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Abstract. Recent studies suggest that the anti‑diabetic drug 
metformin may reduce the risk of cancer and have anti‑prolif-
erative effects for some but not all cancers. In this study, we 
examined the effects of metformin on human retinoblastoma 
cell proliferation in vitro and in vivo. Two different human 
retinoblastoma cell lines (Y79, WERI) were treated with 
metformin in vitro and xenografts of Y79 cells were estab-
lished in nu/nu immune‑deficient mice and used to assess 
the effects of pharmacological levels of metformin in vivo. 
Metformin inhibited proliferation of the retinoblastoma 
cells in vitro. Similar to other studies, high concentrations 
of metformin (mM) blocked the cell cycle in G0‑G1, indi-
cated by a strong decrease of G1 cyclins, especially cyclin D, 
cyclin‑dependent kinases (4 and 6), and flow cytometry assess-
ment of the cell cycle. This was associated with activation 
of AMPK, inhibition of the mTOR pathways and autophagy 
marker LC3B. However, metformin failed to suppress growth 
of xenografted tumors of Y79 human retinoblastoma cells in 
nu/nu mice, even when treated with a maximally tolerated 
dose level achieved in human patients. In conclusion, supra-
pharmacological levels (mM) of metformin, well above those 
tolerated in vivo, inhibited the proliferation of retinoblastoma 
cells in vitro. However, physiological levels of metformin, 
such as seen in the clinical setting, did not affect the growth 
of retinoblastoma cells in vitro or in vivo. This suggests that 
the potential beneficial effects of metformin seen in epide-
miological studies may be limited to specific tumor types or 
be related to indirect effects/mechanisms not observed under 
acute laboratory conditions.

Introduction

Retinoblastoma is the most common primary malignant intra
ocular tumor in infants and children. In the United States, it 
affects 12 per million children aged 0‑4 years, representing 6.1% 
of all childhood cancers under the age of 5 years (1). Slightly 
more than half of the patients have the sporadic or non‑inherited 
form of the disease, which results from the spontaneous inacti
vation of the retinoblastoma gene (RB1). Despite progress in 
the treatment of retinoblastoma, significant problems remain 
unsolved and metastatic disease is all too often fatal (2). 

Although several treatment modalities are available for 
retinoblastoma, including local control of small to intermediate 
size tumors with laser and/or cryotherapy sometimes in combi-
nation with radiation and/or chemotherapy, or enucleation 
with or without systemic chemotherapy to control metastatic 
disease, each of them has major drawbacks, especially in 
pediatric patients. For example, conventional external beam 
radiation, which is used to control large tumors, has many 
complications, including an increased appearance of secondary 
malignancies, such as osteosarcoma. This complication occurs 
more frequently in patients with the hereditary‑form of reti-
noblastoma. The 30‑year cumulative incidence of second 
malignancies is >35% for patients who received external 
beam therapy vs. 6% for those patients without radiation (3). 
Intra‑arterial chemiotherapy is currently novel treatment option 
for retinoblastoma, however, variables that affect blood flow 
can greatly affect drug delivery and therapy success (4‑6). Also 
retinal and choroidal vasculopathy may occur in 10 to 20% of 
patients (7,8). Studies show that direct intravitreal injection of 
melphalan may be effective in controlling active vitreous seeds, 
however, major concern is the potential for tumor dissemination 
(6,9‑12). Systemic chemotherapy used as a first line treatment for 
intraocular retinoblastoma with subsequent consolidation with 
photocoagulation, cryotherapy or radiotherapy has a recurrence 
rate of 24% by 5 years (13). This increases to 50% for patients 
with vitreous seeds (14). Recent analyses by several research 
groups (15‑18) show success for local control approaching 
90‑100% for group A‑C, but in less than 50% for group D (new 
international classification). In addition, significant morbidity 
with the chemotherapy has been described previously (19). One 
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of the drugs used for chemotherapy (etoposide) is thought to 
be associated with increased incidence of acute myeloblastic 
leukemia although the actual number of cases implicated so far 
has been low with just ~20 cases reported in the literature (20). 
For these reasons, there is a pressing need for alternative 
treatment modalities for retinoblastoma with better safety and 
efficacy profiles.

Metformin is a biguanide drug that is widely used for 
the treatment of type  II diabetes (4,21‑23). A significant 
body of preclinical studies have shown that metformin 
decreases cancer cell viability and tumor growth in xenograft 
models (6,11,24‑28). However, other studies have shown that 
metformin in vivo may accelerate tumor growth. For example, 
BRAF‑mutant melanoma cells that are resistant to metformin 
in vitro show accelerated growth in vivo when treated with 
metformin  (29). Likewise, metformin/AMPK activation 
promoted an angiogenic phenotype in the ERα negative 
MDA‑MB‑435 breast cancer model (30).

