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Abstract. Unexpected drug efficacy or resistance is poorly 
understood in cancers because of the lack of systematic analyses 
of drug response profiles in cancer tissues of various genotypic 
backgrounds. The recent development of high‑throughput 
technologies has allowed massive screening of chemicals and 
drugs against panels of heterogeneous cancer cell lines. In 
parallel, multi‑level omics datasets, including genome‑wide 
genetic alterations, gene expression and protein regulation, 
have been generated from diverse sets of cancer cell lines, 
thus providing a surrogate system, known as cancer cell line 
modeling, that can represent cancer diversity. Taken together, 
recent efforts with cancer cell line modeling have enabled a 
systematic understanding of the causal factors of varied drug 
responses in cancers. These large-scale association studies 
could potentially predict and optimize target windows for 
drug treatment in cancer patients. The present review provides 
an overview of the major types of cell line‑based large datasets 
and their applications in cancer studies. Moreover, this review 
discusses recent integrated approaches that use multi-level 
datasets to discover synergistic drug combination or reposi-
tioning for cancer treatment.
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1. Introduction

Cancer cells exhibit varied responses to anticancer agents (1). 
Fast high-throughput determinations of genome-wide genetic 
alteration, gene expression and protein regulation patterns in 
large collection of cancer cell lines are currently becoming key 
technologies with which to link the heterogenic properties of 
cancer cells to varied drug responses. The currently available 
large diverse cancer cell line collections are considered surrogate 
systems that can efficiently represent the complexities of primary 
tumor samples. Parallel datasets of common cell line panels have 
been widely created and analyzed to identify association patterns 
between phenotypes (e.g., drug responses) and intracellular 
signatures (e.g., mutations, gene expression or protein regulation) 
(2,3). Several statistical frameworks have been reported for cell 
line modeling, and these are mainly focused on fast determina-
tions of mutational or molecular signatures to explain or predict 
unexpected drug responses in cancer subtypes (4,5). Recent 
studies have shown that cell line modeling could potentially 
predict in vivo anticancer drug responses or optimize target 
treatment windows in clinical trials.

The goals of this review are to survey the major types of cell 
line-based high-throughput datasets and highlight their applica-
tions in the systematic modeling of selective drug responses in 
cancer samples. This review focuses on several representative 
types of large datasets, including genotyping, gene and protein 
regulation, and chemical screening from well-defined cancer 
cell line panels. The major analytical efforts conducted with 
these representative datasets will be described, together with 
systematic approaches to integrate the multi-level omics and 
drug data. We expect that the present review will provide clear 
insights into the future impact of in vitro cell line modeling in 
translational cancer studies.

2. Large-scale datasets from cell line panels

Several cancer cell line panels have been organized to perform 
large-scale chemical screening and multi-level omics data 
profiling. For example, the National Cancer Institute (NCI) 
developed a panel of 60 well-characterized cancer cell lines 
from diverse tumor types for the purpose of chemical screening 
against heterogeneous cancer subtypes (6). This panel, the NCI60 
cancer cell line panel, includes cell lines from the 9 most frequent 
cancer lineage types (Fig. 1A). This panel has long been used as 
a standard platform, on which >40,000 chemicals were screened 
over the last few decades. Recently, multiple efforts have been 
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exerted to generate genome-wide genetic variation, transcrip-
tion and translational regulation data for the NCI60 cell lines. 
Together with these newly created omics data, the large amount 
of accumulated chemical screening data from the NCI60 panel 
are recognized as valuable resources with which to understand 
varied chemical responses and their underlying mechanisms.

More recently, the sizes of cell line panels for chemical 
screening and omics data generation have greatly increased. For 
example, GlaxoSmithKline (GSK) released various genomic 
profiling datasets from a panel of >300 cancer cell lines that 
comprised 24 different cancer lineages (Fig. 1B) (7). In partic-
ular, cell lines from lung and leukemia cancers comprised 42% 
of the panel. In addition to omics profile data, many important 
cancer drugs and drug candidates have been screened against 
this panel. The extended size of this cell line panel enables 
further analyses of drug responses and cancer signature regu-
lation with regard to cancer subtypes and detailed genotypes. 
Another large dataset, The Cancer Cell Line Encyclopedia 
(CCLE) is a compilation of genomic profiling and chemical 
screening data launched by Novartis and the Broad Institute (3). 
This collection of nearly 1,000 cancer cell lines encompasses 21 
cancer types and thus includes most of the well-characterized 
cell lines available in public resources (Fig. 1C). We expect that 

the GSK and CCLE datasets will synergize with the traditional 
NCI60 datasets with respect to emerging trends in cancer cell 
line modeling to facilitate an understanding and predictions of 
cancer progression and drug responses. Details of the current 
efforts conducted with these three large datasets and other cell 
line resources will be described and discussed below.

