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Abstract. F‑box proteins (FBPs), the substrate‑recognition 
subunit of E3 ubiquitin (Ub) ligase, are the important compo-
nents of Ub proteasome system (UPS). FBPs are involved 
in multiple cellular processes through ubiquitylation and 
subsequent degradation of their target proteins. Many studies 
have described the roles of FBPs in human cancers. Digestive 
system tumors account for a large proportion of all the tumors, 
and their mortality is very high. This review summarizes for 
the first time the roles of FBPs in digestive system tumorige­
nesis and tumor progression, aiming at finding new routes for 
the rational design of targeted anticancer therapies in digestive 
system tumors.
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1. Introduction

Protein ubiquitylation by the ubiquitin  (Ub) proteasome 
system (UPS) is a post‑translational modification that governs 
a broad array of basic cellular processes, and its defective 

regulation is manifested in various human diseases  (1‑3). 
UPS has a crucial role in maintaining and regulating cellular 
homeostasis  (4). The change of ubiquitination is closely 
related to the occurrence of a wide variety of tumors. The 
UPS exerts its functions mainly through the concerted efforts 
of a group of enzymes (5‑7) (Fig. 1): the E1 Ub‑activating 
enzyme, E2 Ub‑conjugating enzyme, and E3 Ub ligase and 
26S proteasome. Ub is activated in an ATP‑dependent manner 
by an Ub‑activating enzyme (E1), and then transferred to the 
active site cysteine of a conjugating enzyme (E2) through a 
thioester bond. The E3 ligase facilitates the attachment of Ub 
onto the substrate protein from the E2 enzyme. Next, the Ub 
proteins are recognized and then degraded by 26S protea-
some to several small peptides. There are >1,000 putative 
E3 Ub ligases belonging to two major families, the homolo-
gous to E6‑APC terminus  (HECT) type and Ring/Cullin 
Ligase (RCL) type (8,9). Among the E3 Ub ligase enzymes, 
the RCL type of E3 ligases contain the largest number of 
family members, among them, the Skp1‑Cullin1‑F‑box (SCF) 
E3 ligase complex has recently come to prominence (10‑12). 
The SCF‑type E3 ligase complex consists of four units: Skp1, 
Rbx1 and Cullin1, and F‑box protein (FBP), the latter of which 
being responsible for the substrate targeting specificity of the 
complex (13,14). FBPs are characterized by ~40 amino acids. 
Because this kind of structure domain was originally found in 
the cycle of F protein (FBXO1), it is named ‘F‑box structure 
domain’. Without taking into account the various isoforms 
that may be produced, 69 human FBPs have been identified 
so far (10), but only few of them have been well characterized. 
FBPs have been classified into three categories according to 
their specific substrate recognition domains (Fig. 2) (15‑17). 
The FBXW subclass containing WD40 repeat domains is 
composed of 10 proteins. The FBXL family comprises of 
22  proteins which are leucine‑rich repeat proteins. Other 
37 F‑box members containing other domains such as zinc 
finger or ring finger constitute FBXO family. FBPs are attrac-
tive candidates for drug discovery because they play pivotal 
roles in various cancers.

The common digestive system tumors are colorectal 
cancer, gastric cancer, liver cancer, esophagus cancer and 
pancreatic cancer  (PC). According to the latest global 
cancer statistics (Table Ⅰ), colorectal cancer is the third most 
common malignancy, while gastric cancer, liver cancer and 
esophagus cancer are ranked the fourth, the fifth, and the 
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seventh respectively in all cancers. A total of 3,713,100 new 
cancer cases and 2,715,400 cancer deaths are responsible 

for 29.30% of worldwide total new cancer cases and 35.86% 
of deaths in 2008. There is a high necessity for accurate 

Figure 1. The functions of ubiquitin (Ub) proteasome system (UPS). The E1 enzyme functions as an activator by creating a high‑energy thioester bond between 
a cysteine of the E1 enzyme and the Ub molecule via ATP hydrolysis, which is subsequently transferred to conjugating enzyme (E2). The function of E2 is the 
transfer of activated Ub to the site of conjugation in the form of an E2‑Ub thiolester intermediate. Ub is then transferred from the E2 to lysine residues in the 
target through an E3‑Ub ligase. Finally the Ub proteins were recognized and then degraded by the 26s proteasome to several small peptides in the cytoplasm.

