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Abstract. Glioblastoma multiforme (GBM) is the most 
common primary CNS neoplasm, and continues to have a 
dismal prognosis. A widely-used approach to the mathematical 
modeling of GBM involves utilizing a reaction-diffusion model 
of cell density as a function of space and time, which accounts 
for both the infiltrative nature of the tumor using a diffusion 
term, and the proliferation of tumor cells using a prolifer
ation term. The current paper extends the standard models by 
incorporating an advection term to account for the so-called 
‘cell streaming’ which is often seen with GBM, where some of 
the tumor cells seem to stream widely along the white matter 
pathways. The current paper introduces a bicompartmental 
GBM model in the form of coupled partial differential equations 
with a component of dispersive cells. The parameters needed 
for this model are explored. It is shown that this model can 
account for the rapid distant dispersal of GBM cells in the CNS, 
as well as such phenomena as multifocal gliomas with tumor 
foci distant from the core tumor site. The model suggests a 
higher percentage of tumor cells below the threshold of MRI 
images in comparison to the standard model. By incorporating 
an advection component, the proposed model is able to account 
for phenomena such as multicentric gliomas and rapid distant 
dispersion of a small fraction of tumor cells throughout the 
CNS, features important to the prognosis of GBM, but not 
easily accounted for by current models.

Introduction

Malignant gliomas represent the most common primary 
central nervous system tumor type in adults, with cerebral 

glioblastoma multiforme (GBM) making up the bulk of these 
neoplasms  (1). Despite significant advances in molecular 
biology and brain tumor therapy, there has been little 
improvement in GBM prognosis, with mean survival times of 
12‑14 months (2‑5). This is felt to be due to the highly infil-
trative nature of GBM, with motile invading cells extending 
beyond the surgical margins and radiation therapy fields, 
almost invariably leading to tumor recurrence and death (1,6). 
Thus, a better understanding of GBM behavior is needed in 
order to improve GBM treatment strategies and prognosis. 
Mathematical modeling of GBM is one approach used to try to 
gain increased understanding of GBM behavior. Specifically, 
GBM models seek to understand how a tumor grows and 
spreads out over time. A particularly important parameter to 
model is tumor cell density as a function of space and time as 
this may have important implications for determining appro-
priate surgical margins and radiation fields.

One approach to the mathematical modeling of GBM has 
been pioneered by Alvord et al, Tracqui et al, Swanson et al 
and Murray et al, using a reaction-diffusion model of cell 
density as a function of space and time, which accounts for 
both the infiltrative nature of the tumor using a diffusion 
term, and the proliferation of tumor cells using a proliferation 
term (7‑10).

In words, the equation of the tumor model can be stated as 
follows: Rate of change of tumor cell density (at a location x) = 
Net invasion (diffusion) of tumor cells + net proliferation of 
tumor cells.

In mathematical terms, this may be restated as (9):
	 ∂c(t,x)	 c
	 ------------	 = ∇ • (D(x)∇c) + ρc(1 - ------ )
	 dt	 K

where the various terms are defined as follows: c(t,x) is the 
tumor cell density, in terms of cells/mm3, which is a function 
of position x and time t.

D(x) is the diffusion term, in mm2/day, which models local 
tumor invasion of tumor cells
	 c

ρc(1 - ----- )
	 K
is a logistic tumor growth term, where ρ is the tumor prolifer
ation rate in units of (/day), governed by a tissue tumor carrying 
capacity K, in units of cells/mm3.
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With a constant diffusion term, and in one spatial dimen-
sion, we get the classical Fisher-Kolmogoroff reaction diffusion 
equation successfully used by previous investigators to model 
many aspects of GBM growth dynamics (7,8,10):

	 ∂c	 ∂2c	 c
	 ------- = D ------- + ρc(1 - ------ )	 Equation [1]
	 dt	 dx2	 K

This model has also been successfully extended by Wang 
et al to relate prognosis to the growth kinetic parameters charac­
terizing diffusion and proliferation and by Rockne et al to 
model the response of GBM to radiation (9,11).

The Fisher-Kolmogoroff equation and GBM models 
derived from it are an example of the general class of conser-
vation of matter equations with a source term,

	 ∂c(t,x)
------------ + ∇ • J - f = 0

	 dt

where J represents the flux function and f represents the source 
term, and where J is due to diffusion alone i.e., J = -D∇c (12).