Some of the effects of metformin have been linked to acti-
vation of AMP‑activated protein kinase (AMPK) in muscle, 
adipose and liver tissue (22,31). AMPK is activated by cellular 
stress resulting in the restoration of energy levels through 
regulation of metabolism and growth (32‑34). Insufficient 
AMPK activity allows uncontrolled cell growth despite the 
conditions of cellular stress (such as those occurring during 
tumorigenesis). Furthermore, metformin has been shown to 
inhibit the mTOR pathway and S6K1 phosphorylation impli-
cated in protein synthesis (4,6). Of note, these effects have been 
observed only at millimolar doses of metformin and recent 
studies indicate that metformin may exert its action through 
AMPK‑independent mechanisms (6,11,24,28,35‑41).

Thus the effects of metformin on the proliferation of cancer 
cells appear to be cell type dependent and not fully elucidated. 
For this reason, we investigated the effects of metformin on 
human retinoblastoma cancer cell lines in vitro and in vivo.

Materials and methods

Reagents. Metformin, MTT (3‑(4,5‑dimethylthiazol‑ 
2‑yl)‑2,5‑diphenyltetrazolium bromide) and ribonuclease‑A 
were purchased from Sigma‑Aldrich (St. Louis, MO, USA). 
Propidium iodide, calcein and DAPI were purchased from 
Invitrogen (Carlsbad, CA, USA). The following primary 
antibodies were purchased from Cell Signaling Technology 
(Danvers, MA, USA): phospho‑ACC (Ser79), phospho‑AMPK 
(Thr172), phospho‑S6 ribosomal protein (Ser235/236), 
phospho‑4E‑BP1 (Thr37/46), p21  Waf1/Cip1, p27Kip1, 
LC3B, phospho‑p38 MAPK (Thr180/Tyr182), phospho‑Akt 
(S473), phospho‑p44/42 MAPK (Erk1/2), β‑tubulin, GAPDH. 
The following antibodies were purchased from Epitomics 
(Burlingame, CA, USA) cyclin E1, E2, D1, D3, A2, CDK4 and 
CDK2. Anti‑Ki67 was purchased from Dako (Carpinteria, 
CA, USA), anti‑CD31 and anti‑CD11b from BD Bioscience 
(Franklin Lakes, NJ, USA).

Cell culture. The human retinoblastoma cells WERI and Y79 
(ATCC, Manassas, VA, USA) were grown in RPMI‑1640 
medium (Invitrogen, Grand Island, NY, USA) supplemented 
with 15% fetal bovine serum (ATCC), penicillin and strep-
tomycin (both at 100 µg/ml; Invitrogen), 2 mM L‑glutamine 

(Invitrogen) and 10  mM HEPES (Invitrogen). Cells were 
incubated at 37˚C in a humidified atmosphere of 95% air 
and 5% CO2 and split when the cells reached approximately 
80% confluence.

Trypan blue exclusion test, growth curve and doubling time. 
Retinoblastoma cells were seeded in 6‑well plates at a concen-
tration of 4.5x105 cells per well. On days 3, 6 and 9 cell number 
and viability was determined by trypan blue (0.4%) dye exclu-
sion and growth‑inhibition curves were drawn. Experiments 
were performed in triplicate with 2 wells per condition.

Measurement of cell viability by the MTT assay. Cell viability 
was assessed by 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltet-
razolium bromide (MTT) assay. MTT assay is used to measure 
the reduction of a tetrazolium compound by the cellular mito-
chondria, producing an optically active soluble formazan.

Cells were cultured in 48‑well plates at density 60,000 
cells per well in 300 µl growth medium. After 1 and 3 days of 
treatment with metformin, MTT (5 mg/ml in PBS) was added 
to each well at a 1/10 volume. Cells were incubated for 1 h at 
37˚C and resuspended in DMSO. The absorbance at 595 nm 
was measured using a microplate reader. Data are displayed as 
percentage of control.

Flow cytometry assessment of cell viability. Live and dead 
cells were quantified using the fluorescent probes calcein AM 
and DAPI. Cells were cultured in 6‑well plates at 500,000 
cells per 2 ml growth medium and were treated with 5 mM 
metformin for 48 h. The calcein was added at final concentra-
tion 0.1 µM and DAPI at 3 µM. The samples were read on 
Becton Dickinson FACScan. Results were analyzed with 
Summit 4.3 software.

Flow cytometry assessment of the cell cycle. Cellular DNA 
content was assessed by flow cytometry. Cells were seeded in 
6‑well plates at density 500,000 cells per 2 ml growth medium 
and were treated with 5 mM metformin for 48 h. After over-
night fixation in 75% ethanol, cells were suspended in PBS 
with DNase‑free RNase A at final concentration 0.3 mg/ml 
and propidium iodide at final concentration 1 mg/ml. DNA 
content assessed on Becton Dickinson LSRII flow cytometer. 
Results were analyzed with Modfit LF software.

