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Abstract. In a broad range of human cancers 1p36 has been 
a mutational hotspot which strongly suggests that the loss of 
tumor suppressor activity maps to this genomic region during 
tumorigenesis. Adherens junctional associated protein-1 
(AJAP1; also known as Shrew1) was initially discovered as a 
novel transmembrane protein of adherent junctions in epithelial 
cells. Gene profiling showed AJAP1 on 1p36 is frequently lost or 
epigenetically silenced. AJAP1 may affect cell motility, migra-
tion, invasion and proliferation by unclear mechanisms. AJAP1 
may be translocated to the nucleus, via its interaction with 
β‑catenin complexes, where it can regulate gene transcription, 
then possibly have a potent impact on cell cycling and apoptosis. 
Significantly, loss of AJAP1 expression predicts poor clinical 
outcome of patients with malignant gliomas such as GBM and it 
may serve as a promising tumor suppressor-related target. In this 
review, we summarize and discuss current knowledge that may 
identify AJAP1 as a tumor suppressor in gliomas.
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1. Introduction

In a broad range of human cancers 1p36 has been a mutational 
hotspot, including those of nervous, secretory, reproductive and 

internal origin (Fig. 1) (1‑11). These studies strongly suggest 
that the loss of tumor suppressor activity maps to this genomic 
region during tumorigenesis. The large 1p36 deletions led 
others to propose that more than one tumor suppressor-related 
gene may reside in this region (4,12). Although the quest for 
the 1p36 tumor suppressor has led to some exciting candidates, 
such as CHD5, CAMTA1, KIF1B, CASZ1 and miR-34a which 
have tumor suppressor-like capabilities in specific tumor 
contexts (13‑23), none can provide convincing evidence that 
their encoded products offer protection from cancer. Hence, the 
search for the 1p36 tumor suppressor continues.

Adherens junctional associated protein-1 (AJAP1; also 
known as Shrew1) was initially discovered as a novel trans-
membrane protein of adherent junctions in epithelial cells (24). 
Recent investigations have suggested the AJAP1 gene as a 
promising tumor suppressor candidate gene located at 1p36.32 
(13,24).

2. Genetic and epigenetic change of AJAP1

Significant data supports the role of AJAP1 loss in various 
tumors of the central nervous system. A single region within 
1p36.3 consistently deleted in 25% of neuroblastomas was 
defined by White and colleagues; AJAP1 was 1 of 6 predicted 
genes in this deleted region (25). Neuroblastomas are neuro-
endocrine tumors arising from neural crest derivatives of the 
sympathetic nervous system (26). Fujita et al identified 23 genes, 
while mapping the smallest region of a consistently deleted 
segment of 1p36 in neuroblastomas; AJAP1 was included 
(27). By analyzing 430 primary neuroblastomas, Okawa et al 
mapped the smallest region of deletion to a 2‑Mb region of 
1p36 using microsatellite and single nucleotide polymor-
phisms and identified 23 genes in this region; including AJAP1 
(13). Milde et al found the loss of AJAP1 in a progressively 
metastasizing ependymoma (28). Ependymomas are tumors 
that arise from the specialized ependyma which primarily 
lines the ventricular surface of the central nervous system (29). 
Dong et al reported two contiguous minimally deleted regions 
on chromosome 1p36.31-p36.32 in oligodendroglial tumors, 
one of which contained AJAP1 (30). Oligodendrogliomas  
are believed to originate from the myelin-producing oligo-
dendrocytes of the brain (31). McDonald et al evaluated 177 
oligodendroglial tumor samples and found a consensus region 
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of deletion of approximately 630 kb. This region encompasses 
only one single gene - AJAP1 (32). Historically, brain gliomas 
have been described as likely arising from unique glial cells; 
however, more recent studies of genomic changes in various 
glioma types suggest there may be common cells of origin with 
common genomic changes, such as loss of AJAP1 expression.

For any tumor-suppressor activity of AJAP1 to be inhi­
bited in a tumor, both copies of the gene must be abrogated, 
either by deletion or a reduction in expression. Since AJAP1 
expression is found to be low in the majority of glioma 
tumors and cell lines (13,24,28,32,33), the remaining allele of 
AJAP1 has been sequenced to identify mutations, revealing 
none in the coding region (13,32,33). As shown for some 
tumor suppressors, decreased gene dosage predisposes cells 
to tumorigenesis. Additionally, as the expression of AJAP1 is 
often reduced or absent irrespective of a deletion at that locus, 
epigenetic silencing has been investigated. Bioinformatic 
analysis revealed the presence of numerous CpG islands in the 
promoter of AJAP1, the favored site for methylation-regulation 
of gene expression (33). Methylation analysis of the AJAP1 
promoter identified hypermethylation in 21% of oligodendro-
gliomas, and the degree of methylation inversely correlated 
with AJAP1 expression. The AJAP1 promoter was also highly 
methylated in a wide spectrum of cell lines (24).

