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Abstract. Defects in the DNA mismatch repair (MMR) 
proteins, result in a phenotype called microsatellite instability 
(MSI), occurring in up to 15% of sporadic colorectal cancers. 
Approximately one quarter of colon cancers with deficient 
MMR (dMMR) develop as a result of an inherited predisposi-
tion syndrome, Lynch syndrome (formerly known as HNPCC). 
It is essential to identify patients who potentially have Lynch 
syndrome, as not only they, but also family members, may 
require screening and monitoring. Diagnostic criteria have 
been developed, based primarily on Western populations, 
and several methodologies are available to identify dMMR 
tumours, including immunohistochemistry and microsatellite 
testing. These criteria have provided evidence supporting the 
introduction of reflex testing. Yet, it is becoming increasingly 
clear that tests have a limited sensitivity and specificity and 
may yet be superseded by next generation sequencing. In this 
review, the limitations of diagnostic criteria are discussed, 
and current and emerging screening technologies explained. 

There is now useful evidence supporting the prognostic and 
predictive value of dMMR status in colorectal tumours, but 
much less is known about their value in extracolonic tumours, 
that may also feature in Lynch syndrome. This review assesses 
current literature relating to dMMR in endometrial, ovarian, 
gastric and melanoma cancers, which it would seem, may 
benefit from large-scale clinical trials in order to further close 
the gap in knowledge between colorectal and extracolonic 
tumours.
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1. Introduction

DNA mismatch repair (MMR) is a very highly conserved 
cellular process, involving many proteins, resulting in the 
identification, and subsequent repair of mismatched bases, 
likely to have arisen during DNA replication, genetic recom-
bination or chemical or physical damage (Fig. 1). The MMR 
genes play additional roles in double-strand break repair, 
apoptosis and recombination. The four key genes identified 
to date are mutL homologue 1 (MLH1), mutS homologue 2 
(MSH2), mutS homologue 6 (MSH6) and postmeiotic segrega-
tion increased 2 (PMS2), so named because of their homology 
to the E. coli MMR genes. The MSH2 and MSH6 proteins 
form a heterodimeric complex (mutSα) which is involved in the 
initial identification of mismatched bases, and initiates DNA 
repair. Binding to the mismatch results in an ATP-dependent 
conformational change, which subsequently recruits mutLα, a 
heterodimer comprising of MLH1 and PMS2. Other proteins 
are recruited to complete the DNA repair, but are not discussed 
further in this review. The repair complexes ensure that it is the 
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Figure 1. Reprinted by permission from Macmillan Publishers Ltd., Nature Reviews Molecular Cell Biology, 7 (5): 335-346, copyright 2006. DNA mismatch 
repair. In normal cells, any mismatched base pairs (or incorrect insertion or deletion loops) are repaired by the complex machinery which forms the DNA mis-
match repair process. MSH2 and MSH6 form a heterodimeric complex, called mutSα, which identifies and binds to the error, resulting in an ATP-dependent 
conformational change, which recruits mutLα, a heterodimer consisting of MLH1 and PMS2. The resultant complex undergoes an ATP-driven conformational 
alteration, releasing it from the error site. If it diffuses upstream, it displaces replication factor C (RFC) and loads exonuclease-1 (EXO1). This degrades the 
strand in the 5'→3' direction. Replication factor A (RPA) then stabilises the single-stranded DNA, while a complex of DNA polymerase Pol δ (Pol δ) and 
proliferating cell nuclear antigen (PCNA) fills the gap and finally DNA ligase  seals the remaining nick to finalise the repair. If the mutSα/mutLα complex 
diffuses downstream, EXO1 is recruited and degrades the region of the DNA strand, up to the RFC complex. As stated before, the single-strand is stabilised by 
bound RPA, which also inhibits EXO1 activity. Pol δ fills the gap and finally DNA ligase I seals the remaining nick to finalise the repair.
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newly synthesised strand of DNA which is targeted for repair, 
not the parental strand.

When the MMR system develops a functional error or 
defect, this results in a particular phenotype called microsat-
ellite instability (MSI). This is characterised by the insertion 
or deletion of short, repetitive sequences of DNA, resulting in 
mutations in cancer-related genes. The increase in the rate of 
mutations in cells exhibiting deficient mismatch repair (dMMR), 
may confer a Darwinian survival advantage. The cause of the 
dMMR system is different depending upon whether the tumour 
is sporadic in origin, or as a result of the autosomal dominant 
inherited predisposition condition, Lynch syndrome.

2. dMMR in sporadic colorectal cancer (CRC)

Many people wrongly group colon and rectal tumours together 
as ‘colorectal’, when referring to rates of dMMR. It is in fact 
very rarely seen in rectal cancers (1) but accounts for between 
10 and 15% of sporadic colon cancers. This MSI phenotype 
is associated with several clinicopathological features such 
as a proximal primary tumour location, high grade, muci-
nous pathology, early stage, diploid and the presence of the 
BRAF p. (V600E) mutation (2). In addition, they tend to also 
be associated with being female, smoking and older age at 
onset. Furthermore, most of these sporadic MSI tumours are 
thought to arise from sessile serrated adenomas or polyps (3). 
This pathway of colorectal cancer development is different to 
the Fearon and Vogelstein adenoma-carcinoma pathway (4). 
In the majority of tumours, the defect in the MMR system is 
the inactivation of MLH1, through methylation of CpG islands 
in the promoter, causing transcriptional silencing of the gene. 
Limited data also suggest that inactivation in a small subset of 
tumours is caused my mutation of the MLH1 gene itself (5-9).

