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Abstract. In human cancer, high expression of telomerase is 
correlated with tumor aggressiveness and metastatic potential. 
Human telomerase reverse transcriptase (hTERT), which regul
ates telomere length, can promote tumor development. Most 
research on hTERT has been focused on its crucial function of 
telomere maintenance. However, there are many phenomena 
that cannot be explained by its reverse transcriptase activity. 
Accumulating evidence suggests that hTERT has functions 
independent of its protective function at the telomere ends, such 
as increasing the anti-apoptotic capacity of cells, enhancing 
DNA repair, maintaining stem cells and regulating gene 
expression. This review will provide an update on the non-
reverse transcriptase activity of hTERT and its contribution to 
tumor formation, metastasis and cancer stem cell maintenance. 
Repression of the non-reverse transcriptase activity of hTERT 
may be a new strategy for tumor therapy.
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1. Introduction

Telomerase is a reverse transcriptase that carries its own template 
and synthesizes DNA telomere repeats to maintain telomere 
length. These repeats are composed of 1000-2000 non-coding 
tandem repeats of the TTAGGG sequence and serve as protective 
ʻcaps̓  at the ends of chromosomes, protecting the chromosomes 
from degradation and thereby maintaining chromosome stability, 
enhancing cell proliferation and promoting cell immortality 
(1‑5). In most cell types, after each round of DNA replication, 
the telomeres are shortened. However, telomere length is 
stabilized by the telomerase enzyme in some stem cells, and 
telomerase activation is a very common occurrence in tumor 
cells (6‑9). In humans, the active telomerase is composed of 
two components: i) human telomerase RNA (hTR), which 
contains the template for reverse transcription and is expressed 
in most cells; and ii) human telomerase reverse transcriptase 
(hTERT), which is a reverse transcriptase that catalytically 
synthesizes telomere DNA. hTERT expression seems to be 
restricted to telomerase-positive tissues, which indicates that 
hTERT is the limiting factor for telomerase activity (10‑13). 
Recently, evidence was shown that hTERT alone is sufficient 
to restore telomerase activity and this restoration results in 
tumorigenesis in telomerase negative cells, such as epithelial 
cells and human fibroblasts (14-16). Tumors express high 
levels of hTERT (80-90%) (17), suggesting that the reverse 
transcriptase activity of hTERT plays an important role in 
tumor occurrence and development.

Most research on hTERT has been focused on its crucial 
function of telomere maintenance. However, there are many 
phenomena that cannot be explained by its reverse transcrip-
tase activity. Recent research has discovered that hTERT 
has other functions unrelated to its reverse transcriptase 
activity, such as increasing the anti-apoptotic capacity of cells, 
enhancing DNA repair, maintaining stem cells and regulating 
gene expression (18). Non-canonical roles of hTERT have also 
been revealed (19). These non-canonical roles of hTERT are 
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referred to as its non-reverse transcriptase activity. We review 
the role and mechanisms of the non-reverse transcriptase 
activity of hTERT in tumor progression. 

2. hTERT non-reverse transcriptase activity and tumor 
formation

Cellular immortalization is recognized as a major hallmark 
of cancer and it is generally accepted as a necessary step in 
the cancer initiation process (20). Mounting evidence suggests 
that telomerase plays an important role in cellular immorta
lization and oncogenesis. The number of telomeres determines 
the proliferative capacity of the cell and hTERT plays a key 
role in maintaining telomere length. Cellular senescence is 
due to telomere shortening, and immortalization strategies 
typically include forced expression of hTERT (21). In a mouse 
model, mouse telomerase reverse transcriptase (mTert) could 
immortalize wild-type (WT) and Nmp4-deletion bone marrow 
stromal cells, causing them to exhibit sustained growth. In 
other mammals and in humans, expression of exogenous 
hTERT in bone marrow mesenchymal stem cells (MSCs) 
resulted in immortalization (22‑26). A recent study indicated 
that introduction of hTERT alone was sufficient for the immor-
talization of human mammary epithelial cells (hMECs) grown 
in specialized media (27).