Protein extraction and western blot analysis. For in vitro 
experiments, cells were incubated for 48 h in the presence 
or absence of metformin at various concentrations (12 µM 
to 10 mM). For in vivo experiments, tumor pieces were cut. 
The samples lysed in M‑PER Mammalian Protein Extraction 
Reagent (Thermo‑Scientific, Pierce Protein Research Products) 
with protease (according to manufacturer's suggestions; 
Roche Applied Science) and phosphatase inhibitor cocktails 
(dilution 1:50; Thermo‑Scientific, Pierce Protein Research 
Products). Total amount of protein (10 µg) was loaded onto 
a 4‑12% Bis‑Tris Gel (NuPAGE; Invitrogen). The electro-
phoresis was done using NuPAGE MOPS Running Buffer 
(Invitrogen) and then samples were transferred onto a PVDF 
membrane (Millipore, Billerica, MA, USA). The membranes 
were blocked for 45 min at room temperature in 5% wt/vol 
BSA, 1X TBS 0.1% Tween‑20. The primary antibodies were 
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diluted in 5% wt/vol BSA 1X TBS, 0.1% Tween‑20 1:1,000 for 
all except CCNE1, E2, D1, D3, A2, CDK4 and CDK2 which 
were used at concentrations 1:5,000. After overnight incuba-
tion at 4˚C, the membranes were washed three times 1X TBS 
0.1%  Tween‑20 and incubated for 45 min at room temperature 
with the horseradish peroxidase‑labeled secondary anti‑rabbit 
antibody at 1:50,000 (Jackson Immuno Research, West Grove, 
PA, USA). The immunoreactive bands were visualized with 
ECL exposured to Fuji RX film (Fujifilm, Tokyo, Japan). The 
results were quantified using ImageJ software.

Animals. All animal experiments complied with guidelines 
established by the Association for Research in Vision and 
Ophthalmology for the use of animals in ophthalmic and vision 
research, and were approved by the Animal Care and Use 
Committee of the Massachusetts Eye and Ear Infirmary (Boston, 
MA, USA). Four to five‑weeks‑old BALB/c (nu/nu) female mice 
were purchased from Charles River Laboratories (MA) and 
maintained in a facility under specific pathogen‑free conditions 
in a climate controlled room with a 12 h light/dark cycle.

Xenograft tumor growth assay. Xenograft tumors were 
established bilaterally in nu/nu mice by means of a single 

subcutaneous injection in each flank consisting of 4 million 
Y79 retinoblastoma cells suspended in 0.3  ml of a 1:1 
mixture of ice‑cold matrigel basement membrane matrix 
(BD Bioscience, MA, USA) and RPMI‑1640 medium. Once 
a tumor mass became visible (within the week from injection 
of the cells), mice were randomly assigned to receive either 
daily peritoneal injections of metformin (250  mg/kg) or 
normal saline for 31 days. Two independent experiments were 
performed with five mice assigned to each group. The dose was 
based on the LD50 of metformin (420 mg/kg), as well as on 
human therapeutic and maximum prescribed doses for human 
patients (2,000‑2,500 mg/day) (6,11). The tumor volume was 
monitored by external measurement in two dimensions with 
calipers every week and determined according to the equation: 
volume (mm3) = 4/3 x phi x (length/2) x (width/2)2 (9). Mice 
were weighted once a week.

Immunohistochemistry assay and pathological evaluation. 
Five tumors from each group were frozen, cut into 10 µm 
sections and analyzed for retinoblastoma cell proliferation, 
vessel area and macrophage infiltration. Cryosections were 
also used for immunohistochemistry, first being fixed in 
4%  paraformaldehyde, blocked with 5%  goat serum, and 

Figure 1. Metformin inhibits the proliferation of the retinoblastoma cells at mM, but not µM levels as measured by MTT. Retinoblastoma cell lines WERI and 
Y79 were treated with concentrations of metformin (12 µM to 10 mM) and cell viability was measured by MTT assay. (A-D) mM but not µM levels caused 
proliferation inhibition of both cell lines. The results are expressed as percentage of growth (%) relative to control values and are average of three independent 
experiments. Data are presented as mean ± SEM (n=12); **p<0.01, ***p<0.005; d1, day 1; d3, day 3.
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permeabilized with 0.1% Triton X‑100. The sections were incu-
bated in a humid chamber with primary antibodies, including 
anti‑Ki67 (1:100), anti‑CD31 (1:100) and anti‑CD11b (1:100). 
A fluorophore‑conjugated secondary antibody (Molecular 
Probes, Carlsbad, CA, USA) was used to detect fluorescence 
using a confocal microscope (Leica Microsystems, Wetzler, 
Germany). Nuclei were stained with DAPI. Cryostat sections 
were examined at random fields at x20 magnification and the 
percentage of fluorescent‑positive cells/DAPI‑positive cells in 
each field was measured. Tumor vessel area was calculated as 
the number of image pixels that stained positive for CD31 per 
high‑power field.

