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Abstract. Breast cancer is the leading cause of cancer death 
in women worldwide. Insensitivity of tumor cells to drug 
therapies is an essential reason arousing such high mortality. 
Epithelial-mesenchymal transition (EMT) is defined by 
the loss of epithelial characteristics and the acquisition of a 
mesenchymal phenotype. It is well known that EMT plays 
an important role in breast cancer progression. Recently, 
mounting evidence has demonstrated involvement of EMT in 
antagonizing chemotherapy in breast cancer. Here, we discuss 
the biological significance and clinical implications of these 
findings, with an emphasis on novel approaches that effectively 
target EMT to increase the efficacy of anticancer therapies.
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1. Introduction

Breast cancer is the most frequently diagnosed cancer and 
the leading cause of cancer death in women worldwide, 
accounting for ~23% of the total new cancer cases and 14% of 
the total cancer deaths (1). It is well known that breast cancer is 
a heterogeneous disease that can be classified by microscopic 
appearance and molecular profiles such as estrogen receptor 
(ER), progesterone receptor (PR) and human epidermal growth 
factor receptor 2 (HER2) which correlate with diverse clinical 
outcomes and responses to treatment. Systemic treatment 
for breast cancer, including conventional cytotoxic therapy 
(paclitaxe, doxorubicine, cyclophosphamide, fluorouracil, 
cis-platinum), endocrine treatment (tamoxifen, fulvestrant, 
letrozole, anastrozole), and targeted agents such as trastu-
zumab, plays an essential role in reducing mortality rate and 
prolonging survival time in patients with breast cancer (2,3). 
However, resistance to therapeutic agents remains a consistent 
obstacle in terms of treatment success, while the underlying 
mechanism of drug resistance remains enigmatic (4,5).

Epithelial-mesenchymal transition (EMT) is a biologic 
process by which epithelial cells lose their cell polarity and 
cell-cell adhesion, and gain migratory and invasive properties 
to become mesenchymal cells. A growing body of literature 
supports that EMT is closely linked to the progression of 
breast cancer, which includes enhanced migratory and inva-
sive capacity, and elevated stemness of cancer cells (6,7). Now, 
emerging evidence suggests that EMT is also involved in treat-
ment resistance in breast cancer (8,9). This review presents the 
events that involve the impact of EMT on drug resistance in 
breast cancer, helping understand the generation of treatment 
resistance and seek potential approaches to reverse the process.

2. Drug resistance in breast cancer

In breast cancer treatment, conventional cytotoxic agents used 
alone or in combination weaken and destroy cancer cells in 
the body. However, resistance to chemotherapy is a major 
hurdle in the management of breast cancer. Some patients 
exhibit intrinsic resistance to chemotherapy, while other 
patients, although initially sensitive to chemotherapy, even-
tually develop acquired resistance, even after combination 
therapy. At present, it is well accepted that the mechanisms 
of chemoresistance may mainly contain decreasing uptake of 
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water-soluble drugs, various changes in cells that affect the 
capacity of cytotoxic drugs to kill cells and increasing energy-
dependent efflux of hydrophobic drugs that can easily enter 
the cells by diffusion through the plasma membrane (10). 
Moreover, topoisomerase poisons, altered expression of drug-
metabolizing enzymes and drug-conjugate export pumps, 
suppression of apoptotic pathways and host-tumor-drug inter-
actions also contribute to chemoresistance (11). Among these, 
the most significant is the increased efflux of hydrophobic 
drugs which are regulated by a family of energy-dependent 
transporters, known as ATP-binding cassette (ABC) trans-
porters including P-glycoprotein (P-gp, also known as ABCB1 
or MDR1), multidrug resistance protein (MRP) 1-7, lung 
resistance-related protein (LRP) and breast cancer resistance 
protein (BCRP) (12).