These previous studies demonstrate that cellular immor-
talization is a result of hTERT extending telomere length 
through its reverse transcriptase activity and telomere main-
tenance is an important aspect of the biological process of 
immortalization. Nonetheless, recent data have shown that the 
reverse transcriptase activity of hTERT is not necessary for 
cell proliferation and immortalization. Stewart et al showed 
that ectopic expression of hTERT in the GM847 immortal 
cell line imparted a tumorigenic phenotype. This outcome 
was also observed after introduction of a mutant hTERT that 
was incapable of maintaining telomere length. This indicates 
that hTERT has an additional function that is required for 
tumorigenesis but does not depend on its ability to maintain 
telomeres (28).

In 2004, it was shown that in a maturation-resistant acute 
promyelocytic leukemia (APL) cell line, overexpression of 
hTERT imparted protection from apoptosis induced by tumor 
necrosis factor (TNF) or TNF-related apoptosis-inducing 
ligand (TRAIL) following all-trans retinoic acid (ATRA) treat-
ment, and this function was independent of telomerase activity 
on telomeres (29). Beliveau et al found that the enhanced cell 
proliferation ability of HMECs after hTERT overexpression 
does not rely on its reverse transcriptase function, but on its 
ability to modulate the DNA damage response (DDR), which in 
turn suppresses apoptosis (30). These findings provide a previ-
ously unknown mechanistic explanation for the observation that 
exogenously expressed hTERT offers growth advantages to cells 
without the basic functions of its enzyme activity, indicating that 
hTERT has growth regulatory properties independent of its role 
in telomere maintenance.

hTERT has also been shown to be involved in mitochon-
drial apoptosis induced by targeted inhibition of Bcl-2. In 
addition, hTERT mutants, which are catalytically and biologi-
cally inactive, showed similar behavior as the wild-type form, 
indicating that hTERT inhibited apoptosis regardless of its 

telomerase activity and its ability to lengthen telomeres (31). 
hTERT has also been found to activate Wnt signaling, therefore 
causing target genes to promote cell proliferation and induce 
carcinogenesis in normal epithelia (32,33). Carcinogenesis was 
chemically induced in TERT-positive and TERT-negative mice 
and their risk of skin cancer was analysed. The mice with high 
levels of TERT expression had a significantly higher risk of 
skin cancer than the hTERT-negative mice, but the length of 
their telomeres was not changed (34). Mukherjee et al found 
that the ability of the hTERT to enhance cell proliferation can 
be uncoupled not only from telomere elongation but also from 
other telomerase activities. The cellular lifespan extension was 
found to be due to hTERT regulating DNA damage responses 
(Fig. 1A) and reducing RNA processing endoribonucleases 
(RMRP) (35). hTERT can also alleviate basal cellular reactive 
oxygen species (ROS) levels by potentiating the cellular anti-
oxidant defense systems, (Fig. 1B), thus allowing cancer cells 
to evade death stimuli (36).

The data presented here, together with other recent evidence 
underscore that there are broad biological consequences of 
hTERT expression aside from its essential function in telomere 
maintenance. The non-reverse transcriptase activity of hTERT 
plays a very important role in tumor formation; this effect is 
independent of the reverse transcriptase activity of hTERT, 
and telomere extension is not necessary for cell immortali
zation and tumor formation.