3. dMMR in Lynch syndrome

Lynch syndrome (10) (formerly known as hereditary non-
polyposis colorectal cancer; HNPCC) is the most common 
hereditary cancer predisposition syndrome, and is associated 
with a high risk of colorectal cancer and also extra-colonic 
tumours, particularly endometrial. In fact, the risk of endo-
metrial cancer in women within some affected families may 
actually be greater than the risk of CRC (11). The average age 
at onset, of <45, is significantly lower than that for sporadic 
tumours and the cause of the defect in the MMR system in 
Lynch syndrome is constitutional mutations of the MLH1 or 
MSH2 genes, rather than methylation-induced inactivation 
of MLH1. The InSiGHT database (12) has been developed to 
record all mutations observed in patients with Lynch syndrome, 
and data from this suggest that mutations in MLH1 account for 
42% of Lynch syndrome, mutations in MSH2 account for 33% 
and the remainder are found in MSH6 (18%) and PMS2 (7%).

A very small subset of Lynch syndrome patients is char-
acterised by the presence of ‘constitutional epimutations’ of 
MLH1. These are characterised by promoter methylation and 
transcriptional silencing of a single allele of a gene in normal 
tissues, in an otherwise intact gene. Since they appear to confer 
a similar phenotype to that caused by sequence mutations, 
they are considered to be an alternative aetiological mecha-
nism for Lynch syndrome (13). This phenomenon was first 

recognised in 2002 by Gazzoli et al (14). Several more recent 
studies (15-17) screened constitutive DNA samples for MLH1 
methylation, in CRC patients who had lost MLH1 expression 
in their tumours, without deleterious germline mutations in 
MLH1. Each study found low levels of constitutional MLH1 
epimutations, but Ward et al suggest expanding screening 
programmes to include such patients, since testing of relatives 
identified paternal transmission (16).

In 2009, Ligtenberg et al proposed an alternative mecha-
nism causing a defect in the MMR system in a subset of Lynch 
syndrome families (18). The study of patients from Dutch 
and Chinese families identified tumours which were deficient 
in MSH2 as a result of the presence of heterozygous germ-
line deletions of the 3' exons of the epithelial cell adhesion 
molecule (EPCAM; also known as TACSTD1) gene. Such dele-
tions in EPCAM cause transcriptional read-through, which 
silences MSH2, and has been termed MSH2 ‘epimutation’. 
In 2011, Kloor et al suggested that loss of EPCAM protein 
expression, as assessed by immunohistochemistry (IHC) may 
be a suitable method of identifying Lynch syndrome patients 
with EPCAM germline deletions, as the majority of tumours 
with EPCAM germline deletions also showed loss of protein 
expression (19). Further to this study, Huth et al hypothesised 
that, as loss of expression did not always correlate with the 
presence of EPCAM germline deletions, that it was potentially 
the actual type of second somatic hit that determined EPCAM 
protein expression. Using multiplex ligation-dependent probe 
amplification (MLPA) to assess allelic deletion status, tumours 
with loss of EPCAM expression showed biallelic deletions, 
whereas tumours retaining EPCAM expression demonstrated 
monoallelic retention of the EPCAM gene. The group therefore 
concluded that EPCAM protein expression is dependent upon 
the actual localisation of the second somatic hit that inactivates 
MSH2 (20). More recently, a study by Musulen et al, showed 
a high specificity between the presence of EPCAM germline 
mutations and loss of EPCAM expression, and recommended 
the addition of EPCAM IHC into diagnostic Lynch syndrome 
testing, in patients with MSH2-negative tumours (21).

4. Who (and how) to test for mismatch repair deficiencies?

Diagnostic criteria and guidelines
Amsterdam criteria. The identification of a patient with 
a colorectal or endometrial tumour raises the question of 
whether to screen for the presence of Lynch syndrome. 
Various criteria have been in place for the past 35 years, to 
help guide this decision. In 1991, the Amsterdam criteria 
arose from a meeting of the International Collaborative Group 
on Hereditary Non-Polyposis Colon Cancer (ICG-HNPCC) 
where an attempt was made to standardise international 
criteria for identifying HNPCC patients for research purposes 
(22). These criteria were known as the ‘3-2-1 rule’: a) at least 
three relatives should have histologically confirmed CRC, with 
one being a first degree relative of the other two; b) there must 
be two successive generations affected; and c) one or more 
relatives must be diagnosed by the age of 50.

The Amsterdam criteria was later renamed Amsterdam 
criteria I, following the subsequent identification of the genes 
involved, which lead to the expansion of the criteria and its 
renaming Amsterdam Criteria II.
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Amsterdam Criteria II. Based upon further research identi-
fying the fact that Lynch syndrome tumours were not confined 
to the colon or rectum, the criteria were further expanded and 
updated in 1998, and renamed the Amsterdam II criteria (23). 
These new criteria added in the fact that at least three relatives 
should have a histologically confirmed HNPCC-associated 
cancer (colorectal, endometrial, small bowel, ureter or renal 
pelvis), rather than just a colorectal tumour.

Bethesda Guidelines. At around the same time, the National 
Cancer Institute of the USA published its own set of guide-
lines (24). These included the following criteria: a) individuals 
with cancer in families that meet the Amsterdam criteria; 
b) individuals with two HNPCC-related cancers, including 
synchronous and metachronous colorectal cancers or associ-
ated extra-colonic cancers (endometrial, ovarian, gastric, 
hepatobiliary, or small bowel cancer or transitional cell 
carcinoma of the renal pelvis or ureter); c) individuals with 
colorectal cancer and a first-degree relative with colorectal 
cancer and/or HNPCC-related extra-colonic cancer and/or a 
colorectal adenoma: one of the cancers diagnosed by age 45, 
and the adenoma diagnosed by age 40; d) individuals with 
colorectal cancer or endometrial cancer diagnosed by age 45; 
e)  individuals with right-sided colorectal cancer with an 
undifferentiated pattern (solid/cribriform) on histopathology 
diagnosed by age 45; f) individuals with signet-ring-cell-type 
colorectal cancer diagnosed by age 45; and g) individuals with 
adenomas diagnosed by age 40.