Tamoxifen (TAM) is the usual endocrine (anti-estrogen) 
therapy inducing objective response or disease stabilization in 
breast cancer patients with ER+ tumors. The pharmacologic 
action of tamoxifen is that it binds to the estrogen receptor and 
induces dimerization and DNA binding to finally inactivate it 
(13). Nevertheless, about half of ER+ patients with advanced 
disease and nearly all patients with metastatic disease fail to 
respond to first-line TAM treatment. Approximately 40% of 
patients receiving TAM as adjuvant therapy experience tumor 
relapse and die from their disease, and a third of women 
treated with TAM for 5 years develop recurrent disease within 
15 years (14). TAM resistance might arise as a consequence of 
loss of expression or function of ERα, including autophosphor-
ylation, modulation by activation of transmembrane tyrosine 
kinase receptors and interaction between downstream signal 
transduction pathways (15).

Trastuzumab (herceptin), a humanized, recombinant 
monoclonal antibody that selectively binds with high affinity 
to the extracellular domain of HER2, has been proved to 
exert antitumor effects in cancer models and patients with 
HER2-amplified breast cancer. The addition of trastuzumab 
to adjuvant chemotherapy can impressively reduce the 
recurrence rate (16). However, some patients with HER2-
overexpressing breast cancer do not respond to trastuzumab 
therapy. There is only 26% response rate in women diagnosed 
with HER2-positive metastatic breast cancer and treated 
with trastuzumab as a single first-line agent. That is, >70% of 
HER2-overexpressing metastatic breast carcinomas display a 
resistance to trastuzumab (17). The mechanisms underlying 
the resistance phenotype are not well understood. Increased 
production of insulin-like growth factor, dysregulation of p27, 
overexpression of epidermal growth factor receptor (EGFR) 
with activation of the Akt pathway and decreased PTEN func-
tion may contribute to this process (18).

3. The potential mechanism of EMT

EMT refers to a complex molecular and cellular program by 
which epithelial cells shed their differentiated characteristics, 
including cell-cell adhesion, planar/apical-basal polarity, and 
lack of motility, and instead acquire mesenchymal features. It 
has been described as the transition taking place in epithelial 
cancer cells, which may lead to cancer invasion, resistance to 
anoikis and systemic cancer cell dissemination (19). During the 
acquisition of EMT characteristics, cells undergo actin cyto- 

skeleton reorganization, decrease in the expression of proteins 
that promote cell-cell contact such as E-cadherin and occludin, 
and gain in the expression of mesenchymal markers such as 
vimentin, fibronectin and N-cadherin, as well as increased 
activity of matrix metalloproteinases (MMPs) like MMP-2, 
MMP-3 and MMP-9, which are associated with an invasive 
phenotype (20). The tumor microenvironment comprised of 
extracellular matrix, cells, and soluble factors plays a critical 
role in EMT induction and further in tumor metastasis (21,22). 
Several kinds of stromal cell subtypes, such as macrophages and 
fibroblasts, contribute to tumor progression through induction 
of EMT (23,24). EMT can also be triggered by adverse condi-
tions such as hypoxia and a diverse set of extracellular stimuli 
including tumor necrosis factor α (TNF-α), transforming growth 
factor β (TGF-β), epithelial growth factor family member (EGF), 
fibroblast growth factor (FGF), insulin growth factor (IGF), 
platelet derived growth factor (PDGF), and components of the 
extracellular matrix such as collagen and hyaluronic acid (21). 
Signal transduction pathways including Wnt, Notch, nuclear 
factor-kappa  B (NF-κB), mitogen-activated protein kinase 
(MAPK) and phosphatidyl inositol 3-kinase (PI3K) pathways 
can coordinate EMT programs. Different stimuli induce a multi-
tude of signal pathways that converge on several EMT-inducing 
transcriptional factors including Snail, Slug, Twist, Zeb1, Zeb2. 
All of the factors are capable of repressing E-cadherin directly 
or indirectly when overexpressed in cultured epithelial cells (25) 
(Fig. 1).