Figure 2. Human F‑box protein (FBP) catagories. The large circle stands for the whole FBP family. The three rectangles indicate the three different kinds 
of FBPs and the typical representatives of each type.

Table Ⅰ. Percentage of the five digestive system cancers in all cancers.

Cancer site	T he rank in cancers	N ew cases	T he rank in cancers	C ancer deaths

Colon/rectum	   3	 1,233,700	 4	 608,700
Stomach	   4	 989,600	 2	 738,000
Esophageal	   7	 464,500	 6	 406,800
Liver	   5	 748,300	 3	 695,900
Pancreas	 13	 277,000	 8	 266,000
All site but skin		  12,668,500		  7,571,500
Percentage	 29.30%	 35.86%

According to the crude global new cancer cases and deaths in cancer registries in 2008. All global new cases of the five digestive system cancers 
in 2008 are 3,713 thousand, 29.30% is estimated to account for all new cancers. All cancer deaths of the five digestive system cancers in 2008 
were 271,000, of these 35.86% accounts for all the cancer deaths. The percentage given means the estimated percentage of the five digestive 
system tumors in all global cancers.
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diagnosis of digestive system tumors because of their poor 
prognosis due to chemoresistance and a high recurrence rate. 
The main functions of the digestive tract are the absorption, 
digestion and excretion. The occurrence and development 
of digestive system tumors are strongly associated with all 
sorts of stimulations and the subsequently signal pathway 
activations caused by stimulations. Studies have shown that 
FBP, one component of E3 ligase, can be activated by the 
cell's DNA damage caused by certain stimuli such as heat 
and chemotherapy drugs (18,19). Therefore, it is necessary 
and important to summarize the function of FBPs in digestive 
system cancers.

2. The main FBPs Skp2, FBXW7 and βTrCP in digestive 
system tumors

The misregulated degradation of tumor suppressor proteins 
or oncoproteins can drive tumorigenesis. Accordingly, FBPs 
can function as oncoproteins when overexpressed (if their 
substrates are tumor suppressors) or as tumor suppressors (if 
their substrates are oncoproteins).

FBXW7 is focused on as a tumor suppressor gene in 
human tumorigenesis in large due to the fact that FBXW7 
targets multiple well‑known oncoproteins including 
Cyclin E (20,21), c‑Myc (22,23), c‑Jun (24,25), Notch (25,26) 
and tumor suppressor neurofibromatosis type 1 (NF1) (27) 
for ubiquitination. Gene mutations of FBXW7 are frequently 
discovered in a variety of human cancers such as cholan-
giocarcinomas  (35%)  (28), digestive system tumors such 
as colorectal cancer  (6‑9%)  (29‑31), intrahepatic cholan
giocarcinoma  (ICC)  (32) and gastric cancer  (3.7%)  (33), 
esophageal adenocarcinoma  (55.6%)  (34), PC  (35) and 
other solid tumors (36‑39). Notably, recent studies have also 
demonstrated that FBXW7 is also involved in the regulation 
of drug resistance (40‑42). Furthermore, FBXW7 is a tumor 
suppressor and evidence shows that mouse FBXW7 is essen-
tial for normal vascular development (43).

S‑phase kinase‑associated protein 2 (Skp2) is an authen-
ticated oncogenic protein (44). It was first discovered as an 
element of CDK2/Cyclin A (45). Then it was identified as a 
Skp1‑binding protein to regulate cell cycle progression (46). 
Skp2 drives cells from G1 to S  phase through ubiquity-
lation and degrading the p27 (47). p27, a Cyclin‑dependent 
kinase (CDK) inhibitor, is a negative regulator of the cell cycle 
which is found decreased in cancers. So far, all studied cases 
of cancer have indicated that high levels of Skp2 correlate 
with poor overall survival. The dysregulation of Skp2 and p27 
was found to be associated with tumor progression in human 
oral  (48), colon  (49,50), esophageal squamous cell carci-
noma (ESCC) (51), gastric (52) and prostate cancer (53). Mouse 
models unequivocally confirmed the role of the Skp2‑p27 axis 
in tumorigenesis (54). Thus, Skp2 may serve as an attractive 
target for the treatment of cancer.

