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Abstract. Conventional cancer chemotherapy preferentially 
destroys non-stem cancer cells within a tumor, and a subpopu-
lation of cancer stem cells (CSCs) is more resistant and 
survives, leading to relapses and metastasis. Howeve, recent 
studies suggest that CD24 and susceptibility to epithelial-
mesenchymal transition (EMT) can serve as markers of 
CSCs. We report that CD24+ cells are susceptible to induc-
tion of EMT, a phenotype important for cancer metastasis. 
We studied the responsiveness of CSC markers to TGF-β, an 
effective EMT inducer. The data on CD24 demonstrated that 
CD24+ cells are susceptible to EMT, a phenotype important 
for cancer metastasis in two colorectal cancer cell lines, the 
CaR-1 and CCK81. CD24+ cells expressed Notch 1 in response 
to exposure to TGF-β in culture and showed higher tumori-
genic activity compared to controls. This evidence shows that 
CD24+ cells are susceptible to EMT induction and to cancer 
progression and is indicative of the candidacy of CD24 as a 
therapeutic target in CSC.

Introduction

Conventional cancer treatments preferentially destroy 
non‑stem cancer cells within tumors, whereas cancer stem 
cells (CSCs) are more resistant and survive, which can subse-
quently cause a relapse, and in some cases, life-threatening 
metastasis (1,2). Identification of a regulatory mechanism, 
such as a functional cell surface marker, would be useful for 
distinguishing CSCs from non-stem cancer cells, which would 
allow for reduction of the dosage of chemo- and radiotherapy 

and maximize tumor targeting (3). Previously, we identified 
CD13/aminopeptidase as a cell surface marker, which is 
preferentially expressed in CSCs of gastrointestinal organs. 
CD13/aminopeptidase has a functional role in the reduction of 
reactive oxygen species (ROS) in tumor cells by modulating 
glutathione synthesis, thereby contributing to the survival of 
CSCs after chemo- and radiotherapy (4). CD13 is also upregu-
lated during the epithelial-mesenchymal transition (EMT), a 
phenotype important for cancer metastasis (5). Recent studies 
suggest that susceptibility to EMT can serve as a marker of 
CSCs (6). Because CSCs are a heterogeneous cell population 
(7), further research is necessary for identification of CSC 
markers.

Since the identification of rare CSCs in leukemia (8-10), 
molecular markers for detection of CSCs have been reported 
in solid tumors of the head and neck (11), gastrointestinal 
system (12), colon (13,14), breast (15) and brain (16,17). CD44 
(hyaluronic acid receptor) is one of the most commonly studied 
surface markers, which is expressed by almost all cancer stem 
cells, and CD24 (heat-stable antigen) is another surface marker 
expressed in many tumor types (18). Although CD44+CD24- 

cell populations have been identified as CSCs in breast cancer 
(19), expression of CD133, CD166, CD44, CD29, CD24, Lgr5, 
and nuclear β-catenin has been suggested to mark the CSC 
population in the colon (20).

Subsequent studies showed that although it is unclear 
whether CD133 is a marker of colon CSCs, other cell surface 
markers, such as epithelial-specific antigen, CD44, CD166, 
Musashi-1, CD29, CD24, leucine-rich repeat-containing 
G protein-coupled receptor 5, and aldehyde dehydrogenase 1, 
have been shown to be promising candidates (21). A recent 
study on mice narrowed down the targets and demonstrated 
that CD24 can be used to isolate Lgr5+ putative colonic epithe-
lial stem cells; their data suggest that the presence of CD24 
expression in normal colonic epithelium may have important 
implications in the use of colorectal cancer therapies targeting 
CD24 (22). Here we studied the responsiveness to TGF-β of 
CSCs carrying various markers (TGF-β is an effective EMT 
inducer). The data on CD24 demonstrated that CD24+ cells 
are susceptible to EMT induction and are associated with 
tumorigenesis in mice.
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Materials and methods