Revised Bethesda Guidelines. In 2004, the NCI revised these 
guidelines, and went on to publish the Revised Bethesda 
Guidelines (25). These remain the most recent clinical diag-
nostic criteria upon which a patient is identified as likely 
having Lynch syndrome; a) individuals with CRC diagnosed 
by age 50; b) individuals with synchronous or metachronous 
CRC, or other HNPCC-associated tumours regardless of age; 
c) individuals with CRC and MSI-H histology diagnosed by 
age 60; d) individuals with CRC and more than 1 first degree 
relative with an HNPCC-associated tumour, with one cancer 
diagnosed by age 50; and e) individuals with CRC and more 
than 2 first degree relatives or second degree relatives with an 
HNPCC-associated tumour, regardless of age.

Jerusalem criteria. In 2009, the ‘Jerusalem criteria’ were 
published, recommending that either dMMR IHC or MSI 
testing be carried out on every colorectal tumour, where the 
patient is under the age of 70 at diagnosis (26). The idea behind 
this broader screening programme was to identify potential 
Lynch syndrome patients with an MSH6 or PMS2 mutation, 
who tend to present at a later age, and would not be included 
for screening, under the revised Bethesda guidelines.

5. Does ‘one size’ really fit all?

All of the above criteria for selecting patients for screenings 
have been based upon North American and European popu-
lations. In order for these criteria to be used worldwide, this 
makes the assumption that there are no population-specific 
differences. A study by Yan et al, has questioned this very point 
in relation to a Chinese population, where there is a strict one 

child policy (27). The resultant large number of small families 
makes it almost impossible to meet all the specified criteria 
regarding the number of affected relatives. As a result this 
increases the likelihood of overlooking and not screening a 
high proportion of potential or actual Lynch syndrome patients.

A second factor bringing the relevance of using the 
Amsterdam or Bethesda criteria in Asian populations into 
question, is the fact that gastric and hepatocellular cancers 
are the most common extracolonic tumours seen in Chinese 
patients with Lynch syndrome, rather than endometrial 
tumours as seen in the West. Furthermore, it becomes difficult 
to gauge how specific this is for Lynch syndrome, when the 
rates of gastric and hepatocellular carcinoma (HCC) are so 
high in Asia due to Helicobacter pylori (H. pylori) and chronic 
hepatitis B virus (HBV) infections respectively. An H. pylori 
infection induces an inflammatory response, in addition to 
causing genetic changes which result in genetic instability 
(28). The oncogenic effects of HBV such as genomic insta-
bility result from its integration into the host genome (29).

A third factor is that several studies have reported a 
predominance of left-sided CRC in Asian populations, which 
is different to what is seen in Western patients, where there is 
a predominance of right-sided tumours. Wang et al (30) noted 
that 60.6% of 60 Lynch syndrome patients under study had 
distal colorectal tumours. Chew et al (31) undertook a study of 
6,736 CRC patients, who underwent surgery for their disease at 
Singapore General Hospital between 1989 and 2005; 52 (0.8%) 
fulfilled the Amsterdam I or Amsterdam II criteria, so were 
included for analysis and 69% of these patients had left-sided 
tumours, the majority of which were located in the sigmoid 
colon (31). In a very recent study of 116 Chinese families with 
suspected Lynch syndrome, 32 of whom had confirmed MLH1 
or MSH2 germline mutations, 56.5% of the colorectal tumours 
were left-sided (32). These observations could be as a result of 
the fact that rectal cancers are more prevalent in Asian popula-
tions, or simply the fact that this is a feature of Asian Lynch 
syndrome.

In Western populations, we know that 10-15% of sporadic 
CRC tumours are dMMR. This figure may be much higher in 
Asian populations, based upon a study carried out in Singapore 
on 240 CRC patients, under the age of 50 at presentation. 
MMR IHC was performed and 21% of patients showed loss of 
expression of at least one of the MMR proteins. The authors 
identified the fact that, had selection for screening been based 
solely on the Amsterdam criteria, a staggering 86% of patients 
would have not been identified as high risk of Lynch syndrome, 
and would thus not have been screened (33). This provides 
further evidence for the introduction of population-specific 
diagnostic screening criteria.

6. Reflex testing

In essence, reflex testing is the routine screening of all newly 
diagnosed colorectal tumours for dMMR, to increase the 
likelihood of identifying Lynch syndrome patients. Obviously 
early diagnosis will result in increased surveillance, thus 
hopefully reducing morbidity and mortality, not only for the 
affected individual, but also family members.

Several studies have proven the cost-effectiveness of such 
a screening approach (34-38). A Dutch study by Sie et al (39) 
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recommended increasing the cut-off age for testing all 
CRC from 50 to 70 years old, and still found this strategy 
cost‑effective. However, in spite of the potential financial 
savings, reflex testing is proving difficult to implement, with 
areas requiring attention being highlighted at a multidisci-
plinary working group meeting of the Centers for Disease 
Control and Prevention in the US (40). The group identified the 
lack of primary care provider knowledge of Lynch syndrome 
and testing issues, as the main barrier to implementation. 
Furthermore, it was recognised that there is a requirement 
for a strategy to ensure that at-risk relatives are identified and 
counselling offered. There is also very limited data available 
on the feasibility of carrying out such testing, so one recom-
mendation is for additional ‘real-world’ studies to be carried 
out to generate such data.