β‑transducin repeat‑containing protein (βTrCP) including 
βTrCP1 and βTrCP2 is overexpressed in multiple cancers, 
such as colorectal cancer, pancreatic cancer, breast cancer and 
melanoma, which supports an oncogenic function for these 
proteins (55). However, in sharp contrast to the tumor‑promoting 
role of βTrCP described above, in gastric cancer tumors, it has 
been shown to suppress tumor development (56). Thus, βTrCP 

might have a greater role as an oncogenic protein than as a 
tumor suppressor in digestive system cancers (55).

3. Roles of FBPs in esophageal cancer

Esophageal carcinoma is an age‑related neoplasm with a 5‑year 
overall survival rate of <35% (57,58). Esophageal cancer is one 
of the most frequently occurring malignancies and the seventh 
leading cause of cancer‑related deaths in the world. ESCC is 
the most prevalent type of esophageal cancer in China and 
the survival rate of ESCC patients is <10% (59,60). Due to the 
changes in lifestyle such as smoking and physical inactivity, 
the incidence of cancer becomes increasingly high.

Fukuchi et al  (51) first analyzed Skp2 and p27 expres-
sion in 32 early ESCC surgical specimens. Their findings 
suggest that the target substrate of Skp2 is mainly p27, and 
that failure of Skp2‑induced degradation of p27 leads to a poor 
prognosis, especially in the primary stages. Another study (61) 
reported that Skp2 increases during esophageal squamous cell 
cancer progression from esophageal intraepithelial dysplasia 
to ESCC (62). In addition, the elevated expression of Skp2 
promoted the radioresistance of ESCC cell line EC9706. 
Another member of the FBP family, FBXL19, exhibits 
antitumor property via targeting Rac3 for its degradation, 
thereby inhibiting TGFβ1‑induced E‑cadherin downregula-
tion in esophageal cancer cells OE19 and OE33 (63). Rac3 
is a small GTPase multifunctional protein that regulates cell 
adhesion, migration and differentiation. It has been considered 
as an oncogene in breast cancer and prostate cancer (64,65). 
Transforming growth factor‑β (TGFβ), can reduce the tumor 
suppressor. E‑cadherin is a key component in the formation 
of cell‑cell adherens‑type junctions in epithelial tissues (66). 
E‑cadherin plays a critical role as a tumor suppressor in 
cancers (67).

The team of Barbash et al (68) found 14% (16/116) missense 
mutations in 116 primary ESCC patients in FBXO4 directly 
promotes Cyclin D1 accumulation. Taken together, FBXO4 
has biological properties consistent with a tumor suppressor 
in ESCC. As these researchers also found that FBXW8 is not 
expressed in either normal esophageal epithelium or associ-
ated tumor tissues, they speculated that an FBXW8‑based 
E3 ligase is unlikely to contribute to Cyclin D1 proteolysis 
in ESCC. Cyclin D1 is overexpressed in various types of 
malignant tumors such as breast cancer  (69), and esopha-
geal cancer (70,71). Over the last decade, articles have been 
published demonstrating that FBPs including FBXO4, FBXW8, 
Skp2 and FBXO31, independently contribute to Cyclin D1 
ubiquitylation (19,68,72,73). However, other researchers found 
different results (74). Naganawa et al  (75) investigated the 
relationship between the expression of FBXW7 and the tumor 
progression of 43 primary ESCC patients. The patients with 
low levels of FBXW7 expression had a significantly shorter 
postoperative survival time than the patients with high levels 
of FBXW7 expression.