There are, however, several lines of evidence which indicate 
that a flux function consisting only of a diffusion term may be 
incomplete for the purposes of modeling the behavior of GBM. 
One of these is a rapid dispersal of tumor cells throughout the 
CNS in a manner which cannot be accounted for by diffu-
sion, which is essentially a local phenomenon (13‑15). For 
example, Silbergeld and Chicoine have demonstrated that 
within 7 days of local implantation of human GBM cells 
into a rat brain, tumor cells can be identified throughout the 
central nervous system (1). It can be shown (see below) that 
with diffusion alone, it would take significantly longer for this 
to occur. Burgoyne et al noted the same phenomenon, where 
a locally dense tumor remains at the site of implantation, 
but some cells migrate away quickly from the main tumor 
bulk to disperse widely in the CNS (16). In other words, 
this evidence suggests that tumor cell migration cannot be 
thought of solely as a process of random motion. Instead, 
there must be a component of tumor cell migration that is an 
active, non-random process.

The purpose of the current paper is to extend the above 
reaction diffusion models by incorporating an advection term 
to account for the so-called ‘cell streaming’ which is often 
seen with glioblastoma multiforme, where some of the tumor 
cells seem to stream widely along the white matter pathways. 
This occurs only with a small proportion of the tumor cells, 
which Burgoyne et al term ‘dispersive cells’ (16). However, 
this distant dispersal of tumor cells seems to be a crucial 
part of the poor prognosis of GBMs. It leads not only to 
tumor recurrence beyond the therapy field, but can also lead 
to a phenomenon such as multifocal-multicentric GBM. This 
suggests that GBMs need an additional advection component 
to adequately model their behavior.

The current paper introduces a bicompartmental GBM 
model in the form of coupled partial differential equations with 
a component of dispersive cells. It is shown that this model 
can account for the rapid distant dispersal of GBM cells in the 
CNS, as well as such phenomena as multifocal gliomas with 
tumor foci distant from the core tumor site, neither of which is 
easily explained by the current reaction diffusion model.

Model

To account for a component of ‘dispersive’ cells, a model 
consisting of coupled partial differential equations is employed. 
Given an initial cell population defined by c(0,x), a small frac-
tion of the cells, f, are considered to be dispersive cells with 
an advection velocity v through the brain. Thus, the cells are 
considered as two cell populations, c1 and c2, with a majority of 
the cells, fraction (1-f), being in the first population, governed 
by the usual diffusion-reaction equation, and a much smaller 
fraction, f, being in the second motile population, governed by 
an advection-diffusion-reaction equation. This system can be 
expressed as follows:

	 ∂c1	 ∂2c1	 c
	 ------- = D --------- + ρc1 (1 - ----- )
	 dt	 dx2	 K
	 Equation [2]
	 ∂c2	 ∂2c2	 ∂c2	 c
	 -------- = D --------- - v -------- + ρc2 (1 - ----- ),
	 dt	 dx2	 dx	 K

where c1 = (1-f)*c, c2 = f *c, and hence, c1 + c2 = c.
Here, v is the velocity of advection, and D and ρ are the 

diffusion and proliferation coefficients.
The initial and boundary conditions are as conventionally 

employed in the reaction diffusion models of Swanson and 
Rockne et al (11). At each time point, the cell density c(x,t) for 
the tumor would be the sum of the two populations, c = c1 + c2. 
Specifically, we use c(0,x) = 0.8  K * e-0.25x2. The carrying 
capacity for the tissue, K, can be considered a cell density of 
105 cells/mm3 (17). The solution domain is L = 200 mm, and 
we use the standard zero-flux boundary conditions

	 ∂c
	 ------- = 0
	 dx

at x = 0 and at x = L (18).
For the purposes of calculation, values similar to those 

used by Rockne et al for D (0.4 mm2/day) and ρ (0.04/day) are 
employed, serving as average or representative values from a 
broad range of GBMs (18).

Additionally, f, the fraction of cells in the dispersive 
compartment needs to be specified. From the work of 
Silbergeld and Chicoine injecting human GBM cells into rat 
brain, it is clear that this is quite small, since most injected 
cells remain and grow in a fixed tumor bulk (1). In this paper, 
f is set to 0.001, but this is a model parameter which will need 
to be empirically determined in further studies.

Also, an advection velocity v needs to be input for the small 
fraction of dispersive cells in the c2 compartment. A maximum 
value for this velocity can be approximated from the equation 
v = l/τ, where l is the length over which cells migrated and τ 
is the time which this took. This approach gives an order of 
magnitude approximation, but ignores the motion of the cells 
secondary to diffusion. A more rigorous derivation is possible 
using a simplified model so as to be mathematically tractable, 
but which incorporates the effects of both D and v into the 
mean transit time τ for a diffusion process.

