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Abstract. Cancer cells exhibit altered glucose metabolism, 
termed the Warburg effect, which is described by the increased 
uptake of glucose and the conversion of glucose to lactate in 
cancer cells under adequate oxygen tension. Recent genetic and 
metabolic analyses have provided insights into the molecular 
mechanisms of genes that are involved in the Warburg effect 
and tumorigenesis. The aim of this review was to discuss 
significant molecular insights into clinical impacts of the 
Warburg effect such as oncogenic alterations and overexpres-
sion of transcriptional factors (c-Myc and hypoxia-inducible 
factor), metabolite transporters (glucose transporters) and 
glycolytic enzymes (hexokinases 2, pyruvate kinase M2, 
pyruvate dehydrogenase kinase, isozyme 1, lactate dehydroge-
nase A). Overexpression of transcriptional factors, metabolite 
transporters and glycolytic enzymes was associated with poor 
prognosis and may be associated with chemoradiotherapy 
resistance in multiple gastrointestinal cancer cell types. Novel 
small molecules targeting these enzymes or transporters exert 
anti-proliferative effects. Glycolytic enzymes and metabolite 
transporters may be significant biomarkers for predicting 
cancer prognosis and may be therapeutic targets in gastroin-
testinal cancer.
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1. Introduction

Cancers exhibit altered glucose metabolism, defined as the 
Warburg effect (1), which is characterized by an increased 
uptake of glucose (2) and the conversion of glucose to lactate 
in cancer cells, rather than catabolizing glucose via the 
TCA cycle under adequate oxygen tension (3). While the 
electron transfer system generates 36 ATP molecules per 
glucose molecule across the mitochondrial inner membrane, 
glycolysis metabolizes glucose to pyruvate in the cytoplasm 
to produce a net 2 ATP molecules from each glucose. The 
Warburg effect represents high levels of glycolysis and thus 
enables the clinical application of metabolic imaging, such 
as 18F-fluorodeoxyglucose positron emission tomography 
(FDG‑PET), which is a non-invasive imaging technique that 
allows quantification of tumor activity on the basis of altered 
tissue glucose metabolism (4). Small molecule inhibitors 
targeting the enzymes that function in the Warburg effect have 
been identified and pursued in preclinical studies.

The direct mechanistic link between an activated 
oncogene and altered glucose metabolism is regulated by 
phosphoinositide 3-kinase (PI3K) (5), Akt (6), p53 (7,8), 
AMP-activated protein kinase (AMPK) (9,10), c-Myc and 
hypoxia-inducible factor (HIF). c-Myc and HIF1A tran-
scription factors target many of the same glycolytic enzyme 
genes, including hexokinase  2 (HK2), pyruvate kinase 
type M2 (PKM2), lactate dehydrogenase A (LDHA), and 
pyruvate dehydrogenase kinase, isozyme 1 (PDK1). Recent 
investigations using genetic and metabolic analyses have 
provided insights into the molecular mechanisms of these 
genes that contribute to the Warburg effect and tumorigen-
esis (Fig. 1).

In this review, significant molecular insights into clinical 
impacts of the Warburg effect, such as oncogenic alterations 
and overexpression of glycolytic enzymes and metabolite 
transporters, will be discussed.

2. HIF-1A and c-Myc transcription factors and the Warburg 
effect

HIF-1A and c-Myc cooperatively induce a transcriptional 
program for glycolysis. HIF plays a crucial role in cellular 
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adaptation to hypoxia and regulates the expression of genes 
responsible for glucose metabolism, angiogenesis, and cell 
survival (11). Cellular HIF levels are regulated by both an 
oxygen-dependent pathway and an oxygen-independent 
pathway. HIF contains two key regulatory subunits, HIF1A 
and endothelial PAS domain protein 1 (EPAS1; HIF-2), and 
the genes encoding these proteins are overexpressed in human 
cancers (12,13). Many studies have assessed the significance 
of HIF-1A positive expression in the prediction of clinical 
outcome of gastrointestinal cancer. HIF-1A expression is 
associated with poor prognosis in esophageal squamous cell 
carcinoma (ESCC) (14,15), gastric cancer (16,17), colorectal 
cancer (CRC) (18) and hepatocellular carcinoma (HCC) (19). 
Low expression of HIF1A may be associated with a favorable 
effect of 5-FU-based adjuvant chemotherapy in gastric cancer 
patients (20,21). HIF-2A is associated with poor survival in 
gastric cancer patients (22) but not CRC patients (18,23).