Kogo et al (76) reported that higher expression of FBXO31 
determines poor prognosis in esophageal squamous carcinoma. 
On the contrary, a substantial body of evidence implicates 
that FBXO31 functions as a tumor suppressor in cancers such 
as breast cancer and hepatocellular carcinoma (77‑79). So, 
the molecular mechanism for these discrepancies is so far 
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unclear prompting further investigations to identify FBXO31 
regulated pathways. A recent study (18) found that FBXO31 
downregulates p38 mitogen‑activated protein (MAP) kinase 
via degradation of MAP kinase kinase 6 (MKK6) in ESCC 
cell lines. p38 MAP plays an important role in a wide range 
of complex biologic processes, such as cell proliferation, 
cell differentiation, cell death, cell migration, and invasion, 
and p38 MAP enhances migration and invasion of many 
cancers (80). MKK6 is a p38 activator. FBXO32, also known 
as Atrogin‑1, has been reported as an apoptosis regulator and 
a tumor suppressor (81). FBXO32 has recently been identified 
as TGF‑β target gene involved in regulating cell survival and 
it may be transcriptionally silenced by epigenetic mechanisms 
in some carcinomas. The mRNA and protein expression of 
FBXO32 is decreased in esophageal cancer cell lines because 
of the aberrant methylation and histone deacetylation of 
FBXO32. The silencing of FBXO32 could be reversed by 
treatment with 5‑aza‑2'‑deoxycytidine  (DNA methylation 
inhibitor) in the esophageal cancer cell line TE13. This study 
indicates that FBXO32 may be a functional tumor suppressor 
in ESCC carcinogenesis and its abnormal methylation leads to 
the occurrence of ESCC (82).

4. Roles of FBPs in gastric cancer

A total of 989,600 new stomach cancer cases and 738,000 
deaths are estimated to have occurred in 2008, accounting 
for 8% of the total cases and 10% of total deaths (83). The 
morbidity of gastric cancer is the second most common, after 
lung cancer according to global cancer statistics (83).

One study  (16) showed that Skp2 is overexpressed in 
human gastric carcinomas with corresponding reduction of 
p27 and poor prognosis. Consistently, another study showed 
that the activation of Skp2 accelerates both p27 and phos-
phatase and tensin homolog on chromosome  10  (PTEN) 
degradation in gastric carcinoma  (84,85). These studies 
indicated that p27 and PTEN are the possible substrates of 
Skp2 in gastric cancers. PTEN is a tumor suppressor. Reduced 
expression of PTEN protein contributes to carcinogenesis and 
progression of gastric carcinoma (86). Skp2 expression was 
gradually increased during the course of intestinal metaplasia, 
dysplasia and primary gastric carcinoma (84). Knockdown of 
Skp2 suppressed the ability of gastric cancer MGC803 cells 
to form tumors and metastasize to the lungs of mice and the 
growth of established tumors via inhibiting cell proliferation 
and enhancing cell apoptosis (87). Moreover, another member 
of the FBXL family, FBXL5, targets cortactin for ubiquitina-
tion in gastric cancer cells, thus decreasing cell migration 
and invasion (88). Cortactin, an actin‑interacting protein, is 
implicated in cytoskeletal architecture and often amplified in 
advanced, invasive cancers. In other words, FBXL5 may be a 
tumor suppressor in gastric cancer.

βTrCP1 is not expressed in primary gastric cancer (89). 
Genetic alterations of βTRCP2 were identified in gastric cancer 
cell lines and primary gastric cancers (89). Complementing 
this study, an analysis of somatic mutations in 95 gastric cancer 
specimens found five missense mutations in βTRCP2, and in 
these particular tissues, with oncogene β‑catenin level higher 
than controls (56), which means that βTrCP2 may function 
as a suppressor in gastric cancer. FBXW7 mutation has been 

confirmed in gastric cancer (33). The loss of heterozygosity of 
FBXW7 has reached 32% in 37 early‑onset gastric carcinomas 
cases (90). Yokobori and colleagues reported the relationship 
of FBXW7 and p53 in gastric cancer (91). The low expression 
of FBXW7 mostly results from p53 mutation, which brings 
about poor prognosis in gastric cancer patients. p53 is well 
acknowledged as a tumor suppressor gene, and p53 mutation 
is often found in cancers. Several studies have demonstrated 
that restoration of wild‑type p53 expression can eliminate 
tumors (92‑94).