Cell culture. Human CRC cell lines were obtained from 
American Type Culture Collection (ATCC) and cultured in 
minimum essential medium (MEM; Invitrogen, CA, USA) 
containing 10% fetal bovine serum (FBS; Gibco, CA, USA) 
at 37˚C in a humidified atmosphere containing 5%  CO2. 
For flow cytometry and cell sorting, an allophycocyanin 
(APC)-conjugated anti-human CD44 antibody, a fluorescein 
isothiocyanate (FITC)-conjugated anti-human CD24 antibody, 
and a phycoerythrin (PE)-conjugated anti-human N-CAD 
antibody (BD Bioscience, San Jose, CA, USA) were used for 
characterization of cancer cells. Labeled cells were analyzed 
on a BD FACS Aria II Cell Sorter System (Becton-Dickinson, 
Franklin Lakes, NJ, USA), followed by data analysis using the 
Diva program (Becton-Dickinson), as described previously 
(4,5).

The expression study. Total RNA was extracted from cells, 
reverse-transcribed to cDNA, and subjected to PCR analysis 
using specific primers as described previously (4,5).

Animal experiments. Cells were injected subcutaneously into 
NOD/SCID mice as described previously (4,5). These mice 

were monitored for up to 10 weeks and sacrificed when the 
tumors reached a maximum diameter of 15 mm. All animal 
studies were approved by the Animal Experiments Committee 
of Osaka University.

Statistical analysis. For continuous variables used in an 
in vitro analysis, the data were calculated as mean ± SD and 
were analyzed using the Wilcoxon rank test. The relation-
ship between mRNA expression and clinicopathological 
factors was analyzed using the χ2 test and Student's t-test. 
Kaplan‑Meier survival curves were plotted and compared 
using the generalized log-rank test. Univariate and multi-
variate analyses for identification of factors prognostic of 
overall survival were performed using the Cox proportional 
hazards regression model. All calculations were performed 
using the JMP software (SAS Institute, Cary, NC, USA). 
Differences with a p-value of <0.05 were considered statisti-
cally significant.

Results

TGF-β stimulates EMT. To study the EMT mechanism, we 
cultured the colorectal cancer cell lines CaR-1 and CCK81 
in the medium containing TGF-β. The data from quantita-

Figure 1. TGF-β stimulates epithelial-mesenchymal transition (EMT) in colorectal cancer cell lines. (A) Quantitative RT-PCR of mRNA of EMT markers, 
such as N-cadherin, vimentin and fibronectin. (B) The immunohistochemical analysis of EMT markers before and after exposure to TGF-β in culture. 
Asterisks show statistical significance (p<0.05).
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tive PCR indicated that expression of EMT markers such as 
N-cadherin, vimentin, and fibronectin was increased in a dose-
dependent manner with TGF-β concentration in the culture 
medium (Fig. 1A). Immunohistochemical analysis indicated 
that expression of these genes was increased after exposure to 
TGF-β (Fig. 1B). The data show that EMT was induced in the 
cell lines we examined under these conditions.

TGF-β increases CD24 expression in colorectal cancer cells. 
To study the effect of TGF-β, we investigated the expression 
of CSC markers CD44, CD24, and N-cadherin. The data indi-
cated that the expression of these markers was increased after 
TGF-β exposure; the effect was strong in CD24 compared 
with the other two markers (Fig. 2). Accordingly, in subsequent 
experiments, we focused on CD24.

CD24 is enriched in the EMT cells. We were interested in 
whether CD24+ cells are susceptible to TGF-β-induced EMT. 
To this end, we subjected the colorectal cancer cell lines CaR-1 
and CCK81, to fluorescence-activated cell sorting (FACS) and 
analyzed the results. The data showed that EMT-primed cells, 
which were marked by the expression of N-cadherin, were 
enriched in CD24+ cells (Fig. 3). The data were consistent 
between the two cell lines, suggesting that CD24 is a marker 
of EMT.