4. EMT transcriptional factors and drug resistance in 
breast cancer

It is well established that Snail family proteins (Snail and Slug) 
are the key regulatory elements of EMT along with the control 
of expression of many genes. Snail is involved in the EMT 
that not only takes place concomitantly with the acquisition 
of invasive properties in tumors, but also has been related to 
other cancer hallmarks such as the gain of unlimited replica-
tion potential, a greater resistance to apoptosis and even the 
evasion of immunosurveillance (26). Vega et al found that 
Snail attenuated the cell cycle and conferred resistance to cell 
death induced by the withdrawal of survival factors and pro-
apoptotic signals (27). In another study, aberrant expression of 
Snail or Slug in breast adenocarcinoma cells was observed to 
protect against apoptosis induced by genotoxic stress, which 
might be associated with direct transcriptional repression of 
genes taking part in many aspects of programmed cell death 
(28). Chen et al revealed that MCF-7 breast cancer cells trans-
fected with eukaryotic expression vector pCDNA3.1-Snail 
showed EMT with BCRP-mediated multidrug resistance 
(29). Similarly, it was reported that overexpression of Snail 
accelerated adriamycin induction of multidrug resistance 
through increasing the expression of P-gp (30). In paclitaxel, 
docetaxel, or doxorubicin resistant MCF-7 cell lines, Slug 
expression was upregulated and ER was downregulated, 
resulting in the repression of E-cadherin and occludin, and 
elevation of N-cadherin and vimentin (31,32). MCF-7 cells 
with ER deprivation were unresponsive to addition of estradiol 
and TAM and acquired the EMT state (33). It was shown that 
decrease in the estrogen dependency of breast cancer cells 
was accompanied by an increased expression and activity 
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of Snail, and demonstrated the involvement of Snail in the 
negative regulation of ER (34). Further findings demonstrated 
that Snail could repress ER-α expression by direct interaction 
with regulatory DNA sequences at the ESR1 locus in breast 
cancer cell lines (35). In addition, many ERα-negative lines 
which were also E-cadherin-negative (e.g., MDA-MB-468 and 
MDA-MB-231) exhibited high Slug expression. It is indicated 
that ligand-activated ERα formed a transcriptional inhibitory 
complex comprised of nuclear receptor co-repressor (N-CoR) 
and histone deacetylase 1 (HDAC1) which bonds to the Slug 
promoter and directly suppresses Slug, which is one of the crit-

ical members in Slug-E-cadherin-EMT pathway (36). Highly 
invasive breast cancer cell lines expressed elevated levels of 
Twist, which upregulated the transcription of Akt-2 to promote 
cell survival and resistance to paclitaxel (37). Li et al proved 
that adriamycin induced EMT and apoptosis in MCF-7 cells, 
while only cells undergoing EMT displayed multidrug resis-
tance. Twist1 suppression prevented the drug-induced P-gp 
expression, concomitant with partial reduction in resistance to 
paclitaxel, vincristine and bleomycin (38). It seems that EMT 
induction simultaneously upregulates the expression of several 
ABC transporters, which lead to mutidrug resistance in human 

Figure 1. Brief representation of the role of transcriptional factors, cytokines, cell signal pathways, miRNAs and some other genes in EMT and drug resistance 
in breast cancer. 
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breast cancer cells. There were binding sites for several EMT 
transcription factors (Snail, Slug, Twist and FOXC2) in 16 ABC 
transporters, while CHIP analysis further revealed that Twist 
directly bound to E-boxes in the promoter region of ABCC4 
and ABCC5 in MCF-7 cells transfected with Twist (39).