FBXO6, also named Fbg2, mainly targets checkpoint 
kinase  1  (Chk1) for ubiquitination and degradation. Low 
expression of FBXO6 causing Chk1 accumulation might 
increase tumor cell resistance to chemotherapy drugs (95,96). 
Chk1 is the main replication checkpoint for cellular sensitivity 
to replicative stress. It has been proved to be overexpressed in 
cancers (97). Intriguingly, recent evidence questions the role 
of FBXO6 in gastric cancer. Zhang et al (98) reported that 
FBXO6 promotes the growth, proliferation and invasion of 
gastric cancer cells as well as normal gastric cells. FBXO32 
is also involved in promoting tumorigenesis in gastric cancer 
cells (99).

5. Roles of FBPs in hepatobiliary tumors

The mortality rate of liver cancer is second in the ranking in 
China (100).

There is evidence showing that, troglitazone  (101) or 
LK‑A (102) can lower the expression of Skp2 in human hepatoma 
cells or xenograft models. Troglitazone is a synthetic ligand 
of peroxisome proliferator‑activated receptor‑γ  (PPARγ), 
and it has an inhibitory effect on cancers  (103). LK‑A, a 
natural ent‑kaurene diterpenoid isolated from Isodon genus, 
has an antitumor effect on nasopharyngeal carcinoma (104). 
Furthermore, Xu et al (105) first reported that knocking down 
kinesin family member 14 (KIF14) could reduce the expres-
sion of Skp2 and elevated p27 in hepatocellular carcinoma 
cells. KIF14 is a mitotic kinesin and acts as oncogene in 
cancers (106).

Acetaldehyde contributing to more aggressive phenotypes 
in hepatocellular carcinoma cell line HEPG2 might result from 
activating the expression of βTrCP (107). FBXW7, a universally 
acknowledged tumor suppressor gene, decreased in hepa-
tocellular carcinoma tissues. FBXW7 was thought to be the 
strongest independent risk factor for hepatocellular carcinoma 
recurrence or prognostic marker (108). A recent study shows 
that Yes‑associated protein (YAP) may be a potential target of 
FBXW7 in hepatocellular carcinoma (109). YAP is often over-
expressed in various types of human cancers (110). FBXW7 
protein expression was negatively correlated with c‑Myc, 
Cyclin E and p53 in hepatocellular carcinoma tissues (111). 
Recombinant human adenovirus‑p53 can inhibit tumor cell 
growth with FBXW7 upregulation in murine hepatocellular 
carcinoma model (112). This provides a new potential therapy 
for HCC.

Notably, Cyclin F  (FBXO1), is downregulated in liver 
cancer, indicating poor survival and recurrence  (113). 
FBXO5, named early mitotic inhibitor‑1 (Emi1), is highly 
expressed in 114 human hepatocellular carcinoma samples. 
Emi1 increases hepatocellular carcinoma cell proliferation 



international journal of oncology  45:  2199-2207,  2014 2203

by inhibiting the degradation of Skp2, thus reducing the 
expression of p27 (114). This result indicates possible cross-
talk between individual FBPs. FBXO31 functions as a tumor 
suppressor mainly through the degradation of Cyclin D1 in 
liver cancer (77), which is consistent with the results in breast 
cancer (79).

One study showed that Skp2 is also overexpressed in 
both biliary tract carcinoma (BTC) cell lines and primary 
BTC predicting poor prognosis. However, the levels of Skp2 
in BTC and p27 proteins were not correlated inversely with 
other tumors (115). Also p27 can be degraded by other means 
in BTC. Data from another study reported that the expres-
sion of p27 and Skp2 are significantly inversely correlated in 
74 patients with ICCs (116). Silencing of the Skp2 gene can on 
one hand slow down the growth in a nude mouse tumor model, 
and on the other hand, inhibit the proliferation, migration 
and invasiveness of gallbladder carcinoma cell line GBC‑SD 
by enhancing the expression of the p27 protein (117). Loss of 
FBXW7 expression is correlated with lymph node metastasis 
in ICC, which tends to be an independent prognostic factor 
for both overall and disease‑free survival (32).