The c-Myc oncogene, a member of the MYC family, 
encodes the transcription factor c-Myc and is upregulated in 
many human cancers, linking altered cellular metabolism to 
tumorigenesis (24). MYC gene expressions are often elevated 
or deregulated in human neoplasms, and c-Myc seems to be 
at the crossroads of several important pathways and processes 
involved in carcinogenesis. MYC deregulation due to gene 
amplification (25), chromosomal translocation or insertion 
(26), mutations (27), and epigenetic modifications (28) has 
been reported in different types of cancers. The number of 

studies of MYC expression as detected by immunohistochem-
istry (IHC) is less than that of HIF1A. c-Myc overexpression 
and promoter hypomethylation may have a role in the gastric 
carcinogenesis process and c-Myc deregulation was associated 
mainly with poor prognosis (29). c-Myc expression detected by 
IHC was associated with poor prognosis in pancreatic cancer 
(30), but its expression was not associated with poor prognosis 
in CRC patients (18,23) (Table I).

3. Glucose transporters (Gluts)

Glut1 is composed of 492 amino acid residues and possesses 
a single site of N-linked glycosylation at N45 (31). Multiple 
glucose transporter-like proteins have been identified and 
characterized (32) with sequence similarity to Glut1, and these 
genes appear to belong to the family of solute carriers 2A 
(SLC2A, protein symbol Glut). The 14 Gluts are categorized 
into three classes based on sequence similarity: Class 1 (Gluts 
1-4 and 14), Class 2 (Gluts 5, 7, 9 and 11), and Class 3 (Gluts 6, 
8, 10, 12, and HMIT) (32). Glut families were evaluated with 
the GEO data set in silico (http://www.ncbi.nlm.nih.gov/gds/). 
Glut1 mRNA levels were remarkably upregulated in tumor 
lesions compared with normal lesions in CRC (GDS 4382), 
ESCC (GDS  3838) and pancreatic cancer (GDS  4336) 
(Table II). Several studies have been published on Glut family 
members, especially Glut3 (33-35), but Glut1 has been the 
main focus of investigation. A previous study evaluating Glut1 

Figure 1. Glycolytic enzymes, metabolite transporters and small molecule inhibitors in the Warburg effect.
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Table I. Impact of HIF and MYC on cancer prognosis and correlation with clinicopathological features.

	 Total	 Prognosis
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Organ	 N	 %	 Cut-offs	 Expression correlated with:	 Univariate	 Multivariate	 (Ref.)
				    (condition)

HIF-1A
  ESCC	 1,261			   Depth of invasion, N+, stage, 	 NA	 NA	 (16)
				    VEGF (meta-analysis-2011)
  ESCC	 215	 68	 Scores 3-4	 VEGF	 DFS: poor	 DFS: NS	 (14)
					     OS: NS	 OS: NS
  ESCC	 96	 68	 Score 4-6	 N+ 	 DSS: poor	 Poor	 (15)
				    (T1b patients)	 DFS: poor
  GC				    NA	 DFS: NS	 NA	  (16)
				    (meta-analysis 2003-2012)	 OS: poor
  GC	 1103			   Differentiation, T-stage	 OS: poor	 NA	 (17)
				    N+, ly+, v+, stage
				    (meta-analysis 2003-2013)
  GC	 216	 39	 >10%	 HIF1A+-p53+ cases	 OS: poor	 OS: poor	 (84)
				    undifferentiated, ly+, N+