Thus, to get an approximate sense, we can begin the deriva-
tion by examining the transit time τ in a steady state situation. 
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In a one dimensional linear model as above, the average transit 
time τ from x = 0 to x = l represents the time it would take the 
total amount of cells N to leave the region given a flux of J, 
which, in turn, represents the amount of cells passing a point 
per unit time. In other words, τ = N/J.

This approach, for example, can be used to calculate the 
mean transit time τ for a simplified steady-state system where 
the flux J is due to diffusion alone. This means that:
	 ∂c
	 J = - D -------- .
	 dx

In looking at the rat GBM model of Silbergeld and Chicoine, 
we postulate c0 cells implanted at x = 0, and in steady state, we 
have the equation:
	 ∂2c
	 0 = D -------- ,
	 dx2

in (0,l), with c(0) = c0, c(l) = 0.
This has a solution:

	 x
	 c(x) = c0 (1 - ----- ).
	 l

The flux is thus
	 ∂c	 c0
	 J = - D ------- = D -------- .
	 dx	 l

The number of cells in the domain is

	 1
	 N = ∫ 1

0
 c(x) dx = ---- lc0.

	 2

Thus, the mean transit time is

	 1	 ----	 lc0	 2	 1	 l2

	 τ = N/J = ------------- = ---- -----	 Equation [3]
	 c0	 2	 D	 D	 -----
	 l

Using the same approach with a simplified advection diffu-
sion model in steady state, it is also possible to derive some 
estimate of τ in terms of v and D, and use that to get some esti-
mates of v if τ is known (12). Ignoring the proliferation term is 
at least partially justified by noting that in the solution of the 
reaction-diffusion model above, the proliferation term does 
not significantly impact the cell concentration profile in the 
early part of the system's evolution, i.e., the time during which 
cells stream widely away from the tumor in the Silbergeld and 
Chicoine rat model, for example.

In steady state, the advection-diffusion model reduces to:

	 ∂2c	 ∂c
	 0 = D -------- - v ------- ,
	 dx2	 dx

in (0,l), with c(0) = c0, c(l) = 0.
The general solution of this second order differential 

equation is

		  D	 c(x) = A + B (------) evx/D ,		  v

where A and B are arbitrary constants.

The boundary conditions lead to the particular solution

	 evl/D - evx/D

	 c(x) = c0 --------------------- .
	 evl/D - 1

To get N, the total number of cells in (0,l), we need to inte-
grate c(x) across the whole interval:
	 N = ∫ 1

0
 c(x) dx ,

which gives

	 levl/D - (D/v) (evl/D - 1)
	 N = c0 ------------------------------------------
	 evl/D - 1

The flux J is given by
	 dc
	 J = vc - D ------- ,
	 dx
which from the above evaluates to
	 evl/D

	 J = vc0 ------------------ .
	 evl/D - 1

Finally,
	 N	 l	 D
	 τ = ---- = ---- - ----- (1 - evl/D )	 Equation [4]
	 J	 v	 v2

This represents the initial approximation of τ =  l/v, but 
now modified to take account of the fact that some of the cell 
motion is due to diffusion.

It is interesting to note that as v approaches 0, the limit of τ 
in the expression above is τ = l2/2D, the same as when the flux 
term is due to diffusion alone, as in equation (3).

This can be seen by expanding the exponential term using 
a Taylor series approximation:

	 l	 D	 vl	 v2l2

	 τ = ---- - ---- (1 - (1 - ----- + ------- + f (vn))) ,
	 v	 v2	 D	 2D2

where f (vn) represents higher order terms in v.
Using Equation 4 and having estimates for D, l and τ, it is 

then possible to calculate v.
For the purposes of simulations in this model, an average 

velocity v of 0.75 mm/day is used (see Discussion).

Results

The standard reaction-diffusion model provides an evolution 
of the tumor cell density with time, where cell density gradu-
ally increases toward the carrying capacity K and where the 
tumor grows in space, with the tumor cell-density curve moves 
to the right (Fig. 1).

The bicompartmental reaction-diffusion-advection model 
of Equation 2 also gives a time evolution of tumor cell density, 
broadly similar to the standard model, but with some signifi-
cant differences (Fig. 2).