TUNEL assay in tissue sections. Frozen 10 µm sections were 
prepared from tumors as above and stained with TUNEL cell 
death detection kit (Roche Diagnostics Corp., Indianapolis, 
IN, USA) according to the manufacturer's recommendations. 
Sections were counter stained with DAPI and examined under 
an epifluorescent microscope (Leica Microsystems, Wetzler, 

Germany). Cryostat sections were examined at random fields 
at x20 magnification and the percentage of TUNEL‑positive 
cells/DAPI‑positive cells in each field was measured.

Serum levels of metformin, insulin‑like growth factor‑1 (IGF‑1) 
and insulin‑like growth factor binding protein 3 (IGFBP‑3). 
Retro‑orbital blood was collected 3 and 15 h after metformin 
injection for ELISA testing and metformin levels assessment 
from all mice after euthanization. The samples were mixed 
with 4 mM EDTA and left at 4˚C for 2 h, then centrifuged for 
15 min at 180 x g. Serum levels of IGF‑1 and IGFBP‑3 were 
measured using a Mouse/Rat IGF‑I and IGFBP-3 ELISA kit 
(R&D Systems, Minneapolis, MN, USA). Metformin levels 
were assayed (3 and 15 h after i.p. metformin injection), using 
high‑performance liquid chromatography (NMS Lab, Willow 
Grove, PA, USA).

Statistical analysis. The data are expressed as mean ± stan-
dard error of the mean (SEM). Statistical significance was 

Figure 2. Metformin at higher mM levels increases the doubling time and causes cell death of retinoblastoma cells. (A and B) Retinoblastoma cell lines 
WERI and Y79 were treated with 1.25 and 5 mM of metformin for 48 h. Trypan blue exclusion test was performed on days 3, 6 and 9; metformin at mM levels 
caused proliferation inhibition; doubling time increased proportionally to metformin dose. The results are the average of three independent experiments. 
(C-F) The retinoblastoma cell lines Y79 and WERI were treated for 48 h with 5 mM of metformin, and cell viability and death was measured by calcein AM 
and DAPI staining using FACS; comparing to control, mM levels of metformin cause increased cell death and decreased viability (**p<0.01 for WERI and 
***p<0.001 for Y79). The data are representative of three independent experiments (n=12).
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evaluated using the one‑way ANOVA test with Dunnett's 
modification for multiple means comparison or t‑test for 
two means. *p<0.05 was considered statistically significant. 
Two‑tailed tests were used for all comparisons.

Results

Metformin inhibits the growth and increases doubling time 
of human retinoblastoma cells in vitro at mM, but not µM 
levels. In order to determine whether metformin affects human 
retinoblastoma cell viability and proliferation, we analyzed 
the effect of the drug on two human retinoblastoma cell lines: 
WERI and Y79. Cells were treated with various concentrations 
of metformin (12 µM up to 10 mM) and the viability was assed 
by the MTT assay. Increasing doses of metformin led to a 
corresponding reduction in cell viability but at doses in the mM 
range of concentrations (Fig. 1A and B). Reduced viability was 
not observed at µM concentrations (Fig. 1C and D). Assessment 
of cell growth and doubling time by trypan blue exclusion 
showed decreased growth rates in the presence of mM levels 
of metformin. Doubling time increased from 2.2 to 5.1 days for 

the Y79 cell line and from 3 to 5.4 days for the WERI cell line 
(Fig. 2A and B). Metformin treatment at 5 mM also increased 
the proportion of non‑viable cells and decreased the proportion 
of viable cells (Fig. 2D and F) as judged by calcein AM/DAPI 
flow cytometry when compared to control (Fig. 2C and E).

Metformin at higher mM levels leads to variable cell cycle 
changes in human retinoblastoma cells and to a global reduction 
in cell cycle regulators. Previous reports have shown arrest in 
G0/G1 or S phase by mM levels of metformin (32). In our study, 
cell cycle analysis revealed that metformin treatment (5 mM for 
48 h) of Y79 cells led to a statistically significant increase in cells 
in G0/G1 phase (72 to 81%, p<0.001), and a decrease in S phase 
(20 to 12%, p<0.001) (Fig. 3A-C). In contrast the reverse was seen 
when WERI were treated with metformin. There was a decrease 
in G0/G1 phase (83 to 73%, p<0.001) and an increase in cells in 
S phase (9 to 19%, p<0.001) (Fig. 3D‑F). These cell cycle effects 
were not associated with specific cyclin and CDK changes but 
rather they were associated with non‑specific global reduction in 
cyclins. For Y79 cell line on treatment with metformin we noted 
decrease of cyclin D3, E1, E2, A2 (Fig. 4B‑E), cyclin dependent 