  GC	 193	 52		  N+	 DFS: NS	 DFS: poor	 (45)
					     OS: NS	 OS: poor
  GC	 128	 66	 >5%	 Histology, depth of invasion	 DFS: poor	 DFS: poor	 (85)
				    VEGF expression, MVD	 OS: poor	 OS: poor
  GC	 64	 58		  No correlation	 DFS: poor	 DFS: poor	 (21)
				    [adjuvant CT S-1 (77%)]	 DSS: poor	 DSS: NS
  GC	 44	 57	 >10%	 No correlation	 DSS: poor	 NA	 (20)
				    (adjuvant CT 5-FU based)	 DFS: poor
  CRC	 731	 19	 >50%	 COX-2, CIMP-high	 CSS: poor	 CSS: poor	 (18)
				    LINE1 hypomethylation	 OS: poor	 OS: poor
  RC	 90	 54		  N+, v+, stage	 DFS: poor	 OS: poor	 (23)
					     CSS: poor
  RC	 92	 55	 Scaling	 pT4, N+, v+	 DFS: poor	 DFS: poor	 (86)
			   system	 (T3,4/N+/-)	 OS: poor	 OS: poor
  HCC	 953			   Tumor grade, N+, v+	 DFS: poor		  (19)
				    (meta-analysis-2013)	 OS: poor
  HCC	 110			   Male, LC, COX-2, PDGFRA	 DFS: poor	 DFS: poor	 (87)
				    MMP7, MMP9, MYC	 OS: poor	 OS: poor
  HCC	 200	 63		  Intrahepatic metastasis	 DFS: poor	 DFS: poor	 (88)
					     OS: poor	 OS: poor
  PC	 50	 66	 >5%	 VEGF	 DFS: NS	 NA	 (89)
					     OS: NS

HIF-2A
  GC	 80	 38	 >Score 0	 Diffuse type	 DFS: poor	 CSS: NS	 (22)
					     OS: poor	 OS: NS
  CRC	 731	 19	 >50%	 Low tumor grade, male, 	 CSS: NS	 CSS: NS	 (18)
				B    MI<30	 OS: NS	 OS: NS
  RC	 90	 64		  No correlation	 DFS: NS		  (23)
					     CSS: NS
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by IHC in tissue microarray slides comprising 1,955 samples 
detected Glut1 positivity in 47% prostate adenocarcinomas, 
29% thyroid cancer, 10% gastric cancer, 5% breast adenocar-
cinomas, 36% head and neck SCC, 42% uterine cervix SCC, 
18.6% glioblastomas and 9.4% retinoblastomas (36).

Glut1 is transcriptionally regulated by c-Myc (24) and 
HIF1A (37). A recent study demonstrated that Glut1 was one 
of three genes consistently upregulated in cells with KRAS or 
BRAF mutations (38). Glut1 expression in CRC cells was posi-
tively correlated with FDG accumulation and KRAS/BRAF 

mutation (39). EGFR and ERK1/2 correlate with levels of 
PKM2 Ser 37 phosphorylation, and nuclear PKM2 induces 
c-Myc expression, resulting in the upregulation of Glut1 (40). 
In a recent study using xenografts, overexpression of Glut1 in 
a mammary tumor cell lines with low levels of endogenous 
Glut1 results from both a decrease in apoptosis and an increase 
in proliferation (41).

Glut1 expression is generally absent in normal tissue, but in 
multiple gastrointestinal cancer cell types, Glut1 expression is 
remarkably enhanced. Glut1 positivity is associated with poor 

Table I. Continued.

	 Total	 Prognosis
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Organ	 N	 %	 Cut-offs	 Expression correlated with:	 Univariate	 Multivariate	 (Ref.)
				    (condition)

MYC
  GC	 125	 77	 >10%	 Intestinal-type, late-onset	 NA	 NA	 (29)
				    deeper tumor extension, M+

  PC	   70	 52	 Score 5-9	 Perineural invasion, stage	 OS: poor	 OS: poor	 (30)
  CRC	 731	 19	 >50%	 Low tumor grade	 CSS: NS	 CSS: NS	 (18)
				    male, BMI<30	 OS: NS	 OS: NS
  RC	 90	 64		  No correlation	 DFS: NS		  (23)
					     CSS: NS

ESCC, esophageal squamous cell carcinoma; GC, gastric cancer; CRC, colorectal cancer; RC, rectal cancer; HCC, hepatocellular carcinoma; 
PC, pancreatic cancer; NA, no assessment; NS, not significant.

Table II. Overexpression of metabolite transporters and glycolytic enzymes in the Warburg effect.