It is noted that in the bicompartmental model, there is 
significantly more cell streaming, with a low concentration 
of cells moving away from the tumor bulk even at early time 
points. This can be seen by comparing the extent of the tail 
along the x axis at comparable time points for both sets of 
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curves in Figs. 1 and 2. This can sometimes be seen on imaging 
(Figs. 3 and 4), but is typically below the threshold of imaging 
detection (see Discussion).

It is noted that both the conventional model and the 
bicompartmental model show the expected theoretical linear 
growth of tumor, with a constant increase in tumor radius with 
time. According to the Fisher-Kolmogoroff equation, with 
large time t, the velocity of the tumor can be approximated 
by v = 2√¯¯̄̄ ¯Dρ (9,10). For the model values of D (0.4 mm2/day) 

and ρ  (0.04/day), this would correspond to an increase of 
0.253 mm/day in tumor radius. This is seen in a plot of tumor 
radius with time, where a least-squares linear fit shows a 
velocity of 0.258 mm/day (Fig. 5).

Discussion

This paper presents a preliminary ‘proof of concept’ investiga-
tion into extending the standard reaction-diffusion model of 

Figure 1. The time evolution of the cell density profile as given by the standard reaction-diffusion model of Equation 1, with c(0,x) = 0.8 K * e-0.25x2, 
K = 105 cells/mm3, D (0.4 mm2/day) and ρ (0.04/day).

Figure 2. The time evolution of the cell density profile as given by the system of equations representing the reaction-diffusion-advection model of Equation 2, 
with the same initial and boundary conditions as the standard model, and with f = 0.001, v = 0.75 mm/day.
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GBM to include an advection component to represent distant 
cell streaming or what Burgoyne et al have termed the disper-
sive cell fraction (16). Although this fraction represents only a 
small proportion of the tumor cells, it appears to have several 
significant correlates in the behavior of GBMs. The most 
important of these is a rapid spread of tumor cells throughout 
the CNS. For example, as mentioned above, Silbergeld and 
Chicoine have demonstrated that within 7 days of local implan-
tation of human GBM cells into a rat brain, tumor cells can 
be identified throughout the central nervous system (1,14,15). 
Although a locally dense tumor remains at the site of implan-
tation, some cells stream away quickly from the main tumor 
bulk. This rapid, distant dispersal of only a small number 
of cells away from the main tumor cannot be accounted for 
by diffusion, which is both a local and a bulk phenomenon. 
Furthermore, using mathematically reasonable estimates of 
measured D (e.g., 0.4 mm2/day, as used here), and assuming a 
dimension of only 1 cm for the rat brain, Equation 3 shows that 
with diffusion alone, it would take about 128 days for tumor 
cells to diffuse through even this limited neuroaxis - much 
longer than what is actually observed.

This cell streaming and distant dispersal seems to be a 
crucial part of the poor prognosis of GBMs. Overall, the notion 
is that while current treatments are focused on tumor control 
within the gross tumor bed and closely adjacent areas of the 
brain, it is now clear that malignant glioma cells have likely 
already widely invaded much of the brain prior to diagnosis 
and treatment (19‑21). Thus, as noted by Burgoyne et al, low 
grade gliomas are locally infiltrative, but ‘this contrasts with 
the extensive infiltration of GBM tumors, where cells disperse 
to distal sites throughout the entire brain parenchyma’ (16).

This is poignantly seen in the old surgical series by 
neurosurgeons who, in the face of the poor prognosis of GBM, 
performed total hemispherectomies in glioma patients where 
they felt certain that the tumor was macroscopically confined 
to a single hemisphere. In all cases, histologic examination 
revealed a diffuse spread of some tumor cells in the CNS, and 
many patients died of gross tumor recurrence in the contra-

Figure 3. T1 weighted post-contrast axial image shows enhancing tumor 
cells streaming away from a right occipital surgical resection cavity where 
the main tumor was debulked, extending the tumor into the splenium of the 
corpus callosum.

Figure 4. (A) Axial FLAIR image showing a left temporoparietal tumor 
focus with a distant satellite focus in the left thalamus. (B) T1 weighted post-
contrast axial image shows enhancement of the left temporoparietal focus, 
but a left thalamic focus below the cell density for enhancement, similar to 
the cell-density curves of Fig. 2.