5. EMT-related cytokines and drug resistance in breast 
cancer

TGF-β is one of the most potent and better-studied inducers of 
EMT, acts through serine-threonine kinase receptors to phos-
phorylate the cytoplasmic Smads which activates E-cadherin 
repressors of the Snail family. A recent study indicated that 
adverse activation of TGF-β pathway by chemotherapeutics 
in the breast cancer cells or elevated TGF-β levels in tumor 
microenvironment might lead to EMT and generation of cancer 
stem cells, resulting in the resistance to chemotherapy (40). 
The evidence found cis-platinum treatment of MDA-MB-231 
breast cancer cells increased both TGF-β mRNA levels and the 
secretion of active TGF-β, which enhanced growth arrest that 
facilitated repair of damage, thus rendering these cells resistant 
to cis-platinum killing (41). In the report of López-Díaz et al, 
TGF-β was shown protected cells from DoxR, 5-fluorouracil 
and paclitaxel-induced cell death specifically though Smad 
4-mediated complex (42). Moreover, TGF-β pretreatment was 
able to attenuate the TAM cytotoxic effect and decrease the 
apoptosis ratio in breast cancer (43). It was reported that TGF-β 
increased ErbB/PI3K activation in BT474 and SKBR3 cells, and 
desensitized the cells to trastuzumab-mediated growth inhibi-
tion (44). TNF-α is another inflammatory cytokine linked to 
both EMT and drug resistance. MCF-7TN-R cells which were 
generated by prolonged and progressive exposure of MCF-7 
cells to TNF-α underwent progressive EMT changes, and 
represented a model of transition to a multidrug resistant and 
increased tumorigenic phenotype. In addition, some growth 
factors which induce EMT may also take part in acquired 
resistance by various patterns. IGF-1 was proposed to transmit 
signals via both the PI3K and MAPK pathways, then resulted 
in the extracellular activation of MMPs which were capable of 
promoting latent TGF-β1-induced EMT, further rescued breast 
cancer cells from chemotherapy-induced cell death (45,46). It 
was also demonstrated that IGF-1 stimulated phosphoryla-
tion of HER-2 exclusively in the trastuzumab resistant cells. 
Antibody-mediated blockade of insulin growth factor repector 
(IGF-1R) disrupts IGF-1R interaction with HER-2 and restores 
trastuzumab sensitivity (47). FGF expression was found as a 
stronger predictor of paclitaxel resistance, compared to P-gp, 
p53, or Bcl-2 in patients with breast cancer (48). With the inter-
action with ER-activated pathways, FGF receptor-mediated 
signaling drives autonomous growth which would be refrac-
tory to TAM therapy (49). Regarding the induction of FGF on 
EMT, these results suggested that EMT might be involved in 
the FGF-mediated chemoresistance process.

6. EMT-related signal pathways and drug resistance in 
breast cancer

Many signaling pathways which have significant regulating 
effects on EMT are closely involved in drug resistance. Genomic 
Region Enrichment was performed to find increased secretase 

activity which may account for an increased Notch signaling 
in endocrine resistant breast cancer cells (50). PF-03084014 
which inhibits Notch signaling by reducing Notch intracellular 
domain (NICD) and Notch target genes Hes-1 and c-Myc in 
both cells and tumors prominently enhanced the antitumor 
activity of docetaxel in MDA-MB-231 xenograft model 
through suppressing expression of survivin and myeloid cell 
leukemia sequence 1 (MCL1), reducing ABCB1 and ABCC2, 
upregulating BIM and reversing the EMT phenotype (51). 
Notch may be an important target in trastuzumab-resistant, 
HER-2+ breast cancer. Growth of trastuzumab-resistant cells 
was completely inhibited by combining trastuzumab plus 
Notch-1 siRNA (52). The NF-κB pathway is emerging as an 
essential regulator of EMT in cancer cell lines acting through 
the induction of Snail transcription and protein stabilization. 
Constitutively active NF-κB was also discovered to play a 
key role in resistance to death-inducing stimuli, including 
chemotherapeutic agents (53). NF-κB inhibitors were found 
to sensitize breast cancer cells to doxorubicin (54). Previous 
studies also showed that phosphorylation and overexpression 
of NF-κB caused an increase in ER-mediated transcription 
associated with endocrine resistance. As a positive regulator 
of Snail in breast cancer cells, simultaneous inhibition of 
NF-κB by RNA interference resulted in marked increase of 
cell response to antiestrogen TAM (55). Furthermore, the 
activation of MAPK and PI3K pathways was also involved in 
the adaptation of ER-positive breast cancer cells to estrogen 
deprivation by contributing to ER hypersensitivity and were 
associated with endocrine resistance (56). High PI3K/Akt 
activity has been associated with resistance to trastuzumab 
in HER2-overexpressing cells and primary tumors (57). 
Additionally, it was revealed that a number of canonical and 
non-canonical Wnt genes (DKK1, JUN, PORCN, CSNK1A1 
and MYC) were significantly increased in the TAM-resistant 
cells. The Wnt inhibitor, IWP-2, resulted in decreased expres-
sion of vimentin and Twist (58). Wnt3 acting as a key mediator 
in the localization of β-catenin controlled EMT-like transition 
and activation of EGFR in trastuzumab resistant cells (59).