	 Colorectal cancer (N=17)	 ESCC (N=17) 	 Panctreatic cancer (N=45)
	 GDS4382	 GDS3838	 GDS4336
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑  
	 T/N	 95% CI	 P-value	 T/N	 95% CI	 P-value	 T/N	 95% CI	 P-value
	 ratio			   ratio			   ratio

Glut1	 1.90	 (1.16-3.09)	 0.01	 2.44	 (1.78-3.34)	 <0.001	 3.58	 (2.74-4.67)	 <0.001
Glut2	 0.92	 (0.87-0.98)	 0.01	 0.97	 (0.93-1.01)	 NS	 0.60	 (0.46-0.80)	 <0.001
Glut3	 1.55	 (0.72-3.31)	 NS	 1.96	 (1.23-3.13)	 0.01	 1.54	 (1.18-2.01)	 <0.001
Glut4	 1.18	 (0.99-1.40)	 NS	 0.97	 (0.83-1.13)	 NS	 0.89	 (0.83-0.97)	 0.01
Glut5	 0.52	 (0.37-0.72)	 <0.001	 1.08	 (0.80-1.44)	 NS	 1.10	 (0.91-1.31)	 NS
Glut6	 0.84	 (0.71-1.00)	 0.05	 1.31	 (1.12-1.54)	 <0.001	 0.95	 (0.88-1.02)	 NS
Glut8	 0.59	 (0.10-3.60)	 NS	 1.17	 (1.00-1.36)	 0.04	 0.93	 (0.88-0.98)	 0.01
Glut9	 1.13	 (1.01-1.26)	 0.03	 1.21	 (1.01-1.45)	 0.04	 1.07	 (0.98-1.17)	 NS
Glut10	 0.65	 (0.35-1.19)	 NS	 0.89	 (0.66-1.18)	 NS	 1.13	 (1.02-1.25)	 0.02
Glut11	 1.33	 (0.96-1.85)	 NS	 0.96	 (0.88-1.05)	 NS	 0.85	 (0.78-0.93)	 <0.001
Glut14	 1.72	 (1.08-2.72)	 0.03	 1.45	 (1.04-2.02)	 0.03	 1.10	 (0.98-1.23)	 NS

HK2	 0.46	 (0.26-0.79)	 0.009	 1.53	 (1.16-2.03)	 0.005	 2.55	 (1.97-3.30)	 <0.001
LDHA	 1.05	 (0.92-1.19)	 NS	 0.92	 (0.78-1.10)	 NS	 1.89	 (1.57-2.28)	 <0.001
PMK2	 0.80	 (0.65-0.98)	 0.033	 1.41	 (1.02-1.95)	 0.04	 2.03	 (1.72-2.40)	 <0.001
PDK1	 1.18	 (0.85-1.63)	 NS	 1.37	 (1.08-1.74)	 0.012	 1.38	 (1.18-1.61)	 <0.001
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prognosis in diverse gastrointestinal cancers, ESCC (15,42,43), 
gastric cancer (44,45), CRC (46,47), pancreatic cancer, HCC 
(48), and gallbladder cancer (49,50) (Table III).

Glut1 expression has the potential to serve as a biomarker 
for cancer. Anticancer therapies, such as radiation and several 
chemotherapeutic drugs, induce oxidative stress in targeted 
cells. Reactive oxygen species (ROS) are required for the 
fixation of radiation-induced DNA damage (51). Therefore, 
an accumulation of antioxidants (e.g., lactate) may induce 
or enhance resistance to radiation and may cause chemo-
resistance (52). Glut1 positivity was associated with tumor 
regression grade (TRG) and may be a useful predictive marker 
of response to chemoradiotherapy in rectal cancer (47,53).

Phloretin, a natural product found in apples and pears with 
Glut inhibitory activity, exerts antitumor effects in HCC and 
color cancer cell lines (54,55). The WZB117 small molecule 
inhibitor of Glut1 was effective in inhibiting cancer cell growth 
both in vitro and in vivo (56) (Table IV).

4. Glycolytic enzymes (HK2, PKM2, PDK1 and LDHA)

Hexokinases catalyze the phosphorylation of glucose to 
glucose-6-phosphate. This is the first and rate-limiting step 
in glucose metabolism. HK2 is one of four members of the 
hexokinase family. The four isoenzymes (HK1, HK2, HK3, 
and glucokinase) are structurally similar, but only HK1 and 
HK2 are functionally similar. HK2, but not HK1, is overex-
pressed in several cancer types compared with normal tissue. 
HK2 localizes to the outer membrane of the mitochondria and 
is the major hexokinase isoform expressed in cancer cells (57). 
High expression of HK2 confers a poor prognosis in HCC and 
gastric cancer (Table II), and HK2 positivity was associated 
with poor differentiation and advanced stage in HCC (58,59). 
Tumor differentiation in HCC correlated with FDG uptake 
(60), and the cellular retention of FDG may be mediated by 
HK2 (58).