Figure 5. The growth of tumor radius with time, with a superimposed linear 
least-squares fit, which shows a linear tumor growth with a velocity of 
0.258 mm/day, closely matching the theoretical prediction of 0.253 mm/day.
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lateral hemisphere (4,22,23). This propensity for distant tumor 
migration in GBM was recognized early on, and attributed to 
phenomenon such as perineuronal satellitosis and intrafasicular 
tracking (24,25). Various studies have also documented this 
rapid dispersal of some GBM cells in the CNS on a micro-
scopic basis. Burger et al have noted that with migration along 
fiber tracts, individual tumor cells are routinely demonstrated 
up to 6 cm from the main tumor bulk (19). Giese et al also note 
that individual tumor cells are detectable several centimeters 
away from the core lesion, and attribute this to genetic mecha-
nisms that increase cell motility (23).

The current paper introduces a bicompartmental GBM 
model in the form of coupled partial differential equations 
with a component of dispersive cells. It retains the excellent 
predictive capacity of the traditional model, and the ability to 
incorporate individual patient tumor kinetics, but also accounts 
for the phenomenon of distant cell migration as a ‘gentle’ 
diffuse infiltration distant from the main tumor. As can be seen 
in the results section (Fig. 2), over time, this cell migration is 
able to set up distant separate tumor foci which will eventually 
be visible on imaging (Fig. 4). This result is significant for a 
variety of reasons. It has the potential to explain the observa-
tion of Giese et al of distant tumor sites arising even in the face 
of local tumor control at the primary site (26).

More generally, if some of the migrated clonogens grow, 
this model has the potential to explain the phenomenon of 
multicentric/multifocal glioma without resorting to the 
notion of separate metachronous or synchronous tumors. 
As can be seen in Fig. 2, the distant tumor focus will be 
connected to the main tumor bed by ‘invisible’ tumor 
bridges, which are below the threshold of imaging detection. 
This is in concordance with the assessment of Giese et al that 
‘many of these tumors may not be truly multifocal but rather 
may reflect manifestations of more rapidly proliferating foci 
within a larger area of microscopically invaded brain’ (23). 
The occurrence of such multifocal lesions has been reported 
in up to 10% of cases of GBM at initial presentation in older 
studies (27‑29). The more recent study of Patil et al places the 
incidence at 12.8% (30). However, the incidence increases 
significantly in later stages of disease (21). This would be 
fully in keeping with the predictions of our model, where, 
with time, more of the distant migrated cells will be able 

to grow into visible tumor foci under the influence of the 
proliferation term.

An important point to note is that the current model also 
accounts for the notion that much of the tumor spread secondary 
to advection is below the threshold of imaging. In published 
applications of the reaction-diffusion model, threshold values 
of cell density are set up to represent detectable tumor on T1 
post-contrast images and on T2 images. The values used for 
these thresholds have been in the range of 0.8 K (where K is 
the tissue carrying capacity) for T1 post-contrast images and 
0.16 K for T2 weighted images (31‑33).

Using these thresholds, it is interesting to compare the 
spread of tumor in the brain which is below the threshold of 
imaging detection. Numerical simulation shows that at 50 days, 
the T2 radius of the tumor is 1.2 cm. Using the conventional 
model, cell density falls to 0 at 3.2 cm. This is within the 
typical surgical and radiation therapy margins used in current 
practice. The bicompartmental model shows significantly more 
subthreshold tumor spread, with tumor falling to 0 at 6 cm. 
This can be seen in the longer right hand tail of the cell density 
curves when comparing Figs. 1 and 2. In fact, at 50 days, 0.15% 
of all tumor cells are located between 3.2 cm, where the stan-
dard model goes to 0 cell density, and 6 cm. These tumor cells, 
outside the traditional surgical and radiation therapy margins, 
are quite significant for the poor prognosis of GBM, in that they 
provide a source of cells for the tumor recurrence that is typi-
cally observed beyond the treatment margins.

More generally, the bicompartmental model predicts more 
cells beyond the T2 imaging threshold of MRI, and that this 
proportion increases with time. For example, at 100 days, using 
the conventional reaction diffusion model, 4.3% of tumor 
cells are below the T2 threshold. Using the proposed model 
presented here, that fraction is 4.8%. At 150 days, however, 
the numbers are 2.8% for the conventional model, and 5.1% 
for our model, and at 180 days, the fractions are 2.2 vs. 8%, 
respectively, showing an increasing amount of subthreshold 
infiltration in the brain with the bicompartmental model.