Genotype profiling. Genotypic variation among cancer cells is 
the major cause of inconsistency in anticancer drug responses. 
The prospect of targeted cancer therapies relies mainly on 
extensive information on the genetic variations observed in 
diverse cancer types. Recent efforts based on high-throughput 
PCR and sequencing technologies have generated reliable 
annotations of genome-wide genetic alterations in large cancer 
cell line and tissue sample collections (8,9). For example, the 
COSMIC (Catalogue of Somatic Mutations in Cancer) Sanger 
database was designed to provide information on somatic 
mutations in human cancers (10). All the cancer mutation data 
were manually curated from the scientific literature, together 
with experimental data from the Cancer Genome Project at 
the Sanger Institute. The recent version of the COSMIC data-
base (version 66), released in July, 2013, describes >1,524,000 
coding mutations in approximately 909,000 cancer samples 

Figure 1. Lineage distributions of cancer cell lines in large datasets. (A) The NCI60, (B) GSK and (C) CCLE datasets include 60, 318 and 967 cell lines, 
respectively.
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and contains both patient tumor samples and most well‑known 
cancer cell lines (Table  I). This database provides well-
organized information regarding the established and annotated 
somatic mutations as well  as previously unknown genetic 
alterations in potentially oncogenic factors. The cell line geno-
types included in screening panels such as the GSK and CCLE 
datasets were, in practice, retrieved from COSMIC database.

In addition to somatic mutations in coding regions, SNPs 
and copy number alterations in cancer cells have been proven 
to be of significant importance for understanding of cancer 
progression and therapies. For example, cancer subtype‑specific 
SNP markers or CNA exhibited powerful predictions regarding 
drug responses, clinical prognostics and oncogenic factor iden-
tification (11,12). In 2005, whole genome‑based SNP and copy 
number alteration data were generated from the NCI60 cell 
lines (13). These data determined the genotypes of >124,000 
SNP alleles, which can be downloaded from the NCI DTP 
website (Table I). In association studies of these genetic altera-
tion data from NCI60 cell lines, several reports identified novel 
cancer targets (13) and signature genes responsible for drug 
sensitivity or resistance (14). Detailed information regarding 
genome-wide genetic alteration profiles in multiple cell lines 
can be applied to studies of diverse tumorigenic and survival 
mechanisms across heterogenic cancer subtypes (15,16). 
Furthermore, whole-exome sequencing data were recently 
released for the NCI60 cell lines (Table I) (17). Together with 
the diverse genomic variants displayed among the tumor 
types, 16 cancer genes were newly discovered during this 
large-scale exome sequencing. Furthermore, coding variant-
specific drug response profiling suggested novel hypotheses 
that were applicable to the identification of previously 
unknown pharmacogenomic correlations. This extensive 
genotypic information on the NCI60 panel is expected to play 
a critical role in interpreting the large amounts of chemical 
screening data from the same cell lines.

Gene expression profiling. Gene expression analysis in 
cancers has provided considerable information on diagnostic 
or prognostic marker signatures and potential drug targets. 
DNA microarray experiments have generated substantial 
transcriptome‑wide gene expression profile information in 
various cancer samples. A DNA microarray dataset of the 
NCI60 cell lines was initially generated to explore the expres-
sion of approximately 8,000 unique genes (Table  II) (18). 
This dataset was applied to analyze gene expression patterns 

in cancer type classifications (19). More recently, extensive 
profiles of >25,000 genes were generated from the NCI60 
cell lines. These data have been used to predict target gene 
signatures and identify unique gene signatures with respect 
to cancer mechanisms, regulatory pathways and functional 
categories (20). We expect that the gene expression data from 
NCI60 panel will be useful for identifying gene signatures of 
drug sensitivity or resistance.