Taking a whistle-stop tour of current practice worldwide, 
it would appear that much still needs to be done in terms 
of implementation. In the UK, despite reflex testing being 
mandated by the Royal College of Pathologists and recom-
mended by the British Society of Gastroenterologists, less 
than 50% of National Health Service Hospital Trusts currently 
carry out screening on patients presenting with the disease 
under the age of 50. This is the case in England, Wales and 
Scotland, however, all social care trusts in Northern Ireland 
have successfully implemented screening. The National 
Services Division Scotland and the Molecular Pathology 
Consortium are currently trying to implement national 
screening throughout Scotland, with the rest of the UK hope-
fully following suit, once this model is in place (data from a 
Bowel Cancer UK freedom of information request sent out 
across the UK to establish the level of implementation) (41). 
The main reason for not screening was put down to the addi-
tional financial burden. A further reason given is a current 
lack of National Institute for Health and Care Excellence 
(NICE) guidance. NICE is an executive non-departmental 
public body within the Department of Health in the UK, and 
publishes guidelines in, amongst other areas, clinical practice. 
Another rather interesting reason is the potential impact on 
patients and their families. The fact remains, and must not 
be overlooked, that patients simply may not wish to undergo 
genetic testing. There are many negative perceptions of this 
type of screening, and unless patients are educated appropri-
ately as to the potential benefits, this could remain a barrier 
to implementation.

A study in Canada by Tomiak et al determined that in order 
to increase the uptake of genetic services by patients with 
suspected Lynch syndrome, several areas needed addressing, 
such as improving health literacy for the general population, 
newly diagnosed patients, and perhaps a little surprising, 
healthcare professionals (42). The study highlighted a general 
lack of awareness of hereditary cancers and a lack of under-
standing of the need for, and potential benefits of, genetic 
screening and what is done with, and who has access to, the 
results. The requirement for psychosocial support was also 
highlighted as an area to be addressed. Tomiak et al concluded 
that these gaps need to be filled for the successful implementa-
tion of universal screening, planned by the US Office of Public 
Health Genomics, by 2020.

In 2012, Beamer et al carried out a questionnaire-based 
review of reflex testing practise across the United States of 

America, similar in design to that undertaken by Bowel 
Cancer UK, in the United Kingdom (43). They found that the 
level of reflex testing implementation was dependent primarily 
upon the level of cancer program [ranging from Community 
Hospital Cancer Programs (CHCP), to Community Hospital 
Comprehensive Cancer Programs (COMP), and finally up to 
the most complex level of National Cancer Institute-designated 
Comprehensive Cancer programs (NCI-CCC)]. Seventy-one 
percent of NCI-CCCs, 36% of COMPS yet only 15% CHCPs 
had already implemented reflex testing. Another point arising 
from this study is whether written patient consent is required. 
Currently this is not the case, presumably because screening 
a tumour provides phenotypic, rather than genotypic infor-
mation, but it will be interesting to see whether this aspect 
becomes a barrier to worldwide reflex testing.

Back in 2008, in the state of Western Australia, routine 
screening for Lynch syndrome was implemented. All patients 
under the age of 60 at the time of diagnosis are screened 
and figures published recently estimate that the majority of 
Lynch syndrome cases are being identified as a result of this 
programme (44).

7. MMR Immunohistochemistry (IHC)

MMR IHC is a quick and relatively simple assay to deter-
mine protein expression of MLH1, MSH2, MSH6 and PMS2 
(Fig. 2). Tumours with dMMR will usually show complete 
loss of expression of one or more protein. Assessing all four 
proteins provides further information to determine the actual 
defective protein. We know that MLH1 forms a heterodimer 
complex with PMS2. Loss of expression of PMS2 alone is 
indicative of a defect in the PMS2 gene. However, combined 
loss of PMS2 and MLH1 suggests the defect lies in MLH1, as 
MLH1 is responsible for the stability of PMS2. A similar situ-
ation is seen with MSH6 and MSH2, with loss of MSH6 only 
indicating defective MSH6, whereas loss of expression of both 
proteins would indicate the defect is within MSH2 (Table I). 
Based on a recent publication by Mensenkamp et al (45) this 
may in fact be a real oversimplification of the actual situation. 
The group sequenced dMMR CRC tumours and endometrial 
tumours which appeared to have neither a germline mutation in 
any MMR gene, or hypermethylation of the MLH1 promoter. 

Table I. Loss of MMR protein expression.

Protein expression lost	 Interpretation
(determined by IHC)	 (defective protein)

PMS2	 PMS2
MLH1 and PMS2	 MLH1
MSH6	 MSH6
MSH2 and MSH6	 MSH2

Due to the heterodimeric nature of the MMR proteins, loss of expres-
sion of a particular protein may in fact be due to the loss of expression 
of its paired protein. For example, loss of PMS2 alone indicates a 
defect in PMS2, whereas, when expression of both MLH1 and PMS2 
are lost, this is likely due to loss of MLH1, as this results in unstable 
PMS2. The same is true for MSH6 and MSH2, respectively.
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In more than half of these tumours, somatic mutations were 
identified as the underlying cause of deficient mismatch repair.

Unfortunately, as is often the case with a seemingly 
straightforward assay, there are exceptions to the rules. 
Sometimes expression is reduced in intensity, or patchy, rather 
than completely lost. This may be a result of the expression of 
a truncated protein with limited stability, and is likely to be 
accompanied by the predicted normal strong nuclear staining 
within adjacent stromal cells or lymphocytes. It is often the 
case that the abnormal staining is seen in both binding part-
ners, i.e., MLH1 and PMS2, or MSH2 and MSH6. Another 
unusual situation is where staining is seen localised to the 
cytoplasm, rather than within tumour cell nuclei. This may be 
caused by a defect in the nuclear localisation signal, and would 
most likely be reported as dMMR, although PCR-based MSI 
testing may be requested for confirmation. The single biggest 

problem in the assessment of MMR IHC is the variability in 
fixation of the tumour tissue. The actual fixative used, the time 
in formalin prior to embedding and the uniformity of fixation 
are all factors which can affect the quality of staining seen. 
Fadhil and Ilyas compared staining of the four MMR proteins 
in 30 matched pre-surgical diagnostic biopsy samples and the 
matched resection tissue, and concluded that not only was the 
staining in the biopsies identical to that in the resection, but 
the interpretation was made easier by the staining being more 
intense and thus easier to interpret (46). This difference was 
deemed to be a result of more uniform and complete fixation 
in the biopsy samples, compared to the resection specimens.