Using multiple high-resolution genomic screening methods, 
we found AJAP1 frequently lost or epigenetically silenced in 
many glioblastomas (GBM) (33). Glioblastomas which arise 
from astrocytes are the most common and most aggressive 
malignant primary brain glioma in humans which can be found 
throughout the brain or spinal cord (34). Expression studies 
revealed that loss of AJAP1 gene expression is more commonly 
due to epigenetic silencing of the gene than gene deletion. 
Expression was reduced or absent in 86-92% of primary GBM 
tumors (those with no history of prior lower grade tumors) 
and all glioma cell lines, whereas the gene was deleted in only 

16% of the tumor samples. Using mutational and methylation 
analyses, we showed that AJAP1 expression was not due to 
mutation but epigenetically silenced with promoter methylation 
in many cases (33).

3. Continuing studies on AJAP1

AJAP1 was initially identified by Bharti et al in epithelial cells of 
the uterus as a candidate gene increased in invasive endometriosis 
(35). Confocal microscopic analysis of transiently-expressed 
AJAP1 revealed its localization at the baso-lateral part of 
the cell membrane, where it co-localized with endogenous 
E-cadherin, a protein also present at the baso-lateral part of the 
membrane in polarized Madin-Darby canine kidney (MDCK) 
epithelial cells (36,37). It has been demonstrated that adhesion 
is mediated by the cytoplasmic domain of E-cadherin linking 
to the actin cytoskeleton (38) via associated proteins such as 
α- and β-catenin (39). Direct interaction between β-catenin and 
AJAP1 in an in vitro pull-down assay suggested that AJAP1 
might be directly linked to the E-cadherin via β-catenin. It can 
be found at the baso-lateral part of the plasma membrane where 
it co-localizes with, and apparently integrates into E-cadherin-
mediated adherens junctions (40).

Figure 1. 1p36 is deleted in a variety of human cancers. 1p36 region is shown and depicted by a gray rectangle. A subset of deletions that have been reported 
in a variety of nervous (green), secretory (pink), reproductive (light blue) and internal (dark blue) origin malignancies is shown to scale. All of these deletions 
encompass AJAP1 (dotted line).

Figure 2. The four structural domains of the 411 amino acid residue AJAP1 
protein.
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In polarized MCF7 mammary epithelial cells and MDCK 
cells, AJAP1 is a transmembrane protein which co-localizes with 
endogenous E-cadherin (35). Additionally, CD147 was shown to 
interact with AJAP1 and increase cell invasion (41). However, 
AJAP1 does not appear to interact with the N-cadherin complex 
in non-polarized epithelial cells (35). These findings suggest a 
potential role for AJAP1 in cell-cell and cell-extracellular matrix 
interactions that could be involved in cell motility, migration and 
invasion.

Apparently conflicting results are associated with AJAP1 
expression. In HeLa cells (derived from a cervical tumor), 
loss of AJAP1 expression results in decreased invasiveness 
(41); however, its overexpression in glioma cells also results 
in decreased invasiveness, McDonald et al found in U251 

cells (glioma cells) that AJAP1 overexpression decreased cell 
adhesion on extracellular matrix components and decreased 
migration in wound healing assays (32). These studies demon-
strate that the effect of AJAP1 may depend on the specific cell 
type and its environment.

AJAP1 is an integral membrane protein of 411-amino 
acid residues (35) and is comprised of a cleavable N-terminal 
signal peptide (residues 1-43), an extracellular domain (residues 
44-282), a transmembrane domain (residues 283-303) and an 
intracellular cytoplasmic domain (residues 304-411) (Fig. 2) 
(42). The relatively long signal peptide also has a role in the 
cellular location of AJAP1 (43,44). The signal peptide of 
AJAP1 conforms to the NtraC model describing the organiza-
tion of long signal peptides, i.e., an N-terminal subdomain, 

Figure 3. AJAP1 may be translocated to the nucleus, where it can regulate MAGEA2 gene transcription, then possibly have a potent impact on cell proliferation 
and apoptosis through P53 pathway and downstream compartment to regulate Bax/Bcl-2 ratios and caspase-3/7 activity, finally inducing mitochondria-related 
apoptosis.