Cancer transcriptome expression profiles were also gener-
ated for the GSK and CCLE cell lines. The GSK dataset 
includes gene expression data for >300 cell lines, each in 
triplicate, thus providing a robust statistical analysis (7) 
(Table II). This dataset enabled many different types of asso-
ciation studies such as those of subtype- or mutation-dependent 
gene expression patterns in various cancer lineages (1). These 
association studies revealed that the expression levels of some 
drug target genes were associated with previously unknown 
mutational status in several lineage groups. The CCLE cell line 
panel microarray dataset was analyzed in combination with 
genotype profiling and chemical screening data (3) (Table II). 
During this combined analysis, the AHR gene was identified 
as a predictor of mutation-based drug sensitivity. AHR gene 
expression was associated with sensitivity to a MEK inhibitor 
in NRAS‑mutant cells. This facilitated the establishment of 
a preclinical cancer cell line model (3). The GSK and CCLE 
panels include large numbers of cell lines, thus enabling 
sub-classifications of cancer lineages and mutation types in 
statistical analyses. Clearly, transcriptome data from GSK and 
CCLE will be applied to a systematic understanding of cancer 
progression and drug responses in diverse genetic backgrounds.

Protein expression and activation profiling. Although large‑scale 
gene expression studies have yielded useful information for 
cancer biomarker identification and targeted cancer therapy 
development, high-throughput protein expression and activation 
level screening are required in order to better understand cellular 
signaling in the contexts of tumorigenesis and drug response. 
Reverse-phase protein array (RPPA) technologies, which are 
based on sample spot arrays for specific antibody reactions, 
allow fast, quantitative measurements of protein expression or 
phosphorylation in a large cancer sample panel (21). More than 
200 general expression or phospho-antibodies for major cancer 
signaling molecules have been used to develop an HTS-format 
RPPA experiment. Several studies have shown that RPPA tech-
nology can effectively map intracellular signaling networks in 

Table I. Databases of cancer sample genotype profiles.

Database	 Data size	 Description

COSMIC	 909,000 cancer samples	 Collection of 1,524,000 coding mutations
(http://www.sanger.	 904,000 tissues	 (version 66, July 2013)
ac.uk/cosmic)	     5,000 cell lines	- Manually curated from scientific literature
		-  Sequence variants/mutations from the Cancer Genome
		    Project at Sanger Institute
NCI60	 60 selected cell lines	 >124,000 SNP alleles (Affymetrix 125K SNP array)

(http://dtp.nci.nih.gov/		  All variations on 38 Mb of coding regions
mtargets/download.html)		-  Exome sequencing (Agilent SureSelect All Exon v1.0)
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various cancer sample panels, including the NCI60 (4) and GSK 
(1) panels (Table II). RPPA datasets that were generated from 
the NCI60 panel demonstrated an association between cancer 
subtypes and particular protein expression or phosphorylation 
patterns and thus provided new insights into subtype-specific 
signaling networks. The RPPA data revealed 5 major clusters of 
cell lines and 5 principal proteomic signatures. Cell lines with 
PTEN, PIK3CA, BRAF and APC mutations were found to be 
significantly associated with proteomic clusters (4). Additionally, 
RPPA data for >150 cell lines in the GSK panel enabled a 
mutation-oriented analysis of protein regulation in cancers (1). 
This analysis found that the major signaling network-specific 
signatures were well‑clustered in a mutation-based cell line 
classification. Specifically, the analysis revealed that the MEK1, 
MAPK and p90RSK signatures in the MAPK/Erk signaling 
networks had distinct regulatory patterns in BRAF-mutant 
cell lines. The application of RPPA experiments to target core 
signaling proteins in cancers provides unprecedented opportuni-
ties for a system-level understanding of the molecular signaling 
mechanisms in cancer progression and drug responses. The 
increased diversity of appropriate antibodies for RPPA experi-
ments will further contribute to cell line modeling technologies, 
together with transcriptome data.

Chemical and drug screening - GI50 profiling. A panel 
of well‑characterized cancer cell lines, exhibiting diverse 
cancer types and varied genetic alterations, have provided 
a platform for chemical screening and prediction of cancer 
subtype-specific drug responses. A large number of anti-
cancer agents have been screened on well-defined sets of 
cancer cell lines (Table II). The NCI60 project was the first 
large-scale and systematic approach to anticancer chemical 
screening (22). This project has accumulated GI50 profiles for 
>50,000 compounds screened against a panel of 60 cell lines. 
These screening data, together with chemical structures, are 
freely available through the project website (http://dtp.nci.
nih.gov/index.html). This is the largest dataset for studies of 
structure-activity relationships between anticancer agents and 
diverse cancer subtypes. The COMPARE program is a useful 
tool with which to search for compounds with similar patterns 
of cellular sensitivity in the NCI60 panel (23). By extensively 
using the COMPARE program, it is possible to compare the 
expression (or activation) patterns of a gene (or protein) to 
GI50 data from 60 cell lines (24).