A further complication in terms of the interpretation of the 
MMR IHC was reported by Bao et al in a study of 51 colorectal 
cancer patients undergoing neoadjuvant chemoradiation (47). 
Nine of these tumours showed reduced, but not complete loss 

Figure 2. Examples of MLH1, MSH2, MSH6 and PMS2 immunohistochemistry. (A) Positive MLH1 staining and (B) absence of MLH1 staining in tumour 
epithelium yet showing the positive internal control staining of lymphocytes in the stroma. (C) Positive MLH2 staining and (B) absence of MLH2 staining in 
tumour epithelium, yet showing positive staining in the adjacent normal colonic epithelium. (E) Positive MSH6 staining and (F) absence of MSH6 staining 
in tumour epithelium yet with positive staining in the adjacent normal colonic epithelium. (G) Positive PMS2 staining and (H) absence of PMS2 staining in 
tumour epithelium yet with positive internal control staining of lymphocytes in the stroma.
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of MSH6 staining, yet upon MSI analysis, all were microsatel-
lite stable, suggesting that the reduced expression was a result 
of the chemoradiation treatment.

A slightly contentious issue, worthy of a mention, is 
whether missense mutations in the MMR genes are associ-
ated with reduced or patchy immunohistochemical staining. 
Missense mutations result in a protein with a single amino acid 
change, which could lead to no defect at all, or a dysfunctional 
or ‘pathogenic’ mutation. Difficulty arises in the assessment 
of the pathogenicity of a missense mutation. Criteria which 
would have to be met would include: a) the mutation not being 
present in control subjects; b) the mutation co-segregating with 
a phenotype in a family; c) the mutation resulting in a non-
conservative amino acid alteration; and d) the codon in which 
the mutation arose being evolutionarily conserved (48,49). 
PubMed searches for this review failed to identify any studies 
reporting reduced levels of MMR protein expression, which 
were attributed to missense mutations. At the present time, this 
phenomenon may have to remain an ‘urban myth’.

Once an abnormal expression pattern of the MMR proteins 
has been established, it is vitally important it determine 
whether the tumour is from a patient with Lynch syndrome. 
The MMR protein expression profile most commonly associ-
ated with Lynch syndrome is loss of both MLH1 and PMS2; 
however, this would also be seen in a sporadic tumour, if 
caused by MLH1 methylation. The BRAF p. (V600E) muta-
tion is observed in up to 70% of tumours which have loss of 
expression of MLH1 and PMS2 or exhibit MLH1 methyla-
tion (50,51), but the mutation is almost never seen in Lynch 
syndrome-associated tumours (52,53). Thus the presence of 
the BRAF mutation strongly indicates a dMMR tumour of 
sporadic origin. BRAF mutation testing is currently carried 
out routinely by traditional sequencing methodologies, such as 
Sanger sequencing, but in 2011, the first report was published 
by Capper et al, that used an antibody specific for the V600E 
mutant protein (VE1), allowing direct immunohistochemical 
testing of a tumour section (54). Several groups have published 
data showing very favourable results with the antibody 
(including refs. 55,56) however, concerns have been voiced 
regarding the usefulness, and sensitivity of this antibody, 
particularly when assessing colorectal tumours. Adackapara 
et al noted a high level of weak staining in wild-type and 
KRAS mutant tumours, in addition to non-specific nuclear 
staining. They determined the sensitivity and specificity to 
be 71 and 74%, respectively, and deemed the antibody not 
to be a surrogate for standard genotyping (57). A study by 
Loes et al in 2015 assessed three methods of BRAF mutation 
detection [IHC, Sanger sequencing and a single probe-based 
high-resolution melting assay (LightMix) which has clamped 
wild-type allele amplification] in both melanoma and 
colorectal tumour samples. Data were available for all three 
assays in 99 colorectal tumours, of which 63 were wild‑type by 
all methods, 12 were BRAF mutant by all methods, and yet 22 
gave discordant results. Using the IHC data alone would have 
misinterpreted 10 patients as being BRAF mutant, and also 
failed to detect mutations in a further two patients. The authors 
conclude that the high level of unexplained, non-specific 
staining seen in colorectal tumours, much more so than for 
melanoma tumours, would support that the antibody be used 
solely as a screening tool, rather than a diagnostic test (58). It 

is worth noting that the antibody will only identify the specific 
V600E mutation, so there is always the risk of missing other 
BRAF mutations, but these are extremely rare, particularly in 
colorectal tumours.

8. Microsatellite (MSI) testing

As an alternative, or indeed in combination with MMR IHC 
testing, PCR-based MSI screening may be undertaken. 
The recommended NCI-reference panel comprises two 
mononucleotide repeats (BAT-25 and BAT-26) and three 
dinucleotide repeats (D5S346, D2S123 and D17S250). There 
is also a commercially available kit, consisting of five mono-
nucleotide markers (BAT-25, BAT-26, MONO-27, NR-21 and 
NR-24), as data are emerging to suggest that there is a higher 
level of both sensitivity and specificity in the detection of the 
MSI-H phenotype when only mononucleotides are used (59). 
Where available, DNA from normal mucosa is compared to 
that extracted from the tumour. However, the nature of the 
mononucleotide markers means that it is not essential to have 
normal DNA for testing. The tumour is classed into one of 
three phenotypes; if none of the markers show instability, 
the tumour is classed as microsatellite stable (MSS). If one 
of the markers show instability, the tumour is classed as 
microsatellite-low (MSI-L), and if two or more of the markers 
show instability, the tumour is classed as microsatellite-high 
(MSI-H). Often MSS and MSI-L tumours are classified as a 
single subset, as very few tumours of either phenotype will 
exhibit loss of expression of any of the MMR proteins. Data 
surrounding clinical differences between the two tumour 
phenotypes is still inconclusive (60-63).