Figure 3. Metformin effects on the cell cycle in human retinoblastoma cells. Y79 retinoblastoma cells and WERI cells were treated with 5 mM metformin for 
48 h. (A-C) Metformin caused cell cycle arrest in G0/G1 phase for Y79 while decreasing cell number in S phase. (D-F) Metformin caused cell cycle arrest 
in S phase for WERI cells while decreasing cell number in G0/G1 phase. All the data are graphically represented as percentage of cells in G0/G1 phase, 
S phase, G2/M phase. The data are representative of three independent experiments (n=12).***p<0.001.
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kinases CDK2 and CDK4 (Fig. 4F and G). Levels of cyclin D1 
were not decreased for Y79 (Fig. 1A). For WERI cell line 
on treatment with metformin we noted decrease of cyclin D1, 
D3, E1, E2, A2 (Fig.  5A‑E) as well  as CDK2 and CDK4 
(Fig. 5F and G). In addition, metformin treatment reduced 
CDK inhibitors p21 (Fig. 6A and E) and p27 (Fig. 6B and F) 
in both cell lines. Metformin reduced levels of positive cell 
growth regulators, such as phospho‑p44/42 MAPK in Y79 
(Fig. 6C) and WERI (Fig. 6G). Other cell proliferation and 
survival factors, such as phospho‑Akt were unchanged in the 
Y79 cell line (Fig. 6D) but were found to be activated in the 
WERI cell line (Fig. 6H), suggesting that some of the effects 
of metformin on cell cycle may be non‑specific.

Metformin at higher mM levels inhibits the mTOR pathway, 
upregulates phospho‑p38MAPK, autophagy marker LC3B 
and activates AMPK. Autophagy is usually activated under 
conditions of cell stress and is inhibited by the mTOR pathway, 
an intracellular signaling pathway important in apoptosis. 
Indeed mM levels of metformin decreased the mTOR pathway 
as judged by phosphorylation of S6RP (Fig. 7A and E) and 
4E‑BP1 (Fig.  7B and  F) and led to variable increases in 

LC3B‑I and LC3B‑II protein levels (Fig. 7C and G). Similar 
to some (35,37,38) but not other studies (39,40) the induction 
of LC3 was associated with increases in p38 MAPK (Fig. 7D 
and H). Similar to other investigators (21) we found AMPK to 
be activated in retinoblastoma cells at the mM level as deter-
mined by phospho‑ACC (Fig. 8A and B).

Metformin at pharmacologic levels fails to suppress growth of 
human retinoblastoma xenografts in vivo. In order to evaluate 
the in vivo effect of metformin on retinoblastoma growth, 
heterotopic tumor xenografts of human Y79 retinoblastoma 
cells were established and mice were treated with metformin 
(250 mg/kg every 24 h) or equal volume of normal saline 
delivered i.p. (intraperitoneally). The dose of metformin was 
based on previous studies (11,28) and the LD50 for mice 
(420 mg/kg), as well as on the typical therapeutic and maxi-
mally prescribed human doses (2,000‑2,500 mg/day) (6,11).

In our in vivo experiments, metformin levels in mouse 
sera were on average 2.13 and 0.66 µg/ml for peak and trough, 
respectively (measured via high‑performance liquid chroma-
tography). The level of 2.13 µg/ml metformin equals about 
12 µM. For comparison human peak levels are 1.03 (±0.33), 

Figure 4. Metformin effect on cyclins D, E, A and Cdk2 and 4 in Y79 retinoblastoma cells. (A-G) Y79 cells were treated with 2.5, 5 and 10 mM metformin for 
48 h and subjected to western blot analysis. Metformin caused downregulation of the cyclines D, E, A and CDK2 and 4 except cycline D1 for Y79. Data are 
representative of two independent experiments. Density values of the bands are graphically expressed relative to control. Data are shown as mean ± SEM (n=4).
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1.60 (±0.38), 2.01 (±0.42) for 500 mg p.o. (orally) daily, 850 mg 
p.o. daily or 850 mg p.o. taken three times per day, respec-
tively (42). Despite achieving equivalent pharmacologic levels 
of metformin in mice, tumor growth was not significantly 
different than in the vehicle treated animals (Fig. 9A‑C). The 
mean tumor weight, determined at necropsy, in the control mice 
was 0.98 g, as compared to 0.82 g in the metformin‑treated 
mice (p=0.89, n=10, two independent experiments; Fig. 9D). 
The body weight of the tumor‑injected mice was not found to 
differ significantly from controls (Fig. 9E).

We observed that metformin 3 and 15 h after i.p. adminis-
tration did not affect proteins/pathways in vivo thought to be 
affected by metformin at mM levels in vitro such as AMPK, 
phospho‑ACC, mTOR, p21 (Fig. 10A‑E). Also the drug did not 
significantly affect the IGF1, IGFBP3 or the IGF1/IGFBP3 
ratio in our experiments (Fig. 10F‑H). When tumors were 
examined histologically significant changes of Ki‑67 prolif-
erative index [Ki67(+) cells/DAPI(+) cells; Fig. 11A‑C] were 
not observed. Apoptosis labeling was similar in both groups 
[TUNEL(+) cells/DAPI(+) cells; Fig. 11D‑F]. On treatment 
with metformin we observed a small, nonsignificant decrease 
in tumor vascularity (vessel area: µm2/hpf; Fig. 12A‑C) and a 

small, nonsignificant decrease of infiltration by CD11b cells 
[CD11b(+) cells/DAPI(+) cells Fig. 12D‑F].