More extensive sets of cell lines, compared to NCI60, were 
also used to screen major classes of cancer drugs and develop-
mental candidates. The dataset provided by McDermott et al 

Table II. Representative cell line-based datasets with large gene expression, protein regulation and chemical screening data profiles.

Cell line panel	 Data type	 Description

NCI60	 Gene expression	 1. Expression profiles of 9703 genes in 60 cell lines
	 (DNA microarray)	 (NCI cDNA array)
		  2. Expression profiles of 54,613 gene probes in 60 cell lines
		  (Affymetrix U133 version 2)
	 Protein expression	 1. NCI DTP dataset (RPPA experiment)
	 and phosphorylation	- Profiles of 89 proteins in 60 cell lines
	 (RPPA experiment)	 (68 expression and 21 phospho-antibodies)
		  2. MDA_class dataset
		-  Profiles of 99 proteins in 60 cell lines
		  (65 expression and 33 phospho-antibodies).
		  3. MDA_pilot dataset
		-  Profiles of 34 proteins in 60 cell lines
		  (25 expression and 9 phospho-antibodies)
	 Chemical screening	 GI50 of >50,000 chemicals in 60 cell lines
CCLEa	 Gene expression	 Expression profile of 54,613 gene probes on 967 cell lines
	 (DNA microarray)	 (Affymetrix U133 v2)
	 Chemical screening	 GI50 of 24 chemicals on 479 cell lines
GSKa	 Gene expression	 Expression profiles of 54,613 gene probes in 318 cell linesb

	 (DNA microarray)	 (Affymetrix U133 version 2)	
	 Protein expression	 Profiles of 115 proteins in 170 cell lines
	 and phosphorylation	 (77 expression and 38 phospho-antibodies)
	 (RPPA experiment)
	 Chemical screening	 1. GI50 of 19 drugs and drug candidates in 311 cell lines
		  2. GI50 of 14 kinase inhibitors in 500 cell lines
CGPa	 Chemical screening	 GI50 of 130 chemicals in 639 cell lines

aCCLE, Cancer Cell Line Encyclopedia; GSK, Glaxo Smith Kline; CGP, Cancer Genome Project. bA total of 950 arrays performed in triplicate 
for each cell line. 
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(25) included the GI50 profiles of 14 selective kinase inhibitors 
against 500 human cancer cell lines (Table II). This dataset 
provided new hypotheses for discoveries of sensitive genotypes 
for a given kinase inhibitor, in addition to lineage‑dependent 
compound responses. The GSK dataset provided screening 
data for 19 target-defined compounds against 311 diverse 
human cancer cell lines (7) (Table II). An analysis of this 
dataset showed that major cancer genes played critical roles in 
the dose-dependent inhibition of cell proliferation by selective 
kinase inhibitors (26). An integrated analysis of these two large 
datasets distinguished the major cancer lineages and geno-
types that were selectively sensitive to given kinase inhibitors 
(1). Another large-scale drug screening dataset includes 130 
anticancer agents screened against 639 cell lines (Table II). 
This dataset was used to identify and develop sensitive cancer 
therapeutic biomarkers (27). The CCLE panel was also used 
to build a model that showed single and complex gene-drug 
associations in order to explain the range of drug sensitivities 
across cell lines (3). This model included screening data for 
24 anticancer agents across 479 cancer cell lines (Table II).

Additionally, in  silico molecular modeling technology, 
coupled with the increased availability of cell line screening 
profiles, has created new opportunities for novel selective 
cancer drug design. For example, systematic analyses, using 2D 
and/or 3D-structure chemical descriptors, attempted to accu-
rately classify compounds to predict their varied responses 
against diverse cancer cell lines (28). Cell line panels that 
are annotated with both genetic alterations and compound 
screening data provide an unprecedented surrogate tool for 
the prediction of compound sensitivity specific to narrow 
cancer subtype ranges. The generation of chemical screening 
data against large numbers of cell lines has provided robust 
statistical analysis for systematic analyses of the relationships 
between drug responses and cancer genetic markers.