IHC or MSI? There have been several studies carried out to 
assess the correlation between IHC and MSI-testing, and the 
overall results seem to suggest that firstly neither test is 100% 
accurate in the detection of MSI-H tumours and secondly, 
there is actually a high level of concordance between both 
technologies. The largest study to date was performed by Cicek 
et al in 2011, when almost 6,000 tumours from patients in the 
Colorectal Cancer Family Registry were analysed. The group 
showed a 90-95% concordance between those cases identified 
as dMMR by MSI and those detected by IHC. Furthermore, 
only 2.7% of the 3964 tumours with IHC data available, would 
have been miscalled, had only these data been used in the 
initial assessment (64).

9. Next generation sequencing

There is no doubt that sequencing methodologies have been 
transformed over the past few years, with the advent of 
next generation sequencing platforms. Several companies 
are now producing panels and kits, allowing the massive 
parallel sequencing of MMR genes. This additional depth of 
sequencing may cause the problem with the identification of 
variants of unknown significance (VUS). Furthermore, there 
will undoubtedly be mutations detected at lower levels than 
previous technologies have allowed. The issue with these is 
that the clinical significance has not yet been determined, thus 
with the technology being still in its infancy, there remains the 
need to validate such panels. Pritchard et al carried out one 
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such validation study of the ColoSeq panel, which correctly 
identified all 28 previously characterised mutations in MLH1, 
MSH2 MSH6, PMS2, EPCAM, APC and MUTYH. Two 
VUS were also detected in 19 samples from patients without 
cancer (65). The significance of such variants should become 
apparent once more data are available and they can be related 
to pathogenicity.

10. Deficient MMR and clinical outcomes

Prognostic value in sporadic colorectal cancer. The majority 
of the data published recently on the prognostic and predic-
tive value of MMR has been gathered on CRC patients. There 
is definitely a distinction between the prognostic benefit 
of dMMR in early (stage II/III) and late (stage IV) disease. 
Several studies and meta-analyses have shown that dMMR in 
stage II +/or III tumours is a positive prognostic factor. Back 
in 2003, a study of 570 stage II or II CRC patients showed that 
those patients whose tumours were MSI-H had an improved 
5-year OS, compared to MSI-L or MSS tumours (HR for death 
was 0.31 (95% CI, 0.14-0.72, p=0.004) (66). In 2010, a large 
meta-analysis pooled data from 12,782 CRC patients, including 
1,972 MSI-H patients. The odds ratio (OR) for disease-free 
survival (DFS) was 0.58, 95% CI 0.47-0.72, p<0.0001 and a 
similar value obtained for OS (OR=0.6, 95% CI 0.53-0.69, 
p<0.0001) (67). This was confirmed by Sargent et al, in a 
further meta-analysis of 457 patients, where it was reported 
that dMMR status was associated with improved DFS 
(HR, 0.46; 95% CI, 0.22-0.95; p=0.03) and a trend was seen 
towards improved OS (HR, 0.51; 95% CI, 0.24-1.10; p=0.06) 
(68). The QUASAR (QUick And Simple And Reliable trial 
provided a more recent dataset on which to confirm the posi-
tive prognostic significance of dMMR. The recurrence rate 
in the dMMR cohort was 11% (25/218), compared to 26% 
(438/1695) in the pMMR cohort [risk ratio (RR), 0.53; 95% CI, 
0.40-0.70] (69).

Because of the fact that dMMR appears to be a good prog-
nostic marker in early CRC, it stands to reason that prevalence 
of dMMR would be lower in advanced CRC (aCRC), since these 
patients should be less likely to develop metastatic disease (70). 
This has been reported in several studies (71-73). The question 
remains as to why these tumours appear to metastasise less 
frequently. This may be as a result of the increased immune 
response seen in dMMR tumours. Tikidzhieva et al, have 
suggested a possible mechanism, involving β2-microglobulin 
(B2M) (74). Mutations in B2M, within microsatellite coding 
regions, are reported frequently in MSI-H tumours, and result 
in the inability to present antigens at the cell surface, through 
HLA-class I molecules. This in turn, may stimulate natural 
killer (NK) cell-mediated tumour cell death.

In terms of the prognostic value of dMMR in aCRC, a 
recent large meta-analysis by Venderbosch et al (75) of patients 
in four randomised clinical trials (CAIRO, CAIRO2, FOCUS 
and COIN) provides convincing evidence of the negative prog-
nostic effect of dMMR in the metastatic CRC (mCRC) setting. 
Data on dMMR was gathered on 3,063 patients, recruited into 
the four clinical trials. PFS and OS were significantly reduced 
in the dMMR cohort, in comparison to the pMMR cohort 
(PFS, 6.2 versus 7.6 months respectively; HR, 1.33; 95% CI, 
1.12-1.57; p=0.001; and OS, 13.6 versus 16.8 months respec-

tively; HR, 1.35; 95% CI, 1.13-1.61; p=0.001). The analysis also 
demonstrated the negative prognostic effect of the presence of 
the BRAF p. (V600E) mutation, but ruled out any interaction 
between the two poor prognosis markers. The group suggest 
that the negative value of dMMR is as a result of the mutant 
BRAF status, since significantly more dMMR tumours also 
contained the mutation.

Predictive value in colorectal cancer. Since its introduction 
into clinical practice almost 40 years ago, 5-fluorouracil 
(5-FU) has, until recently, been the ‘gold standard’ chemo-
therapy agent in the treatment of CRC. As a result of this, there 
is much, and it has to be said, conflicting data regarding the 
predictive value of MMR status and response to 5-FU-based 
therapy, with some studies reporting benefit from 5‑FU 
(76,77) whilst most reporting no benefit or indeed a dis-benefit 
(66,68,78,79).