The widely used 3-bromopyruvate (3-BrPA) (61) depletes 
cellular ATP. A previous study showed that 3-BrPA inhibits 
HK2 expression and exhibits anti-proliferative effects 
combined with daunorubicin in CRC cell lines (54) and 
combined with protein disulfide isomerase in HCC cell lines 
in vivo (55).

Pyruvate kinase (PK) is a glycolytic enzyme that catalyzes 
a reaction generating pyruvate and ATP from phosphoenol-
pyruvate (PEP) and ADP. Four isoforms of PK (L, R, M1, 
and M2) have been identified in mammals. Splicing of PKM 
is controlled by splicing repressors, and the expression of the 
repressors is upregulated by c-Myc oncoprotein (62,63). M2 
is expressed in embryonic cells, adult stem cells, and cancer 
cells and is necessary for aerobic glycolysis. This metabolic 
phenotype provides a selective growth advantage for tumor 
cells in vivo (64,65). PKM2 expression is associated with 
poor prognosis in ESCC, gallbladder cancer and signet ring 
cell carcinoma of gastric cancer (Table III). Small molecule 
inhibitors that selectively target PKM2 have been identified, 
suggesting that inhibition of PKM2 could be synergistic with 
other targeted therapies, including gefitinib. However, small 
molecule activation of PKM2 that promotes PKM2 tetramer 
formation interferes with anabolic metabolism and suppresses 
tumorigenesis (66). Mutation of the ERK-phosphorylation site 

S37 in PKM2 blocked translocation of PKM2 to the nucleus 
(40), suggesting that PKM2 moves into the nucleus as a 
monomer. Tumor cells have multiple ways to regulate PKM2 
that are favorable to cell growth and survival, including PKM2 
expression, localization, post-translational modification, and 
allosteric regulation. PKM2 also regulates non-metabolic 
functions as a transcriptional coactivator and protein kinase. 
PKM2 is considered an attractive target for cancer treatment 
(67). Further studies are needed before inhibitors and activa-
tors of PKM2 can be used as therapeutic interventions (68).

PDK regulates the mitochondrial gatekeeper pyruvate 
dehydrogenase (PDH), which links glycolysis to the TCA 
cycle by reversible phosphorylation. Phosphorylation of PDH 
by PDK inhibits the action of PDH and halts pyruvate use in 
the TCA cycle (69). Four PDK isoforms have been verified in 
human tissue, and the expressions of the isoforms are organ 
specific. PDK-1 positivity was associated with poor prognosis 
in gastric cancer (70), but expression of PDK-1 was decreased 
in colon cancer compared with normal tissue. PDK-3 expres-
sion was detected in colon cancer, and PDK-3 positivity was 
associated with poor prognosis (71). Several studies reported 
the relationship between PDK positivity and prognosis in 
gastrointestinal cancer, but the clinical significance of PDK 
expression has remained unclear. Many small molecule PDK-1 
inhibitors have been identified (72). DCA, a PDK-1 inhibitor, 
reduced lactate production and increased responsiveness to 
5-FU in MKN45 cells (70) and CRC cell lines (73). DCA treat-
ment exerts anti-proliferative effects and sorafenib resistance 
in HCC cell lines in vivo (74).

Lactate dehydrogenase is a tetrameric enzyme comprising 
two major subunits, A and/or B, resulting in five isozymes (A4, 
A3B1, A2B2, A1B3 and B4) that can catalyze the forward and 
backward conversion of pyruvate to lactate. LDHA (LDH-5, 
MLDH, or A4), which is the predominant form in skeletal 
muscle, kinetically favors the conversion of pyruvate to lactate, 
controlling the conversion of pyruvate to lactate in the cellular 
glycolytic process (75). Many human cancers have higher 
LDHA levels than normal tissues (76). LDHA is specifically 
phosphorylated at Y10 in various cancer cell lines, head and 
neck SCC, lung cancer, breast cancer, and prostate cancer cells 
and by diverse oncogenic tyrosine kinases, including FGFR1, 
ABL, JAK2, and FLT3 (77).

LDHA reduction can suppress the tumorigenicity of intes-
tinal-type gastric cancer (ITGC) cells, colon cancer (78) and 
HCC (79). A previous study of 661 ITGC specimens showed 
that low LDHA expression exhibited better overall survival 
than high LDHA expression (80).