7. Certain genes involved in EMT and drug resistance in 
breast cancer

Transglutaminase 2 (TG2), a pro-inflammatory protein impli-
cated in diverse physiological and pathological processes, was 
reported to induce EMT in MCF-10A cells and confer resis-
tance to doxorubicin as an important downstream mediator 
of TGF-β (60). Dual specificity phosphatase 4 (DUSP4) is 
a member of the dual specificity phosphatase family, which 
inactivates target kinases through dephosphorylating phos-
phoserine/threonine and phosphor tyrosine residues. Liu et al 
discovered that knockdown of DUSP4 increased the chemo-
sensitivity of MCF-7 and MCF-7/ADR breast cancer cells to 
doxorubicin, and MCF-7/ADR cells with high levels of DUSP4 
had a mesenchymal phenotype (61). Pin1, a peptidyl-prolyl 
isomerase, was overexpressed in TAM-resistant (TAMR) 
MCF-7 cells. Pin1 siRNA treatment resulted in decreased 
Snail transcription and the expression of EMT markers. It was 
inferred that Pin1 might take part in EMT by affecting PTEN 
expression and the subsequent PI3-kinase-Akt-dependent 
GSK-3β inactivation (62). Axl is a transmembrane tyrosine 
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kinase receptor, activated by either its ligand-growth arrest 
specific 6 or extracellular domain-mediated dimerization or 
cross-talk with human EGFR2. It was shown that Axl induced 
EMT as a upstream factor in normal and immortalized human 
mammary epithelial cells in an apparent positive feedback 
loop mechanism and regulate breast cancer stem cells (BCSCs) 
self-renewal and chemoresistance (63).

8. EMT, CSCs and drug resistance in breast cancer

Cancer stem cells (CSCs), or tumor-initiating cells have 
been identified as having the ability to form mammosphere, 
self-renew, exhibiting the CD44+/CD24- or high aldehyde 
dehydrogenase (ALDH+) cell surface maker profile and being 
associated with invasion, relapse and drug-resistance (64). 
The stem cells refractory to therapies is mainly because CSCs 
are known to express increased levels of related members 
of ABC transporter family and anti-apoptotic proteins (65). 
Furthermore, these cells are hypothesized to be largely quies-
cent and slow cycling, which help escape from typical cytotoxic 
agents (66). BCSCs with high expression of ALDH can also 
help metabolize cytotoxic drugs (67). Morel et al were the 
first to present evidence linking EMT to BCSCs. It was shown 
that induction of EMT in transformed mammary epithelial 
cells generated cells with BCSCs properties (68). This was 
also corroborated in epithelial breast cancer cells of mouse 
models (69,70). Circulating tumor cells from metastatic breast 
cancer patients have shown EMT and tumor stem cell char-
acteristics (71). Basal-like breast cancers, which are enriched 
for CD44+/CD24- cells, are found to exhibit EMT features 
that might account for their aggressive clinical behavior 
and metastatic propensities. Moreover, a new subtype called 
claudinlow-like was reported recently to display CSC-associated 
features. In addition, metaplastic tumors which are highly 
chemoresistant and aggressive are indicated to share molecular 
similarities with CSCs (72). Both the metaplastic and claudin-
low-like tumors are closely related to the EMT core signatures 
(73). These results support a close connection between EMT 
and gain of CSC-like properties. Besides, stem-like cells 
can be generated from differentiated transformed mammary 
epithelial cells via EMT in vitro, suggesting that EMT plays an 
active role in generating CSCs in human breast tumors. HMLE 
cells acquired the CD44high/CD24low stem cell profile, after 
stimulated by TGF-β or in response to constitutive expression 
of either Twist or Snail (74). The loss of E-cadherin expression 
that transpires during EMT reinforces these events by permit-
ting the nuclear translocation of β-catenin and its stimulation 
of CD44 expression (75). Overexpression of Twist in breast 
cancer cells was demonstrated to promote the generation of a 
breast cancer stem cell phenotype characterized by the high 
expression of CD44 and exhibited high efflux of Hoechst 33342 
and Rhodamine 123 as a result of increased expression of 
ABCC1 (MRP1) transporters (76). It was also reported that 
Twist induced the activation of β-catenin signaling pathway 
and Akt pathways for the maintenance of the stem cell-like 
properties associated with EMT (77). Fang et al also found 
that Twist2 not only promoted the EMT program, but also 
generated cells with stem cell-like properties (78). The ZEB1 
transcription factor has been shown to modulate the two stem-
ness genes KLF4 and SOX2 indirectly, via downregulation of 