The final results from the MOSAIC trial where 2,246 
stage II or II CRC patients were randomised between 5‑FU plus 
leucovorin (LV5FU2) and FOLFOX (LV5FU2 + oxaliplatin), 
provided convincing evidence that the addition of oxali-
platin resulted in improved 5-year DFS and 6-year OS, and in 
particular, ought to be given to stage III patients after surgery 
(80). Following this, studies were performed to assess whether 
microsatellite status was predictive of response to oxaliplatin; 
Zaanan et  al (81) analysed 233 MSI-H stage III patients, 
receiving either 5-FU/LV or FOLFOX, and finding that those 
on FOLFOX had an improved 3-year DFS compared to those 
on 5-FU/LV. However, in the same year, a study of 135 patients 
receiving FOLFOX following surgery, found no difference in 
DFS or OS when patients were stratified for MMR status (82). 
In the metastatic setting, Muller et al in a 108-patient study, 
comparing two oxaliplatin and 5-FU-containing regimens, 
demonstrated a lower rate of disease control in MSI-H patients 
compared to non-MSI-H patients (p=0.02) (73). Kim et al 
however, showed that MMR status did not predict response 
to oxaliplatin-based treatment, when 171 recurrent or mCRC 
patients were analysed (83).

There is also conflicting data as to the predictive value 
of MMR status and response to irinotecan. Bertagnolli et al 
showed that patients with dMMR/MSI-H had improved DFS, 
compared to MSS patients, when irinotecan was added to 
standard 5-FU/LV treatment, with this benefit not being seen 
in patients treated with 5-FU/LV alone (84). However, this was 
not confirmed by the PETACC-3 study (85) or by a Korean 
study of almost 300 patients (86), or by the UK MRC FOCUS 
study (71).

It would be difficult to summarise the prognostic and 
predictive value of MMR status in both the adjuvant and meta-
static CRC settings, based on the data presented above. It is 
apparent that dMMR/MSI-H in the adjuvant setting is a good 
prognostic marker, but in the metastatic setting, the evidence 
suggests the complete opposite effect. As for the predictive 
value, there are conflicting data regarding each treatment 
regimen. One can speculate as to why this is the case; perhaps 
we are seeing population differences, perhaps the method of 
determining MMR status had differing sensitivities. The small 
numbers of patients in some of the studies should also be taken 
into account. It is without doubt safe to say, that one cannot 
use only MMR status for the prediction of response to therapy.
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Prognostic and predictive value in extra-colonic tumours. The 
majority of published data regarding the role of the mismatch 
repair system in carcinogenesis, and the resultant prognostic 
and predictive value, is within colorectal cancer. There are, 
however, several extra-colonic cancers where there are high 
percentages of dMMR have been reported, yet little is known 
of the prognostic or predictive value.

Endometrial cancer. dMMR has been reported in 20-30% of 
endometrial cancers (87), yet there are scarce data available 
regarding the prognostic and predictive impact of mismatch 
repair deficiencies. In a study reported earlier this year, Kato 
et al analysed 191 endometrial tumours, and found that 40% 
of them were deficient in at least one of the MMR proteins, 
as assessed by IHC (88). This cohort displayed differences 
in tumour grade histology and International Federation of 
Gynecology and Obstetrics (FIGO) stage, when compared 
to the proficient MMR tumours. Furthermore, dMMR cases 
had improved PFS and OS, with MMR status being an inde-
pendent prognostic factor for OS in endometrial cancers. A 
further study, admittedly smaller, of 66 patients with endome-
trial cancer and lymphatic invasion, also reported improved 
disease specific survival (DSS) (p=0.04) and OS (p=0.03) in 
dMMR patients, compared to those with pMMR. The authors 
also reported increased OS particularly in FIGO stage 3C and 
stage 4 dMMR patients, which may suggest that despite the 
lymphatic invasion and lymph node metastases, this subgroup 
has a better prognosis than patients with an intact MMR system. 
The other factor that cannot be ignored is the effect that adju-
vant chemotherapy has contributed to this improved survival 
(89). A third study, of 477 patients, investigated whether MMR 
status impacted upon response to chemotherapy or pelvic tele-
therapy [also known as external beam radiotherapy (EBRT)]. 
There was no significant difference in PFS or OS between 
dMMR and pMMR subgroups, when stratified by treatment. 
However, when patients were stratified between endometrioid 
and non-endometrioid tumours, significantly improved OS 
(p=0.003) and PFS (p=0.004) was seen for dMMR/non-endo-
metrioid tumours, receiving teletherapy. The opposite was 
seen for patients receiving adjuvant chemotherapy, where those 
with intact MMR showed improved PFS and OS (90). Taking 
these data together, it would possibly appear that dMMR in 
endometrial cancers, or at least within subgroups, is a posi-
tive biomarker. However, Ruiz et al reported no association 
between MMR status and survival, in a study of 212 endome-
trioid tumours (91), and a further study actually reported an 
increased risk of disease-specific death in dMMR high-grade 
endometrioid carcinomas (HGEC). Interestingly in this study, 
dMMR was only seen in these HGEC tumours, and not serous 
or clear cell tumours, suggesting the use of MMR testing to aid 
in tumour-type diagnosis (92). Cohn et al reported improved 
DFS in a cohort of endometrial cancer patients who had 
retained expression of both MLH1 and MSH2, in comparison 
to patients who displayed abnormal expression (p=0.035) (93). 
A large meta-analysis carried out in 2013 summarised very 
eloquently the lack of concrete evidence of an association 
between MMR status and clinical outcome, where in a pooled 
analysis of 23 studies (published between 1980 and 2011), the 
group failed to show a significant association between MSI and 
a worse OS (p=0.11) or DFS (p=0.66) (94). The heterogeneous 

nature of the method of determining MSI status, combined 
with variability in the study populations, still make it very 
difficult to determine the usefulness of MMR status in relation 
to outcome in this disease.