6. Roles of FBPs in pancreatic cancer

Pancreatic cancer (PC) is rare, with the incidence rate 2.5% 
of all forms of cancers, while the mortality rate has reached 
96% (118). Because the conventional treatments of PC have 
little effect on disease course, the 5‑year survival of PC is 
<5%  (119,120). Most patients die within the first year of 
diagnosis (121). Therefore, better in‑depth knowledge of the 
molecular mechanisms might reveal new avenues for early 
diagnosis, and treatment of patients.

The FBPs have rarely been studied in human PC. It has 
been accepted by researchers that expression of Skp2 is 
high in many advanced cancers. Consistent with a putative 
oncogenic role, high expression level of Skp2 correlating 
with histological grade, lymph node metastasis, lymphatic 
permeation and poor outcome has been implicated in human 
pancreatic ductal carcinoma tissue  (122). Schüler  et  al 

disclosed for Skp2 a novel function in pancreatic ductal 
adenocarcinoma (PDAC) cells. Skp2 can resist TNF‑related 
apoptosis‑inducing ligand (TRAIL)‑induced apoptosis (123). 
Blocking the expression of βTRCP1 in PC cell line PancTu‑1 
can reduce nuclear factor‑κB (NF‑κB) activation and chemo-
resistance (124). FBXW7 mutations were found in PC (35). 
Genistein, a soy derived isoflavone, exerts its antitumor 
activity partly through the upregulation of FBXW7 and 
downregulation of miR‑223 in PC cells (125). Knockdown 
of FBXW8 can inhibit cell proliferation of PC cells (126). 
FBXL10, a nucleolar protein that represses transcription 
of ribosomal RNA genes  (127), can promote leukemia 
mouse model development (128), but its expression is low in 
aggressive brain tumors (127). The expression of FBXL10 
is high in human PC tissues, and higher expression levels 
of FBXL10 are correlated with disease grade and stage, 
as well as metastasis. FBXL10 overexpression co‑operated 
with KrasG12D, which promotes PDAC formation in mouse 
models (129).

7. Roles of FBPs in colorectal cancer

Colorectal cancer is the second most diagnosed cancer in 
females and the third leading cause of cancer‑related death for 
females with an estimated 1.2 million new cases and 608,700 
deaths in 2008  (3). Colorectal cancer incidence rates are 
rapidly increasing in several areas (130,131).

Li et al  (132) reported a progressive increase of Skp2 
from normal mucosa through adenoma to primary carci-
noma during all stages of colorectal carcinogenesis. In the 
contrary, expression of Skp2, was decreased during invasion 
but increased again in colorectal tumor metastases. Similar 
results were also detected in melanoma (133). Overexpression 
of Skp2 accompanied with reduced p27 indicates overall 
survival in colorectal carcinoma patients (134). Xu et al (135) 
reported the effect of interfering Skp2 expression in colon 
carcinoma cell line SW480. Their results showed that knock-
down of Skp2 expression induced p27 and p16 upregulation. 
It can also block tumor cell growth and induce cell apoptosis 

Figure 3. The five common digestive system tumors and the possible oncoproteins or anticancer proteins in the corresponding tumor.
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in colorectal cancer nude mice. Recently, another study (136) 
also revealed that siRNA knockdown of Skp2 caused p27 
accumulation in colon carcinoma cell line SW620, as well as 
increased the survival rate of nude mice. Zhu et  al  (137) 
reported that FBXL20 promotes carcinogenesis through acti-
vating of the Wnt signaling pathway and caspase in human 
colorectal adenocarcinoma. Later, it was reported that FBXL20 
overexpression increases the invasiveness of colorectal cancer 
cell line Lovo by mediating the ubiquition and degradation 
of E‑cadherin (138). These findings collectively indicate that 
FBXL20 might also govern tumorigenesis in colorectal adeno-
carcinoma.