Similar to small interfering RNA (siRNA) reduction of 
LDHA expression, the FX11 small molecule inhibitor for 
LDHA could increase cellular oxygen consumption, increase 
ROS production, and induce cell death that could be partially 
rescued by the antioxidant NAC in a lymphoma cell line (81). 
Oxmate, a lactate dehydrogenase inhibitor, combined with 
phenformin exhibited cytotoxic effects in diverse cancer cell 
lines, including colon cancer (82).

5. Conclusions and future perspectives

This review describes the significance of protein expression 
of the transcriptional factors, glycolytic enzymes and metabo-
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Table III. Impact of Glut1 and glycolytic enzymes on prognosis and correlation with clinicopathological features.

	 Total	 Prognosis
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Organ	 N	 %	 Cut-offs	 Expression correlated with:	 Univariate	 Multivariate	 (Ref.)
				    (condition)

Glut1
  ESCC	 145	 43	 >50%	 pT3, v+ MVD	 DFS: poor	 DFS: NS	 (42)
				    (no preoperative treatment)	 CSS: poor	 CCS: NS
  ESCC	   63	 48	 >30%	 No correlation	 OS: poor	 OS: NS	 (43)
				    (curative operation)
  ESCC	   96	 71	 Score 4-6	 N+	 DFS: poor	 NS	 (15)
				    (T1b patients)	 CSS: poor
  GC	 617	 30	 >1%	 pap>por or tub, T-stage	 OS: poor	 OS: poor	 (44)
				    N+, ly+, v+, H+, stage
  GC	 152	 24	 >30%	 T2-T4, N+, diffuse type	 DFS: NS	 DFS: NS	 (70)
					     OS: NS	 OS: NS
  GC	 193	 43		  Age >65, T2-T4, N+, stage, 	 OS: poor	 OS: NS	 (45)
				    intestinal type
  CRC	 163			   Poorly differentied	 OS: poor	 OS: poor	 (90)
				    higher in stage III + IV
  CRC	 112	 18	 >50%	 N+, 	 CSS: poor	 CSS: poor	 (46)
  RC	   46	 48	 >10%	 No correlation	 DFS: p=0.066	 NA	 (47)
  PC	   94	 75	 >50%	 Historogical grade, MIB1	 OS: poor	 OS: poor	 (91)
				    (ductal AC)
  HCC	   63	 37	 Scoring	 SUV, TNR, Ki67LI	 DFS: poor	 NA	 (48)
			   ≥Score 1		  OS: poor
  GB	   56	 34	 >50%	 Perinecrotic areas	 OS: poor	 NA	 (49)
  GB	   71	 52		  Histologic tumor type	 OS: poor		  (50)
				    tumor stage

HK2
  GC	 257	 17	 >30%	 No correlation	 DFS: NS	 DFS: NS	 (92)
					     OS: NS	 OS: NS
  GC	 152	 5	 >30%	 No correlation	 DFS: NS	 DFS: NS	 (70)
					     OS: NS	 OS: NS
  GC	 188	 21		  Size, lower differentiation, 	 OS: poor	 OS: poor	 (93)
				    stage, HIF1A
  HCC	 157	 15	 High	 Moderately and poorly,	 OS: poor	 OS: poor	 (58)
			   mod.	 advanced stage
  HCC	   97	 56		  No correlation	 OS: poor	 NA	 (94)
  HCC	   31	 81		  Moderately and poorly	 OS: NS	 OS: NS	 (59)
				    differentiated

PKM2
  ESCC	 180	 80	 IRS	 Differntiation poorly	 OS: poor	 OS: poor	 (95)
			   strong	 tumor size, stage
			   mod.
  GC	 368	 39	 >25%	 Age, t-stage,	 OS: NS	 OS: NS	 (96)
				    well differentiatied
  GC	   79	 18	 >25%	 Subgroup analysis	 OS: poor	 OS: poor	 (96)
				    above study (signet cell)
  GB	   80	 56	 >25%	 Differntiation poorly,	 OS: poor	 OS: poor	 (97)
				    tumor size, stage, N+
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Table III. Continued.