These findings are significant, since tumor radiation therapy 
fields, in attempt to avoid the morbidity of whole-brain radia-
tion, are now targeted, with a typical target volume extending 
2.5 cm beyond the visible edge of the tumor on T2 (18). Our 
model shows cell infiltration well beyond the outer margin of 

Figure 6. (A) (on the left) shows the output of the standard model at 200 days. (B) (on the right) shows a tricompartment model with two compartments showing 
advection, with advection velocities of 0.4 and 0.6 mm/day, and a proliferation rate set at 0.75 of the standard model value. The dispersive cell fraction, f, is set 
at 0.0005 for each compartment, comparable to the f of 0.001 used in earlier simulations.
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the radiation field, and would help explain tumor recurrence at 
or beyond the margins of the therapy field, as is often seen (23). 
Moreover, the increasing brain infiltration below the threshold 
of imaging detection (8% of tumor cells in the bicompart-
mental model vs. 2.2% in the standard model at 180 days) is 
fully consistent with the observations of Giese et al. In their 
review on the ‘cost of migration’ of cells in GBM, they note 
that many patients die of neurologic deterioration without a 
large post-treatment tumor bulk, precisely because of the 
diffuse subthreshold infiltration of the brain (23).

Clearly, mathematical models are idealizations of a much 
more complex underlying biology, but they have utility if they 
can capture essential features of the phenomenon under study. 
As noted above, this paper represents the initial development 
of an advection-reaction-diffusion model. Thus, one of its 
purposes is to highlight future research directions. Among 
the most critical of these are accurate estimates for the 
model parameters. Previous work on the standard reaction-
diffusion model has outlined the approach to estimating D and 
ρ (9,10,31). Additional parameters needed for this model are 
also estimates of f, the fraction of dispersive cells and v, the 
advection velocity. The molecular mechanisms of cell motility 
in GBM are an active area of investigation (34). There is, at this 
time, little definitive evidence regarding appropriate values 
for v. Chicoine and Silbergeld have noted that in vitro, the 
motility of human glioma cells increases with increasing tumor 
grade (15). They have noted that time-lapse videomicroscopy 
recordings of glioma cells revealed a motility rate of 12.5 µm/h 
with an ameboid form of locomotion (1,14). This correlates to 
a speed of about 0.3 mm/day. In referring to their work with 
human GBM in the rat brain, Murray quotes a minimum speed 
of 4.8 microns/h (10), equating to 0.115 mm/day. We take this 
as the minimum available estimate of v.

An order of magnitude approximation, which provides an 
upper limit on v, vmax, can perhaps also be found in the rat brain 
model papers which show that 7 days post-implantation of 
xenografts into the rat forebrain, individual tumor cells can be 
found throughout the CNS (1,14). Assuming rat brain of 1 cm, 
this gives τ = 7 days and l = 1 cm, and using D = 0.4 mm2/day, 
Equation 4 can be numerically solved for v. This gives a vmax of 
1.39 mm/day. Thus, we use a v of 0.75 mm/day in simulations 
as roughly representative of the mean between the available 
minimum and maximum estimates. Clearly, however, more 
detailed work needs to be done to accurately estimate v in the 
setting of GBM in vivo in the human brain, as well as to try 
to obtain some estimates of f, the fraction of dispersive cells.

Lack of precise knowledge of these values represents 
a limitation of the current work. A more general limitation, 
though, has to do with the nature of continuum modeling itself, 
where only a single speed v can be assigned to the advection 
component. Clearly, there is likely a range of advection veloci-
ties, depending on both tumor cytoarchitecture, the molecular 
mechanisms of motility, and the pathway motile cell take 
(intrafasicular and preineuronal). This limitation may be 
partially circumvented by adding more compartments to the 
model. Also, it is unclear whether motile cells will proliferate 
with the same growth rate as cells within an established tumor, 
aided by tumor growth factors and angiogenesis promoters. A 
tricompartment model, for example, may have a cell compo-
nent with a slower advection velocity and one with a faster 

advection velocity. One such simulation is presented in Fig. 6. 
For reasonable model parameters, it shows a diffuse broad-
based infiltration of the brain by tumor cells entirely below the 
threshold of imaging.

It is once again noted that while this is not entirely real-
istic, it may help achieve the overall purpose of mathematical 
modeling, which is to capture some essential features of tumor 
behavior that may help guide therapy or predict prognosis.

The current work suggests that for therapy planning and 
estimates of patient prognosis, an advection component needs 
to be incorporated into the standard diffusion-reaction models, 
and indicates areas where future research is needed.
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