Figure 4. U87MG cells grown in culture form tumorspheres (white arrows) in the absence of AJAP1 after 72 h. However, cells transfected with AJAP1 do not. 
Photos were taken at x40 with a light microscope. Scale bar represents 100 microns.
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a β-turn-rich transition area, and a C-terminal subdomain. 
The C-domain, either by itself or with the rest of the signal 
peptide, allows the targeting of nascent AJAP1 to the rough 
endoplasmic reticulum and subsequent transfer to the plasma 
membrane. The N-domain alone directs AJAP1 primarily to 
mitochondria. This cryptic mitochondrial targeting signal has 
been speculated to be active only under certain physiological 
conditions, e.g., apoptosis (43,44). Further analysis of the 
AJAP1 protein sequence revealed a putative nuclear localiza-
tion signal in the predicted extracellular domain and putative 
glycosylation signals in the cytoplasmic domain (35).

Direct interaction between β-catenin and AJAP1 in an 
in vitro pull-down assay suggested that AJAP1 might be linked 
to the E-cadherin-mediated junctional complexes via β-catenin 
(35). β-catenin contains armadillo repeats and is able to bind 
to other proteins such as transcription factors (45). The ability 
of β-catenin to bind to other proteins is regulated by tyrosine 
kinases (46) and serine kinases such as GSK-3 (47). Various 
signals such as the Wnt signaling pathway can inhibit GSK-3-
mediated phosphorylation of β-catenin, allowing β-catenin 
to translocate to the cell nucleus, interact with transcription 
factors, and regulate gene transcription (48). AJAP1 may be 
translocated to the nucleus, via its interaction with β-catenin 
complexes, where it can regulate gene transcription, therefore 
possibly having a potent impact on cell cycling and apoptosis 
(Fig. 3). One of our studies suggested a regulatory effect of 
AJAP1 on Bax/Bcl-2 ratios with increased caspase-3/7 activity 
in the presence of AJAP1, which indicated that AJAP1 could, 
at least in part, induce the mitochondria-related apoptosis 
pathways (49).

4. Relationship between AJAP1 and tumors

Cogdell and colleagues suggested overexpression of AJAP1 
could suppress cell invasion and migration in GBM cell lines 
(24). We identified loss of AJAP1 expression as being associated 
with increased glioma cell proliferation and migration (33).

Interaction with β-catenin, a critical member of the Wnt 
signaling pathway, also suggests a possible role of AJAP1 in 
glioma stem cell (GSC) modulation. We observed that in the 
presence of AJAP1, U87MG cells (a GBM cell line) do not form 
tumorspheres while in the absence of AJAP1, get tumorspheres 
(Fig. 4). When probed for CD133, a marker of GSCs, we also 
noticed a decrease in its expression in AJAP1 transfected cells 
(data not shown) indicating either a loss of stem-like properties 
of the cell or decrease in the GSC subpopulation.

The group of Radlwimmer (50) performed comparative 
genomic hybridization and microarray analysis of spheroid 
cultures from GBM patients, where AJAP1 as well as EMP3 
and PDPN were first described as novel candidate genes that 
likely play a role in GBM pathogenesis and biomarkers associ-
ated with GBM outcome. By analyzing the National Cancer 
Institute's Rembrandt dataset, which contains 343 glioma 
samples, McDonald and colleagues (32) indicated that low 
AJAP1 gene expression was associated with decreased 
survival. Both genetic (gene deletion) and epigenetic altera-
tions (promoter methylation) are likely mechanisms that 
inactivate the putative tumor suppressor AJAP1 in gliomas, 
which contributes to poor prognosis (24). We and others also 
demonstrated that the AJAP1 promoter was highly methyl-

ated in a wide spectrum of glioma cell lines, and the loss of 
expression was associated with poorer survival in gliomas 
patients (33). We recently showed that at an early stage of 
gliomagenesis AJAP1 is dysregulated and may suppress inva-
sion through cytoskeleton reorganization associated with actin 
and microtubules associations (51). Similar result was found 
in a cohort study of cervical cancer (8). Restoration of AJAP1 
gene expression by transfection or demethylation agents 
results in decreased tumor cell migration in GBM cell lines. 
These investigations show the significant loss of expression of 
AJAP1 in GBM and provide evidence of its role in the highly 
migratory characteristic of these tumors (33).

5. Closing remarks

In summary, gene profiling showed AJAP1 on 1p36 is 
frequently lost or epigenetically silenced in various kinds of 
human cancers. AJAP1 may affect cell motility, migration, 
invasion and proliferation by unclear mechanisms in different 
cell types. In particular, loss of AJAP1 expression predicts poor 
clinical outcome of patients with malignant gliomas such as 
GBM and it may serve as a promising tumor suppressor-related 
target. Although AJAP1 does not conform to the classical 
definition of a tumor suppressor, accumulating evidence from 
studies on other human cancers may identify AJAP1 as a tumor 
suppressor via the alternate dosage hypothesis.
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