show that TPD52 is overexpressed 
in a multitude of human solid cancer types. Lower TPD52 
levels were also found in the corresponding normal 
tissues, which is in concordance with previous studies 
reporting TPD52 expression in normal tissues derived from 
breast ( 25-28), prostate ( 29-31), ovarian ( 8), lung ( 32-34), 
bladder (35), brain (36), thyroid (37), endometrium (38,39), 
adrenal gland (40) and liver (41). Such low-level expression 
was expected given the essential role of TPD52 for vesicle 
trafficking and exocytotic secretion (14).

Many cancer types analyzed in our study were charac-
terized by massive TPD52 overexpression. Overexpression 
was strongest and also most prevalent in breast cancers, 
urinary bladder cancers and in testicular cancers. Our data 
are in agreement with previous studies reporting TPD52 
overexpression in breast cancer [7-47%, (3,42-50)]; bladder 
cancer  [21%, (4)], prostate cancer [44-68%, (2,13,29)] and 

Figure 1. TPD52 expression levels in different normal tissue. Relative TPD52 expression level (log2) was standardized to TPD52 expression in testis.
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ovarian cancer [61%, ( 8)] (Table II). Of note, these tumor 
types are frequently affected by gains of 8q or even high-level 
amplification of the TPD52 locus at chromosome 8q21 (3,29), 

suggesting that at least part of the observed overexpression in 
these cancers may be driven by genomic copy number gains 
of TPD52. In line with this assumption, numerous previous 

Figure 2. TPD52 averaged expression levels in different cancer types. TPD52 expression was normalized to corresponding normal tissue or mean TPD52 expression 
in all analyzed normal tissue (*).

Figure 3. Frequency of TPD52 up- and downregulation in different tumor types. A fold change of 2 was determined to find significant TPD52 regulated tumors.
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studies reported associations between TPD52 overexpression 
and gene copy number increase in breast (9,12,42,43,45), 
prostate (2) and ovarian cancers (8).

We found substantial TPD52 downregulation in papillary 
and clear cell kidney cancers, leio- and liposarcomas. Since 
these cancers do not typically show genomic loss of 8q, it 
seems obvious that downregulation is not primarily due to 
TPD52 deletions but may be a result of modified transcription 
due to genetic or epigenetic regulation. TPD52 downregula-
tion was also reported from leukemia (51-53), lymphoma 
(54,55), brain cancer (36,56-58) and sarcoma (59).

The good concordance of our results as compared to 
published studies underlines the validity of our analysis. Only 
few tumor types analyzed in our study showed discrepant 
results as compared to the literature, including pancreatic 
cancer, melanoma and colon cancer. It is possible, that these 
discrepancies are due to technical differences in the first 
place. For example, Loukopoulos et al (16) demonstrated 
upregulation of TPD52 in all 42 analyzed tumors, but 
analyzed xenografts instead of primary tumors in order to 
artificially maximize the fraction of tumor cells in the sample. 
Riker et al (60), Skrzypczak et al (61) and Hong et al (62) 

reported downregulation of TPD52 expression in colon 
cancer, whereas upregulation was found in our analysis. We 
did not include normal colon as a reference in our study but 
used an average expression value across all analyzed normal 
tissues as a surrogate. It is possible, that this strategy resulted  
in bias. The same may also apply for our results obtained from 
larynx, cervix and esophageal carcinomas, where we used the 
same ‘average’ reference.

The usage of matched normal tissues for reference in the 
vast majority of our samples enabled us to estimate the rela-
tive impact of TPD52 in the individual tumor types. Testicular 
germ cell cancers showed the highest levels and frequency 
of TPD52 expression, suggesting that TPD52 upregulation 
might play a particularly important role in this tumor type. 
Comparative genomic hybridization data suggest that large 
fractions of chromosome 8q, including the TPD52 locus, can 
be frequently [42-70%, (21,63,64)] gained or amplified (21) 
in testicular germ cell cancers, supporting a role of genomic 
gains for the overexpression also in this cancer type. This is 
consistent with overexpression of TPD52 in testicular germ 
cell tumors with CGH-confirmed 8q copy number gains 
reported by Scotheim et al (21).

We identified several additional tumor types with frequent 
(≥50% of samples) TPD52 overexpression that had not 
been reported before, including endometrial carcinomas, 
cervix cancer, and stomach cancers. Also these cancers 
are frequently affected by 8q gains or even amplifications 
(5), further supporting the concept of TPD52 copy number 
alterations represent an important mechanism of TPD52 
overexpression (Fig. 3).

The large number of tumor types showing TPD52 
overexpression in a significant fraction of samples encour-
ages clinical testing of anti-TPD52 therapies. Payton et al 
have shown that TPD52 protein-based vaccination in mice 
induced an adaptive immune response capable of rejecting 
TPD52‑overexpression induced tumorigenesis (65). Lewis 
et al have shown that TRAMP (transgenic adenocarcinoma of 
the mouse prostate) mice immunized with cDNA for mD52 as 
a DNA-based vaccine survived tumor cell challenge through 
a specific TH1-type T cell response (66). Our data suggest 
that such a therapy, if effective, could be applied also to a 
broad range of other tumor types. This is particularly true 
for cancers with strong overexpression in the tumor cells as 
compared to the corresponding normal tissue, including for 
example testicular germ cell cancers. Our finding, that breast 
cancer ranks second as a tumor type with strong cancer-related 
TPD52 expression level changes emphasized the potential of 
anti-TPD52 therapy in this tumor type.

In summary, our data demonstrate that TPD52 overex-
pression is common in many tumor types. Particularly strong 
TPD52 upregulation was found in cancers of the breast, 
urinary bladder cancer and testicular germ cell cancers, 
which frequently harbor 8q gains. These tumor types may be 
particularly promising candidates for potential anti-TPD52 
therapies.
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Table II. Overview of cancer types with differential TPD52 
expression from the literature.

	 TPD52	 TPD52
	do wnregulation	o verexpression
Tumor type	( Refs.)	( Refs.)

Malignant melanoma		(  20,67a)
Larynx carcinoma
Lung cancer		(  32a,33a,68a‑72a)
Oral cavity cancer
Breast cancer		(  9,11,12,22,25,
		  26,42,43,73-75)
Endometrium carcinoma
Ovarian cancer		(  8,76-78a)
Uterus cervix carcinoma
Vulvar cancer
Colon cancer	( 61a,62)	( 77-81a)
Esophageal cancer
Liver cancer		(  82a)
Pancreatic cancer		(  16)
Stomach cancer
Renal cell cancer
Prostate cancer		(  2,10,13,24,83-88)
Testis cancer		(  21a,63a,64a)
Urinary bladder cancer		(  89a,90a)
Thyroid gland cancer
Leiomyosarcoma
Liposarcoma

aReferences are Oncomine™ analysis for TPD52 using the following 
criteria: p<0.01, at least 2-fold differential expression.
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