3. Systematic analysis of multi-level omics and chemical 
screening data

The availability of diverse datasets from cell line panels 
presents new approaches to predictions of drug sensitivity 
or resistance that are based on the genetic alteration status, 
lineage types and gene or protein markers of the cell lines. 
Many attempts have been made to use integrated system-level 
analyses of omics and drug response datasets from cell line 
panels. The NCI60 cell line panel has accumulated large 
amounts of chemical screening data, together with multi-level 
omics data that include genome-wide genetic alterations, gene 
expression and protein regulation. Thus, the NCI60 datasets 
have been widely used for integrated systematic analyses of 
drug responses and cancer progression mechanisms. Typical 
association studies with linear correlation patterns attempted 
to identify relationships among chemical responses, genetic 
alterations, mRNA expression and protein regulation in 
60 cell lines (2). Compared to the chemical response data, 
observed pattern similarities in omics datasets can be inter-
preted as underlying molecular cellular response mechanisms 
to the chemicals.

The genotypic variations in cancer cell lines provide a basis 
on which to understand variability in chemical responses and 
predictive biomarker identification (29). Integrated proteomic 

data analyses revealed protein expression or activation signa-
tures that could explain mutation-specific chemical sensitivity 
among heterogeneous cancer cell lines (4). A ‘Connectivity 
Map’ has been created to quantitatively explain the connec-
tions between genome-wide gene expression patterns and drug 
responses in a cell line (5). Another statistical framework, 
the cell line enrichment analysis (CLEA), was introduced to 
integrate multi-level omics datasets and chemical screening 
data from a cell line panel (1). In cases such as the GSK or 
CCLE datasets, which included a large number of cell lines, 
it was possible to generate significant statistical confidence 
in association studies between the datasets by using refined 
cell line classification categories such as multiple mutation 
types or mutation-lineage combinations. The CLEA study 
presented many gene or protein signatures associated with 
specific chemical responses in the double mutation or muta-
tion-lineage combination categories (1). The Cancer Genome 
Project (CGP) (27) and CCLE (3) datasets include chemical 
screening data against larger cancer cell line panels than 
NCI60 (Table II). The CGP revealed unexpected relationships, 
including the marked sensitivity of Ewing's sarcoma cells that 
harbor EWS-FLI1 gene translocation to PARP inhibitors. In 
the case of CCLE, incorporated analyses of drug responses, 
gene expression, copy number sequencing and genomic cell 
line characterizations were used to identify several novel drug 
sensitivity predictors. This system-level integration of cell line 
datasets provides new tools for understanding the diversity of 
cancer progression and to develop synergistic drug combina-
tions for target cancer subtypes.

4. Perspectives

The availability of large-scale, multi-level omics and chemical 
screening datasets for well-characterized cell lines will 
accelerate system-level studies of cancer progression and 
the development of improved therapeutics. In particular, the 
recent explosion of genome-wide exome sequencing and RNA 
sequencing data further contributes to the refined character-
ization of diverse cancer cell lines and better interpretation 
of chemical screening data obtained using these lines. The 
Cancer Genome Atlas (TCGA) is another exciting project that 
has extended ideas about cell line modeling to human cancer 
tissue samples. An increasingly large collection of clinical 
cancer samples are directly used to generate multi‑level omics 
data, thus revealing a comprehensive landscape of genetic 
alterations and transcriptional regulation in each cancer 
subtype (30). A recent study identified de novo sets of genes 
through a correlation analysis of gene expression profiles from 
the NCI60 and TCGA datasets (31). Together with patient 
history information, including drug treatments and metas-
tases, TCGA datasets have synergistically contributed to cell 
line modeling applications for the prediction of drug responses 
and molecular signatures in cancers.

Together with systematic cell line modeling using large 
omics datasets, RNAi screening data were recently generated to 
identify the target genes associated with changes in cancer pheno-
types. For example, a kinome-based shRNA screening study was 
performed to determine the mechanism of resistance against 
BRAF inhibitors in colon cancers that harbored an activating 
mutation in the BRAF oncogene (32). Feedback EGFR activa-
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tion, along with BRAF inhibition, was identified as the key 
factor behind the resistance. Another shRNA screening study 
identified target genes that effectively cooperated with MEK 
inhibitors in KRAS-mutant cancers, suggesting a therapeutic 
potential for a combination of MEK and BCL-XL inhibitors 
(33). Integrative analyses of siRNA screening and proteomic 
RPPA data from the NCI60 cell lines revealed diverse kinase 
signaling network connectivity (34). This approach revealed 
a novel interaction between GSK3 and AKT phosphorylation 
in cancers.
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