Discussion

Metformin, a drug used primarily for the treatment of type II 
diabetes, has been reported in epidemiological studies to 
reduce the incidence of certain cancers among diabetic 
patients (43). Initial studies examining the anti‑proliferative 
effects of metformin have focused on tissues involved in insulin 
signaling and glucose/fatty acid metabolism, such as muscle and 
liver (4,21,23). However, the effects of metformin on other tissues 
or cells in culture have not been well characterized. Of the studies 
available (6,11,28), the anticancer effects of metformin are report-
edly seen at mM levels, levels that are 100‑1,000 times in excess 
of doses capable of being achieved by pharmacotherapy with 
metformin in humans. In addition, some conflicting data have 
arisen in in vitro and in vivo studies, with most indicating that the 
drug may have the potential to directly suppress tumor growth 
(11,24,28,32,44), while other reports indicate that metformin 
may not halt the growth of tumors (25,29,45,46). Increased tissue 
accumulation of metformin relative to blood levels have been 

Figure 5. Metformin effects on cyclins D, E, A and Cdk2 and 4 in WERI retinoblastoma cells. (A-G) WERI cells were treated with 2.5, 5 and 10 mM metformin for 
48 h and subjected to western blot analysis. Metformin caused downregulation of all cyclines D, E, A and CDK2 and 4. Data are representative of two independent 
experiments. Density values of the bands are graphically expressed relative to control. Data are shown as mean ± SEM (n=4).



Brodowska et al:  Effects of metformin on retinoblastoma2318

hypothesized to explain metformin anticancer activity in vivo, 
although the concentration seen in most tissues still remains at 
the low 100 µM level (47). Other explanations proposed relate 
to metformin's well‑known effects on cholesterol, leptin, insulin 
levels and adiponectin, suggesting that some metabolic changes 
account for a reduction in tumor growth.

Some retrospective epidemiologic studies have revealed 
a decrease in the incidence of certain cancers in patients 
treated with metformin (48‑50). The most recent meta‑anal-
ysis suggests that metformin reduces the risk for colorectal 
cancer and hepatocellular cancer, but not for pancreatic, 
breast, gastric, prostate, bladder or lung cancer (50). Other 
case‑control trials indicate that taking metformin is not asso-
ciated with altered risk for esophagus cancer (51), endometrial 
cancer (52), lung cancer (53), colorectal cancer (54), prostate 
cancer recurrence and related mortality  (55). Some trails 
suggest that metformin is associated with a decreased risk of 
pancreatic cancer but in women only (56). Others indicate that 
although metformin decreases risk of lung cancer, diabetics 
who develop lung cancer while receiving metformin may 

have a more aggressive cancer phenotype (57). Some trials 
show that only long‑term use of metformin is associated with 
a tendency towards a decreased risk of ovarian cancer (58). 
Similarly long‑term use of metformin (>5 years) but not 
short-term use was associated with lower risk for developing 
breast cancer compared with no use of metformin (59).

In this study, we examined the effects of metformin on 
human retinoblastoma growth in  vivo, as well  as in  vitro, 
ranging from mM down to µM concentrations. We show that 
metformin inhibition of retinoblastoma cells in vitro, like all 
other cancer‑related studies involving metformin, is seen at 
mM levels. Furthermore, levels similar to therapeutic levels 
achieved in humans (µM) do not have an impact on retinoblas-
toma growth either in vitro or in vivo.

High dose metformin has been shown to increase the 
activity of AMPK in various cell lines at mM levels similar 
to those used in our study (6,24,27,31,32,60) and activation 
of AMPK has been shown to be involved in cell prolifera-
tion (61,62). AMPK activation leads to inhibition of the mTOR 
pathway through tuberous sclerosis complex 2 (TSC2) (63) or 

Figure 6. Metformin effects on the cell cycle regulators p21, p27 phospho-p44/42MAPK and phospho-Akt in Y79 and WERI cell lines. (A-D) Y79 cells 
were treated with 2.5, 5 and 10 mM metformin for 48 h and subjected to western blot analysis. Metformin caused downregulation of p21, p27, phospho-
p44/42MAPK while it did not affect Akt. (E-H) WERI cells were treated with 2.5, 5 and 10 mM metformin for 48 h and subjected to western blot analysis. 
Metformin caused downregulation of p21, p27, phospho-p44/42MAPK while it upregulated Akt. Data are representative of two independent experiments. 
Density values of the bands are graphically expressed relative to control. Data are shown as mean ± SEM (n=4).
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Figure 7. Metformin effects on phospho-p38MAPK, autophagy and the mTOR pathway in Y79 and WERI cell lines. (A-D) Y79 cells were treated with 2.5, 5  
and 10 mM metformin for 48 h and subjected to western blot analysis. Metformin caused downregulation of p-S6RP, p-4EBP while it caused upregulation of 
LC3B I and II and upregulation of phospho-p38MAPK. (E-H) WERI cells were treated with 2.5, 5 and 10 mM metformin for 48 h and subjected to western 
blot analysis. Metformin caused downregulation of p-S6RP, p-4EBP while it caused upregulation of LC3B I and II and upregulation of phospho-p38MAPK. 
Data are representative of two independent experiments. Density values of the bands are graphically expressed relative to control. Data are shown as 
mean ± SEM (n=4).