3. hTERT non-reverse transcriptase activity and tumor 
metastasis

If superior proliferation ability is the main feature of early 
primary tumors, then metastasis is the main feature of end-
stage cancer. Metastasis directly threatens the lives of cancer 
patients and is the cause of 90% of cancer deaths (37). The 
multi-step process of tumor invasion and metastasis, referred 
to as the invasion-metastasis cascade, includes loss of cellular 
adhesion, increased motility, entry into and survival in the 
circulation, exit into new tissue and eventual colonization 
at a distant site (38,39). Tumor invasion and metastasis are 
associated with a variety of factors and processes, including: 
the epithelial mesenchymal transition (EMT), heterotypic 
contributions of stromal cells and plasticity in the invasive 
growth program. EMT plays a critical role in cancer meta-
static progression and it has been postulated to be an absolute 
requirement for tumor invasion and metastasis (40‑43). EMT 
refers to the physiological and pathological situations occurring 
during cell epithelial-mesenchymal transition, accompanied 
by cell morphology and gene expression changes. It is charac
terized by the loss of epithelial proteins, including E-cadherin, 
γ-catenin and β-catenin, and is often accompanied by the 
increase of mesenchymal proteins such as vimentin, fibro-
nectin and smooth muscle actin (19,44).

E-cadherin expression is a marker of epithelial cells and 
it is an initiating factor for EMT. The downregulation, inhi-
bition, or loss of function of E-cadherin can activate EMT. 
E-cadherin also helps maintain cancer cell adhesion to prevent 
tumor invasion and metastasis. A variety of factors have been 
shown to regulate E-cadherin, including somatic mutations, 
promoter hypermethylation, the Snail protein and the ZEB 
family (45).
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Evidence shows that hTERT can promote the metastasis 
of cells and this capability may be independent of its non-
reverse transcriptase activity. Upon hTERT transfection into 
U2OS osteosarcoma cells, a telomerase-negative cell line, 
the invasion and metastasis of tumor cells were increased 
(46). In human esophageal squamous cell cancer, hTERT 
activation increased migration and invasion when compared 
with control cells. It has been shown that hTERT regulates 
the glycolytic pathway in melanoma cells, improving the 
energy supply state of the tumor cells thus contributing to 
tumor invasion and metastasis (47,48). Recent studies have 
indicated that exogenous expression of hTERT also leads to 
upregulation of MMP9 and RhoC and promotes the invasive-
ness and metastasis of HepG2 cells in vitro (49).

hTERT promotes not only tumor formation, but also tumor 
metastasis. Therefore, it is possible that hTERT promotes 
tumor metastasis through the EMT pathway. Transfection of 
TERT into Xenopus caused faster embryonic limb and neuron 
development compared to controls, and promoting embryonic 
development is one of the three main functions of EMT, 
which also plays a central role in embryogenesis (32,40,50). 
It has also been demonstrated that hTERT can affect TGF-β1-

mediated β-catenin induction and nuclear accumulation, which 
enhances Wnt signaling pathway activation and promotes 
EMT (51) (Fig. 1C). hTERT can form a complex with the 
brahma-related gene 1 (BRG1) and nucleostemin (NS) through 
upregulation of Twist to increase EMT and this complex does 
not directly contribute to telomere maintenance (52) (Fig. 1C). 
In summary, hTERT plays a role in tumor invasion and metas-
tasis by promoting EMT and this function is independent of its 
reverse transcriptase activity.

4. hTERT non-reverse transcriptase activity and 
maintenance of cancer stem cells

In recent years, the theory of cancer stem cells (CSCs) has 
provided a more reasonable explanation for the formation and 
recurrence of malignant tumor metastasis and chemotherapy 
resistance. CSCs are a subset of tumor cells that have the 
ability to self-renew and generate the diverse cells that form 
the tumor (53,54). Evidence suggests that most solid tumors 
are hierarchically organized and sustained by CSCs (55). Some 
scholars believe that the existence of CSCs leads to the failure 
of cancer treatment. Therefore, studying the mechanisms of 