CD24 stem markers. We wanted to identify the molecules 
expressed in CD24+ cells, which could be associated with 
cancer stemness. We analyzed the expression of several 

markers, including c-kit, Bmi1, SCF, and Notch 1 (Fig. 4). 
Then we assessed the effect of adding TGF-β (EMT inducer) 
to cell culture medium on each separate cell population by 
FACS sorting. The data on Notch 1 expression indicated that 
CD24+ cells are likely to be CSCs. CD24+ cells responded to 
TGF-β, and this effect was more appreciable in N-cadherin+ 
cells (Fig. 5), suggesting that CD24+ cells are prone to EMT, 
and CD24+ N-cadherin+ cells are more sensitive to TGF-β 
than are CD24+N-cadherin- cells. The data showed that the 
expression of Notch 1 correlated with expression of CD24, 
suggesting that there was a link between the CD24+ CSCs and 
the Notch 1 pathway.

CD24+ cells show high tumorigenic activity. To assess the 
tumorigenic potential of CD24+ cells, we injected the cancer 
cells into immunocompetent NOD/SCID mice subcutane-
ously. The results showed that CD24+ cancer cells had a higher 
tumorigenic potential compared with CD24-  cells with respect 
to both tumor frequency and tumor size (Fig. 6). These data 
suggest that in our experimental model, CD24+ cells drive 
tumorigenicity, which is one of the characteristics of CSCs.

Discussion

Previous studies pointed to the candidacy of CD24 as a CSC 
marker in colorectal cancer (20.21). The present study shows 
that CD24+ colonic cancer cells increase in number after 
exposure to TGF-β in culture, compared with N-CAD+ and 
CD44+ cells, suggesting that CD24+ cells are susceptible to 

Figure 2. TGF-β increased CD24 expression in colorectal cancer cells. The expression of N-cadherin, CD24, and CD44 was studied after exposure to TGF-β 
in culture.
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EMT, a cellular trait important for cancer metastasis. The data 
were consistent between the two cell lines that were studied, 
CaR-1 and CCK81. The cell sorting experiment indicated that 
CD24 is a more useful marker than CD44, for separation of 
EMT-prone cells, according to assessment of the expression 
of N-CAD, a marker of EMT. The present study indicates that 
CD24 is associated with EMT, and the association is more 
pronounced compared with other possible markers, such as 

CD44. The findings are compatible with the data from other 
cell lines (23).

Because CD24+ cancer cells formed larger tumors in 
immunocompetent NOD/SCID mice, we determined if any 
stemness markers were expressed preferentially in CD24+ 
cells. The FACS experiment indicated that exposure to TGF-β 
in culture resulted in increased Notch 1 expression. Recent 
studies have indicated that Notch signaling has a critical role 

Figure 4. CD24 expression correlates with expression of stem markers. Quantitative RT-PCR was performed for the expression of several markers, including 
c-kit, Bmi1, SCF and Notch 1, as described in Materials and methods.

Figure 3. CD24 is enriched in the cells undergoing epithelial-mesenchymal transition (EMT). After sorting by the expression of N-cadherin during FACS, 
the cell lines were separated by CD24 and CD44. The data indicated that N-cadherin was more strongly associated with expression of CD24 than with expres-
sion of CD44 in CaR-1 and CCK81 cells.
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at the intersection of EMT and cancer stemness and that Notch 
inhibition is an attractive strategy for the treatment of several 
cancers, at least in part because of its ability to reverse or 
prevent EMT (24).

A previous study indicated that TGF-β is a possible niche 
signal in the bone marrow to induce hibernation of hemato-

poietic stem cells (25), a dormant phenotype of cancer cells, 
showing resistance to chemotherapy. The hibernation state 
is associated with inhibition of lipid raft clustering; this 
change results in inhibition of signaling of growth factors 
or cytokines through cell surface receptors (25). The study 
of Listeria monocytogens indicated that CD14 and CD24, 
which normally exhibit uniform distribution on cells 
undergo clustering upon treatment with the stimulation (26); 
the phenomenon is suggestive of lipid raft clustering and 
signaling through CD24. A recent study of protein clustering 
showed enrichment of CD24 in lipid rafts and a more random 
distribution of CD44 in the plasma membrane (27). Taken 
together, the data are indicative of the significance of CD24 
as a functional marker of CSCs and suggest that this protein 
is a possible therapeutic target in colorectal cancer.
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