Figure 8. Metformin activates AMPK as judged by increase of phosphorylation of ACC in Y79 and WERI retinoblastoma cells in vitro. (A and B) Y79 and 
WERI retinoblastoma cells were treated with 2.5, 5 and 10 mM metformin for 48 h. Western blot analysis showed activation of phospho-ACC in a dose-
dependent manner in treated cells compared to control cells. Data are representative of two independent experiments. Density values of the bands are 
graphically expressed relative to control. Data are presented as mean ± SEM (n=4).
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directly without involvement of TSC2 after stimulation with 
pharmacological agent or with nutrient deprivation/stress (64). 
Indeed, in our study metformin activated the AMPK pathway 
in retinoblastoma cell lines at mM levels, as indicated by ACC 
phosphorylation and decreased phosphorylation of ribosomal 
protein S6 (a downstream effector of mTOR) and 4E‑BP1 (a 
downstream effector of S6K). However, those effects were 
not observed in vivo. Energy deprivation and inhibition of the 
mTOR pathway (65) regulate autophagy (66), a process that 
maintains cellular homeostasis. Indeed, mM dose metformin 
inhibited the mTOR pathway associated with increased LC3‑II 
expression (an autophagic marker). This is in agreement with 
some studies which showed that high dose metformin induces 
autophagy in cancer cells  (25), however, others have not 
observed induction of autophagy (27).

Although use of metformin has been extensively used to 
study the AMPK pathway, like many pharmacological tools, 
it may have other unknown functions that are independent of 
its initially characterized action. Indeed, biguanides do not 
directly activate AMPK in cell free assays (67), and some 
studies have suggested that metformin mediates its effects 
completely independently of AMPK (24,36,68). Thus, to 
determine which proteins mediate the intracellular effect of 
metformin, further studies are warranted.

When the in vitro effects of metformin on the cell cycle 
are examined, it has been demonstrated that cells arrest either 

in the G1 phase (24,32,69), S phase (69), and/or increase 
the proportion of cells in the sub‑G0/G1 population (69) 
depending on the cell type. In our study, cell cycle analysis 
revealed that metformin treatment led to a significant increase 
of cells in G0/G1 phase and a decrease in S phase in Y79 
cells, but the reverse was seen when WERI were treated with 
metformin (Fig. 3). Similarly to some researchers (24), we 
observed decrease of cyclin D1 at mM levels in WERI cell line, 
but in contrast to those reports, not in Y79 cells despite arrest 
in G0/G1 (Figs. 3A, 4A and 5A). Additionally, the different 
cell cycle changes observed in these two cell lines were not 
associated with any specific cyclin and CDK change, but a 
rather non‑specific global reduction in cyclins (E1, E2, D3 and 
A2), cyclin‑dependent kinase (CDK2 and CDK4) as well as 
the CDK inhibitors p27 and p21 (Figs. 4, 5 and 6). The down-
regulation of p27 at mM doses of metformin in our study is in 
contrast to research that showed upregulation of p27 in prostate 
cancer and ovarian caner cells (24,70), or no effect in breast 
cancer cells (69). Several studies have also indicated metformin 
may be involved in regulating the positive cell growth regulator 
phospho‑Akt (69,71‑73). In our study, the high (mM) dose 
of metformin in vitro resulted in variable effects on the two 
retinoblastoma cell lines. No effect was seen in the Y79 cell 
line, while in the WERI cell line metformin lead to increased 
phospho‑Akt (Fig. 6D and H). The data on cell cycle, cyclins, 
and Akt taken together suggest that the in vitro high dose 

Figure 9. Metformin does not cause statistically significant inhibition of growth of xenografted tumors of Y79 human retinoblastoma cells in nu/nu 
immune‑deficient mice. Human retinoblastoma Y79 cell heterotopic transplanted tumors were developed as described in Materials and methods. Mice 
were treated with metformin for 31 days. (A) Macroscopic appearance of the mice 31 days after transplantation of Y79 cells, without metformin treatment 
and (B) with 250 mg/kg/day treatment of metformin. (C) Tumor growth curves: mean volumes of PBS- vs. metformin-treated group on days indicated did 
not differ significantly. (D) Mean weights of tumors at autopsy of mice treated with PBS or metformin did not differ significantly. (E) Body weight of mice 
transplanted with Y79 cells with or without metformin treatment was not different.