Figure 1. Main function of non-reverse transcriptase activity of the human telomerase reverse transcriptase (hTERT). (A) hTERT represses the DDR to repress 
the p53 expression and help cells escape apoptosis, finally inducing tumor formation. (B) hTERT through cellular antioxidant defense systems downregulates 
the ROS level to promote tumor proliferation. (C) hTERT helps β-catenin to enter the cytoblasts and activate the Wnt signal pathway to maintain cancer stem 
cells (CSC) inducing EMT.
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regulation of CSCs and targeting CSCs for therapy may be a 
promising area for finding a cure for cancer (56). Park et al 
showed that transduction of hTERT, SV40 large T antigen and 
four transcription factors (OCT4, SOX2, MYC and KLF4) 
resulted in a higher frequency of human pluripotent stem 
(iPS) cell colony formation (57). A study showed that human 
mammary progenitor cells rendered immortal using hTERT 
retain both self-renewal and differentiation capacity along 
the luminal and myoepithelial lineages (58). It is known that 
EMT and CSCs have some common features, EMT generates 
cancer cells with stem cell-like characteristics; stem-like cells 
express markers associated with EMT; and the diversity and 
abundance of CSCs in solid tumors allows cells the ability to 
undergo EMT. Mainly by non-cancer stem cells, but under  
certain conditions non-tumor stem cells can also adopt cancer 
stem cell characteristics via EMT (43,59‑61).

Because hTERT can promote EMT through its non-reverse 
transcriptase activity, it may contribute to CSC maintenance. 
CD133, a marker of CSCs, was found to be more highly 
expressed in hTERT-immortalized cells than in primary pros-
tate cells. Stem cell properties were increased when SV40ER 
and hTERT were introduced into breast cancer cells (62,63). 
Castelo-Branco et al found that CSCs had significantly higher 
levels of hTERT expression than normal tissue stem cells, but 
Southern blot analysis revealed that CSCs had extremely short 
telomeres compared with the normal tissue stem cells (64). 
In a gastric cancer (GC) model, hTERT has been shown to 
induce stem-like activity of cancer cells, and this activity is 
independent of its telomere-lengthening function (51). Further 
research defines a complex composed of TERT, BRG1 and NS 
that maintains the function of CSCs, and this interaction is 
independent of telomerase activity (52). Wnt signaling activity 
functionally designates the colon CSC population and is a 
marker for colon CSCs. As described previously, hTERT can 
activate the Wnt signaling pathway. Therefore, hTERT regul
ates tumor stem cell maintenance through the Wnt signaling 
pathway (32,65) (Fig. 1C). The above data demonstrate that 
hTERT contributes to the maintenance of CSCs through its 
non-reverse transcriptase activity.

5. hTERT non-reverse transcriptase activity and clinical 
application

It is known that the majority of tumor cells express high 
levels of hTERT and that normal somatic cells do not express 
hTERT. Therefore, telomerase has been considered as a tumor 
marker and an attractive target for anticancer therapy for many 
types of cancer (66). When the hTERT promoter is replaced 
by an adenoviral promoter to construct cytolytic adenovirus, 
it can efficiently infect tumor cells and significantly inhibit 
the growth of hepatoma cells. Experiments in nude mice 
showed that this adenovirus can reduce the formation of tumor 
nodules by lung cancer cells, and this was associated with low 
liver toxicity (67). In addition, because of the tumor-specific 
expression of hTERT, some researchers believe that hTERT is 
a tumor-associated antigen. Studies have shown that hTERT 
fragments act as antigens in mice, and CD8+ and CD4+ are 
stimulated for expansion (68,69). GV1001, which is a 16-amino 
acid MHC class II-restricted hTERT peptide vaccine, consists 
of amino acids 611‑626 (EARPALLTSRLRFIPK) of the 

hTERT active site (70,71). GV1001 has shown good antitumor 
efficacy in patients in phase I and II clinical trials (72,73). In 
addition, a potent hTERT inhibitor 2-[(E)-3-naphthalene-2-
yl-but-2-enoylamino]-benzoic acid (BIBR1532) specifically 
blocks the elongation of telomerase DNA, therefore resulting 
in cellular senescence and inhibition of proliferation (74,75).