miR-200 which are rapidly emerging as master regulators of 
differentiation by directly targeting the transcriptional factors 
(ZEB1 and ZEB2/SIP1) to derepress E-cadherin and elicit 
mesenchymal-epithelial transition (MET), thus leads to the 
generation of migrating CSCs (79,80). Guo et al revealed that 
Slug could cooperate with SOX9 in orchestrating the stem cell 
state (81). Collectively, these observations offer unquestionable 
evidence that EMT inducers are involved in regulating cancer 
cell stemness.

In addition, HER2-overexpressing breast carcinomas 
resistance to trastuzumab could also be linked to biology 
of stem cell-like cells. It was demonstrated that CD44 was 
overexpressed in trastuzumab resistant JIMT-1 cells and 
induced HER-2 receptor internalization in vitro and in vivo 
(82). Trastuzumab resistance can result from the spontaneous 
conversion of HER-2+ cells to a CD44+/CD24-/HER-2-/
low phenotype through EMT (83). It was discovered that 
trastuzumab sensitivity was restricted to the Slug/Snail2-
negative subset of luminal/HER2+ cell lines, whereas all of 
the Slug/Snail2-positive basal/HER2+ cell lines exhibited a 
primary (inherent) resistance to trastuzumab. Knockdown of 
Slug could suppress the CD44+/CD24-/low phenotype which 
might be responsible for trastuzumab refractoriness in basal/
HER2+ JIMT1 cells and sensitize trastuzumab-resistant 
xenografts to trastuzumab. Quote of a sentence in the chapter: 
EMT-driving transcriptional repressor Slug/Snail2 appears to 
be a pivotal gene that induces an enhanced phenotypic plas-
ticity in basal/HER2+ cells, thus allowing them to ‘enter’ into 
and ‘exit’ from trastuzumab-responsive stem cell-like states 
(84). Thus, EMT may promote drug-resistace via potentiating 
cell characteristics of CSCs.

9. EMT, microRNAs and drug resistance in breast cancer

MicroRNAs (miRNAs), a class of small cellular RNAs, 
acting as agents of the RNA interference pathway, can lead 
to silencing of their cognate target genes, by either cleaving 
mRNA molecules or inhibiting their translation (85). In this 
decade, studies have shown that miRNAs regulate EMT 
through directly targeting families of EMT transcription 
factors or affecting the integrity of the epithelial architecture 
during EMT progression (86). miR-200 family which has a 
striking negative correlation with ZEB could regulate EMT 
and drug resistance. It was reported that miR-200 expression 
could reverse resistance to EGFR inhibitor therapy in bladder 
cancer cells (87). miR-200 cluster was associated with substan-
tial expression of E-cadherin mRNA in breast cancer tissues 
and low miR-200 expression was associated with pronounced 
benefits of cyclophosphamide (88). Restoration of miR-200c 
enhanced chemosensitivity to microtubule-directed agents in 
MCF-7 and T47D cells (89). In addition, miR-200c was shown 
to correlate with the acquired resistance of breast cancer 
cells to doxorubicin by inhibiting Akt signaling through its 
effects on E-cadherin and PTEN (90). A previous report found 
that transfection of MDA-MB-231 cells with pre-miR-200b 
or pre‑miR-200c enhanced their sensitivity to doxorubicin. 
Similarly, reduced miRNA-200b and miR-200c expression 
contributed to endocrine resistance in breast cancer cells. 
Accompanied by the increase in miR-200b and miR-200c, 
ZEB1 expression was decreased and cells appeared more 
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epithelial in morphology and were sensitized to TAM inhibi-
tion (91). It has been proved that miR-125b induced EMT-like 
molecular alterations, and functioned as a key mediator for 
Snail-induced stem cell propagation and chemoresistance 
in breast cancer cells (92,93). A recent study reported EMT 
was linked to loss of ERα expression, through transcriptional 
repression of ER by Snail and concomitant translational 
inhibition of ERα mRNA by miR-221/222 (94). Additionally, 
miRNA-375 was found downregulated in the TAM-resistant 
MCF-7 cells, while its re-expression sensitized cells to TAM 
and reverted EMT-like properties. Metadherin (MTDH) was 
regarded as the direct target of miRNA-375, with its established 
relevance in drug resistance and breast cancer metastasis (95).