	 Total	 Prognosis
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Organ	 N	 %	 Cut-offs	 Expression correlated with:	 Univariate	 Multivariate	 (Ref.)
				    (condition)

PDK-1
  GC	 152	 12	 >30%	 T3-T4, N+, tumor size	 DFS: poor	 DFS: poor	 (70)
				    HIF-1A	 OS: poor	 OS: poor
  CC	   74	 -	B lot	 Expression PDK1	 NA	 NA	 (70)
			   density	 deceased in cancer tissue

PDK-3
  CC	 206	 86	 Stain+	 Stage, HIF-1A	 DFS: poor	 NA	 (71)
					     OS: poor

LDH-5
  GC	   94	 62		  Advanced tumor, v+	 DFS: poor	 NA	 (98)
				    HIF-1A, VEGF, COC-2	 OS: poor
  CC	 128	 77		  Poor differentiation	 DFS: poor	 NA	 (78)
				    HIF1A, pKDR	 OS: poor

ESCC, esophageal squamous cell carcinoma; GC, gastric cancer; CRC, colorectal cancer; RC, rectal cancer; HCC, hepatocellular carcinoma; 
PC, pancreatic cancer; GB, gallbladder cancer; MVD, microvessel density; ductal AC, ductal adenocarcinoma; NA, no assessment; NS, not 
significant.

Table IV. Anti-proliferative effect of inhibitors of metabolite transporters and glycolytic enzymes.

Target	 Inhibitor	 Cancer type	 Dose	 Dose	 Combination or	 (Ref.)
		  (cell lines)	 in vitro	 in vivo	 drug resistance

Glut1	 WZB117	 LC (A549)	 10 µM	 10 mg/kg (i.p.) daily	 NA	   (56)
	 Phloretin	 CRC (SW620)	 50 µM	 NA	 DNR	   (54)

Glut2	 Phloretin	 HCC (HepG2)	 200 µM	 10 mg/kg (i.p.)	 DNR	   (55)
				    3 times per week

HK-2	 3-BrPA	 HCC (Huh-7)	 100 µM	 1 mg/kg (i.p.)	 PDI	   (99)
	 3-BrPA	 CRC (HCT116, HT29)	 30 µM	 NA	 Ox-resistant cells	 (100)

PKM-2	 Compound 3	 LC (H1299), 	 30 µM	 NA	 Gefitinib	 (101)
		  hematopoetic (FL5.12)

PDK	 DCA	 HCC (Huh-7)	 30 mM	 100 mg per kg bw	 Sorafinib-resistant	   (74)
				    per day	 cells
	 DCA	 GC (MKN45, AGS)	 20 mM	 NA	 5-FU	   (70)
	 DCA	 CRC (SW620, LoVo, 	 10 mM	 NA	 5-FU	   (73)
		  LS174t, HT29)
	B X-320	 CRC (HCT116)	 0.28 µM	 NA	 NA	 (102)
		   PC (MiaPaCa)	 0.33 µM

LDHA	 FX11	 Lymphoma (P493)	 9 µM	 42 µg (i.p.) daily	 FK866	   (81)
	 Oxmate	 CRC (CT26)	 9 µM	 NA	 Phenformin	   (82)

DCA, dichloroacetate; 3-BrPA, 3-bromopyruvate; DNR, daunorubicin; PDI, protein disulfide isomerase; Ox, oxaliplatin; LC, lung cancer; 
CRC, colorectal cancer; HCC, hepatocellular carcinoma; GC, gastric cancer; NA, no assessment; NS, not significant.
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lite transporters involved in the Warburg effect as potential 
biomarkers. The functional and therapeutic importance of the 
Warburg effect is increasingly recognized, and glycolysis has 
become a target of anticancer strategies. Novel small molecule 
inhibitors targeting enzymes that function in the Warburg 
effect have been developed and anti-proliferative effects on 
diverse cancer cells have been demonstrated. The gene expres-
sions of molecular factors involved in the Warburg effect are 
associated with poor prognosis and may be associated with 
chemoradiotherapy resistance in gastrointestinal cancers. 
Novel small molecules exert anti-proliferative effects and 
may reduce chemoradiotherapy resistance in gastrointestinal 
cancer, breast cancer (83) and lung cancer (56) (Table IV).

Future studies should examine whether inhibitors of 
glycolytic enzymes and metabolite transporters are useful in 
gastrointestinal cancer and evaluate adverse effect and feasi-
bility for clinical practice. Furthermore, validation of imaging 
techniques, which establish glucose metabolism and predict 
response to drugs, is required for optimal patient selection.
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