Because hTERT promoter regulation very tightly controls 
telomerase activity, directly targeting the hTERT promoter 
may be an effective method for tumor therapy (76,77). When 
telomerase-positive cells were treated with an hTERT-driven 
prodrug-activating enzyme which could repress the hTERT 
promoter, the cells became apoptotic (78‑80). However, targeting 
hTERT has some problems: i) hTERT activity may not be 
detected in the whole of the tumor, therefore it may not be 
sensitive to targeted therapy; ii) When hTERT is inhibited, the 
telomere length shortens over a period of time and tumor apop-
tosis may have a lag; iii) Despite inhibition of hTERT reverse 
transcriptase activity, some tumors evade apoptosis through 
other mechanisms, such as using the alternative lengthening of 
telomeres (ALT) pathway or activating mitochondrial adaptive 
mechanisms (81,82).

Targeting the non-reverse transcriptase activity of hTERT 
may solve the problems noted above. First, the hTERT non-
reverse transcriptase activity is unrelated to its telomerase 
activity, so if the cell has no telomerase activity, the hTERT 
non-reverse transcriptase activity can be targeted for tumor 
therapy. Second, because targeting the non-reverse transcrip-
tase activity of hTERT does not shorten telomere length, there 
would be no lag effect. Finally, targeting the hTERT non-
reverse transcriptase activity will not activate other pathways 
that promote tumor proliferation and metastasis. Telomerase 
immunotherapy is currently an area of active research focus. 
Therapeutic resistance is an issue to be considered, especially 
because of the existence of ALT mechanisms to maintain 
telomeres (83). Inhibition of the non-reverse transcriptase 
activity of hTERT for anticancer therapy can be used as a 
supplement for telomerase therapy and may even completely 
replace it in some tumors.

6. Perspectives and Conclusion

Telomerase plays an important role in the maintenance, 
protection and stabilization of chromosomes, but these 
diverse roles can lead to opportunities for cancers to activate 
hTERT reverse transcriptase activity during tumorigenesis 
and escape cell senescence (84). Most cancer cells express 
hTERT, underscoring the importance of efforts to understand 
its mechanisms of regulation, its implications for cell survival 
and cancer therapy resistance, and its interaction with other 
signaling pathways.

In recent years, studying the reverse transcriptase activity 
of hTERT has been a prime research area and inhibition of 
telomerase activity has become a popular treatment. hTERT 
expression provides valuable information for early tumor diag-
nosis, staging and prognosis. However, some studies show that 
hTERT has novel functions that are independent of its reverse 
transcriptase activity. These include inducing tumor forma-
tion, increasing cell proliferation, promoting tumor metastasis 
and maintaining CSCs. These new findings will allow us to 
better understand the function of hTERT, and its alternative 
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functions help clarify the unexplained phenomena that are not 
due to its reverse transcriptase activity.

The hTERT non-reverse transcriptase activity mechanism 
will open up new avenues for tumor therapy. Inhibition of 
hTERT non-reverse transcriptase activity has the potential to 
be an efficient and low toxicity method of cancer treatment. 
However, hTERT activity and its regulatory mechanisms and 
pathways are complex and diverse. Therefore, we still face 
many problems and challenges. Research on the non-reverse 
transcriptase activity of hTERT is still in its early stages, and 
there are many unanswered questions remaining, such as how 
the non-reverse transcriptase activity of hTERT affects tumor 
occurrence, proliferation, metastasis and CSC maintenance. 
Its mechanisms will require further study. For example, it is 
unknown whether the non-reverse transcriptase activity of 
hTERT is involved in normal cell division and proliferation, 
stem cell differentiation and embryonic development. The 
hTERT non-reverse transcriptase activity promotes tumor 
development through multiple mechanisms, so the development 
of targeted therapy is a complex issue that merits further study.

In summary, there is mounting evidence that hTERT has 
different roles when it associates with different factors or is 
targeted to different cellular locations away from telomeres. 
New functions of hTERT are only beginning to be elucidated. 
We plan to further study the non-reverse transcriptase activity 
of hTERT and determine its pro-cancer development mecha-
nism and how it can be therapeutically targeted. We hope this 
research would help improve the efficiency of cancer treat-
ment, reduce drug doses to lower the cytotoxicity in normal 
cells and eventually lead to a cancer cure.
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