Okabe et al (72) reported that FBXW8 targets Cyclin D1, 
and FBXW7 targets Cyclin E  for degration in colorectal 
cancer cells HCT116 and SW480. Babaei‑Jadidi et al (139) 
specifically deleted FBXW7 in the murine gut, and their 
results showed that the loss of FBXW7 accelerated intestinal 
tumorigenesis, promoting accumulation of β‑catenin in 
adenomas at late but not early time points. Somatic mutations 
of FBXW7 in colorectal adenocarcinoma tissues were first 
detected by Rajagopalan et al (140) and later verified by many 
studies (29‑31). The absence of FBXW7 enhanced expression 
of c‑Myc and Cyclin E proteins and upregulated cell prolifera-
tion (30) as well as activated Wnt and Notch signaling pathway 
in human colorectal carcinoma (141). Jahid et al (142) reported 
that miR‑27a can directly downregulate FBXW7 and promote 
cell proliferation through activating Notch, Jun and Myc 
signaling in colorectal cancer cell lines. Wang et al (143) first 
reported that depletion of FBXW7 induces epithelial‑mesen-
chymal transition (EMT) in human colon cancer cells, which 
can be suppressed by mTOR inhibitor rapamycin. This result 
indicates that FBXW7/mTOR axis could be a novel EMT 
pathway that mediates cancer invasion.

Earlier observation demonstrates that IκB and β‑catenin 
have a similar motif for the degradation via UPS pathway, 
indicating that the ubiquitination of the two proteins is 
mediated by the same E3 ligase  (144). IκB, inhibitor of 
NF‑κB, functions as a tumor suppressor. β‑catenin is a 
downstream molecule of Wnt signaling pathways. β‑catenin 
is an oncoprotein that was found routinely activated in 
tumors and has been correlated with poor prognosis and 
short survival (145,146). βTrCP targeting the degradation 
of both β‑catenin and IκB has been verified  (147,148). 
Ougolkov  et  al  (149) reported that 56%  (25/45) of the 
tumors had increased βTrCP1 mRNA aånd protein levels in 
colorectal cancer compared to the normal colorectal tissues. 
Increased βTrCP1 levels were significantly associated with 
β‑catenin activation. This result indicated that βTrCP1 may 
act as an oncogene in colorectal cancer.

8. Conclusions and perspectives

During the last 10 years since the identification and annota-
tion of the FBP family, the continued identification and 
characterization of novel substrates has greatly expanded our 
knowledge. To date, 69 FBPs have been identified in humans. 
However, only Skp2, FBXW7 and βTrCP are well recognized 
with their matched downstream substrate in different cancers. 
The identification of substrates for FBPs in different tissues 
remains a major endeavor for researchers.

Above all, FBPs are important in the occurrence and 
development of digestive system tumorigenesis, leading the 
high level research into the pathogenesis of these tumors. We 
should reveal further mechanism of the FBPs on the cellular 
and molecular levels. Although a great number of FBPs 
have been identified in digestive system tumors  (Fig. 3), 
this area of research and our current understanding of the 
FBP family remains in its infancy. Plenty of questions 
remain to be answered. Do the FBPs in a cell compete for 
binding to the Cullin scaffold and consequently are unable 
to participate in ubiquitination reactions in digestive system 
tumors? Will a certain FBP function as a tumor suppressor 
or be oncogenic in different stages of disease or different 
tissues of the same digestive system tumor? Does intricate 
crosstalk exist among FBPs in digestive system tumors? How 
does the FBP's expression vary after primary carcinomas 
metastasizing to lymph nodes in digestive system tumors? 
Future study on FBP  activity in these digestive system 
tumors will be of great interest and the different biological 
characteristics of a given FBP in different tissues will surely 
bring us new insight. Bortezomib, a reversible inhibitor of 
the catalytic activity of the 26S proteasome, has revealed 
effectiveness in the treatment of mantle cell lymphoma and 
multiple myeloma (150,151). In addition, we believe inhibi-
tors targeting the FBPs are promising in the prevention and 
treatment of digestive system tumors.
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