10. Clinical prognostic of EMT and potential EMT‑targeted 
therapy for breast cancer

The transcriptional factors and the hallmarks of EMT are often 
related to more malignant type in breast cancer patients. High 
expression of Slug and Twist has been reported closely corre-
lated with poor prognosis in patients with breast cancer (96,97). 
Jeong et al noted that EMT was significantly related to high 
histological grade and triple-negative phenotype but not predic-
tive of disease-free survival in patients with breast cancer (98). 
Since EMT has been established as a mechanism that confers 
tumor cells with the essential ability for drug resistance, metas-
tasis, and acquired-tumor stem cell traits, inhibition of EMT 
can be a critical therapeutic strategy for prevention of tumor 
progression (99). NPI-0052, a protesome inhibitor, has been 
demonstrated to depress EMT via weakening NF-κB and Snail 
(100). Shinto et al found Ki26894, a TBR-I kinase inhibitor, 
suppressed the invasiveness and EMT in scirrhous gastric 
cancer cells (101). Artesunate (an antimalarial agent) has been 
discovered to induce cell cycle arrest and apoptosis possibly by 
affecting the hyperactive Wnt pathway and reversing EMT in 
colorectal cell lines (102). The Src kinase inhibitor dasatinib 
has been proven to inhibit growth of breast cancer cells with 
EMT features (103). Cystatin C, a cysteine protease inhibitor 
has been found to inhibit the acquisition of EMT and invasion 
stimulated by TGF-β in breast cancer cell by preventing actin 
cytoskeletal rearrangements and E-cadherin downregulation 
(104). Chua et al developed an EMT inhibition screening assay 
to identify compounds targeting ALK5, MEK, and SRC as 
potent inhibitors that can interfere with EGF, HGF, or IGF-1 
induced EMT signaling (105).

11. Concluding remarks and future perspectives

EMT is a complex, stepwise phenomenon that occurs during 
embryonic development and tumor progression, and involves 
major reprogramming of gene expression that leads to 
alterations in cell fate and behavior. Clarifying the underlying 
mechanism linking EMT and drug resistance would likely be 
useful for devising better targeted therapeutic approaches in 
combination with conventional therapeutics.

The hallmarks of EMT are loss of the epithelial molecule 
E-cadherin and gain of mesenchymal markers, such as 
N-cadherin and vimentin. Loss of E-cadherin expression 
can lead to loss of contact inhibition, infinite proliferation, 
de-differentiation, loose intercellular connections, and be 

susceptibility to shedding in cancer cells, which enhances 
both invasion and migration of cancer cells (31). N-cadherin 
is highly expressed in invasive and metastatic human breast 
cancer cells and correlates with aggressive clinical behavior. 
The alterations of these genes contribute to endowing cells with 
higher malignancy. Moreover, an increasing number of direct 
evidence revealed these genes had close connection with the 
resistance to therapy (106-108). In addition, the transcriptional 
factors of EMT such as Snail, Slug and Twist not only elevate 
the cell invasion and metastasis to escape being killed, but 
also increase/decrease the essential genes taking part in drug 
resistance. Certain cytokines and genes play essential roles 
on both EMT and drug resistance. The signaling pathways of 
EMT are wide and extremely complex, which constitute main 
targets for novel drug development. A better understanding 
of the roles of EMT and CSCs in breast cancer will lead to 
more effective therapies that will target not only the tumor but 
also the residual population of cells that are responsible for the 
relapse and resurgence of the tumor. Further examination of the 
epigenetic changes such as miRNA will also be an important 
area of research. All these results suggest that drug combina-
tions using conventional or targeted therapies together with 
targeting the EMT-related mechanisms need to be considered 
for winning the battle against drug resistant in cancer cells.
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