INTERNATIONAL JOURNAL OF ONCOLOGY  45:  2311-2324,  2014 2321

metformin effects on cell cycle of retinoblastoma cells may be 
non‑specific.

Most in vitro experiments have shown effects in various 
cancer cell lines but they typically use concentrations in 
2‑50 mM, which are much higher than the plasma and tissue 
concentrations measured in individuals who receive recom-
mended therapeutic doses (6,11,27,28). Studies with µM 
levels of metformin usually have little effect on cancer cell 
proliferation, as shown by our study and others (74,75). Yet 
several epidemiological studies have suggested that patients 
on metformin may have reduced cancer risk  (76,77) and 
some animal studies have shown effects with µM levels (still 
almost 10‑fold higher than the levels seen in patients on 
metformin) (78,79). In these studies (78,79) metformin was 
used with combination chemotherapy and was shown to have 
a preferential effect on tumor‑forming, self‑renewing cancer 
stem cells, which are resistant to mainstream chemotherapy, 
yet were found to be sensitive to metformin. Other additional 
hypothesis claim that metformin exerts its antitumor effects 

in vivo via its effects on insulin, IGF1 or IGFBP3 (reviewed in 
ref. 80), however, in our experiments the levels of IGF1, IGFBP3 
or IGF1/IGFBP3 ratio remained unchanged (Fig. 10F‑H).

Importantly, in our in vivo study, metformin administration 
lead to levels of the drug equivalent to those seen in patients 
on metformin, yet we did not detect statistically significant 
effect on tumor growth, apoptosis, proliferation, vascularity 
or infiltration by CD11b cells. It is possible that the effects 
of metformin may be cancer cell specific and/or may involve 
other pathways in the presence of concurrent chemotherapy. 
We can not exclude that long‑term treatment with metformin 
may have cancer preventive effects for some cancer types 
which would be in agreement with some but not all clinical 
trials (4,21,23,42,43,58,59).

In conclusion, we found that while mM concentration of 
metformin inhibit growth of human retinoblastoma cell lines 
in vitro, µM levels comparable to those achieved in vivo do 
not. Furthermore, achieving therapeutic levels of metformin in 
plasma (µM levels) did not affect tumor growth in xenogratfs in 

Figure 10. Effect of metformin on AMPK, mTOR and p21 in vivo. Tumors were collected 3 or 15 h after the last metformin injection for ELISA testing and proteins 
were extracted and western blot analysis was performed for indicated proteins. (A) Treatment of metformin did not show activation of AMPK, (B) increased phos-
phorylation of ACC, (C and D) inhibition of mTOR or (E) downregulation of p21 when compared to PBS treated mice. Data are representative of two independent 
experiments. Data are presented as mean ± SEM (n=4-8). (F and G) Serum levels of IGF1 and IGFBP3 of metformin treated mice failed to significantly differ when 
compared to PBS treated animals. (H) The ratio of IGF1/IGFBP3 did not differ when three groups were compared. Data are the mean ± SEM (n=5).



Brodowska et al:  Effects of metformin on retinoblastoma2322

Figure 11. Metformin does not significantly alter proliferation or apoptosis of Y79‑derived tumors xenografted into Balb/c nude mice. 
(A and B) Immunohistochemistry  sections of representative tumors with Ki67 and (C and D) TUNEL staining. Nuclei were stained with DAPI (blue). 
(C-F) Quantitative analysis of Ki67(+)cells/DAPI(+) cells ratio and TUNEL(+)cells/DAPI(+) cells ratio in tumors was performed and results are expressed as 
a percentage of control. There was no difference between control and treated tumors when quantification was performed for (C) Ki67 and (F) TUNEL. Data 
are the mean ± SEM; Ki67 p=0.38 (n=5); TUNEL p=0.46 (n=5). Scale bars, 200 µm.

Figure 12. Metformin does not alter vascularity (CD31) or macrophage infiltration of xenografted tumors of Y79 human retinoblastoma in Balb/c nude 
mice. (A and B) Immunohistochemistry sections of representative tumors with CD31 and (D and E) CD11b nuclei stained with DAPI (blue). (C) Quantitative 
analysis of CD31(+)cells/DAPI(+) cell ratio and (D) CD11b(+)cells/DAPI(+) cell ratio in tumors was performed and results are expressed as a percentage of 
control. There was no statistically significant difference between control and treated tumors when quantification was performed for CD31 and CD11b. Data 
are presented as the mean ± SEM; CD31 p=0.14 (n = 5) and CD11b p=0.34 (n = 5); Scale bars, 200 µm.
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Balb/c nude mice. Analysis of molecular signal changes suggests 
that the effects seen in vitro at mM metformin concentrations 
are possibly non‑specific and due to the very high drug dose 
causing toxicity. Any potential beneficial effects of metformin 
seen in some, but not other, epidemiological studies of cancer 
require extensive further investigation with careful attention to 
the tumor type, as well as other indirect effects and mechanisms.
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