Ovarian cancer. Ovarian cancer is the 7th most common 
cancer worldwide for females, with over 239,000 new cases 
diagnosed in 2012, and has the highest mortality rate of all 
the gynaecological cancers (95). Early detection is difficult, 
and as a result, only 15% of women present with localised 
disease (96). Women with Lynch syndrome, have a lifetime 
risk of ovarian cancer of approximately 8% (97-99). As we find 
in common with other extracolonic cancers, data on MMR 
is sparse. Several authors have attempted to clarify dMMR 
or MSI rates through meta-analyses; Xiao et al (100) found 
disparities between reported rates of MSI frequency, ranging 
from 5 to 13% (101-103). Murphy and Wentzensen combined 
results from 22 studies, arriving at a figure for MSI of 10% 
for unselected ovarian cancer patients (104). This figure was 
further refined to 9%, when only patients who had been tested 
for MSI using the five Bethesda markers were analysed. 
Pal et al also suggest that 10% of ovarian cancers show MSI, 
analysing data from 18 studies (105). In terms of dMMR as 
assessed by IHC, larger differences were observed; ranging 
from 2 to 29% across the 12 studies analysed by Xiao et al 
(100). One feature common to most studies was the fact that 
there was an overrepresentation of the non-serous tumours 
within the MSI cohorts, which parallels the overrepresentation 
of mucinous and endometrioid histologies in CRC and endo-
metrial cancers respectively. In terms of data relating to the 
effect of dMMR or MSI on prognosis or response to chemo-
therapy, very little has been published, and the results are 
varied. Scartozzi et al found that loss of expression of MLH1 
correlated with increased survival in patients with stage III/
IV disease, although the study size was only 34 patients 
(106). Zhia et al assessed 322 tumours for MSH6 expression, 
and found no correlation with survival. The group did find a 
correlation between loss of expression and clear cell, mucinous 
and endometrioid histologies (p<0.007) (107). Another study 
finding no association between MSI and survival was carried 
out on a series of Danish patients by Begum et al, who used a 
panel of 16 dinucleotide markers to assess status (108). In terms 
of response to therapy, there have been two reports of a correla-
tion between a lack of MSH2 and response to platinum-based 
chemotherapy; Ercoli et al showed that patients who did not 
respond to treatment had lower levels of MSH2 than patients 
who had at least a partial response (109). A report by Marcelis 
et al described two Lynch syndrome patients, both carrying a 
deletion in exon 6 of MSH2, who developed a rapid resistance 
to cisplatin-based therapy (110). Based upon current literature, 
very little can be reasonably or reliably concluded regarding 
the role of the MMR proteins in ovarian cancer survival or 
response. There is clearly a need for large, randomised studies 
in this disease field, where one can control for factors such 
as MMR assessment criteria, tumour histology, treatment 
regimen and sample size.

Melanoma. Malignant melanoma is the 19th most common 
cancer worldwide, with around 232,000 new cases diagnosed 
in 2012 (111). MSI has been reported to be present in anywhere 
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between 2 and 30% of primary tumours (112-116) and 20-77% 
of metastatic lesions (117-123). Castiglia et al suggest that the 
inactivation of the MMR system, in combination with the 
deregulation of the Wnt/beta-catenin pathway may act coopera-
tively to promote the development of melanoma (124). It may be 
that in melanoma, it is a downregulation of the MMR proteins, 
rather than a complete loss of expression, or gene inactivation 
that is important, as seen in a study by Korabiowska et al, 
who confirmed the downregulation by both IHC and in situ 
hybridisation in 59 malignant melanomas (125). Alvino et al 
also reported a reduction in expression of MLH1, MSH2 
and PMS2 in primary melanomas compared to benign nevi. 
Interestingly they also noted the opposite for MSH6, and this 
increased expression was also associated with increased risk of 
melanoma mortality (R, 3.76; 95% CI, 1.12-12.70) (126). With 
such little data available on the MMR proteins in melanoma, 
the only conclusion that can be reliably drawn is that as the 
cancer progresses from benign nevus, through primary mela-
noma to metastatic melanoma, the level of MSI increases. This 
may, however, only be at an MSI-L level, rather than MSI-H. 
The significance of this is yet to be determined.

Gastric cancer. Gastric cancer is the 5th most common cancer 
worldwide, with more than 951,000 new cases diagnosed 
in 2012 (127). In gastric cancer, MSI exists in approximately 
10-20% tumours (128-130). Such tumours are associated with 
older patients, distal location, lower pTNM stage and intestinal 
subtype and reduced lymph node involvement. Several large 
studies have assessed the prognostic effect of the MSI pheno-
type, all showing that MSI correlates with improved survival; 
back in 2000, Schneider et al showed that in MSI-H and MSI-L 
patients, there was an increased median survival time, compared 
to MSS patients (p=0.027) (131). In 2002, Lee et al analysed 
327 consecutive gastric cancers, assessing MSI status with 
the BAT-26 marker. Patients with MSI had improved overall 
survival compared to those with MSS tumours (p=0.046) (130). 
Beghelli et al, determined the MSI status of 510 sporadic gastric 
cancers, also concluding that MSI correlated with improved 
survival, but only in stage II disease (p<0.011) (128). In a study of 
159 patients, Falchetti et al demonstrated an association between 
MSI-H phenotype and improved survival at 15 years (p=0.01) 
(132). Finally Fang et al showed that there was an improved 
5-year OS benefit in the MSI-H cohort (p=0.03) and also a trend 
towards an improved 3-year disease-free survival (p=0.076), 
when analysing 214 gastric cancer patients (129). However, as 
one has come to expect in this field, there is conflicting data to 
suggest that MSI status has no influence on survival; Perez et al 
found no survival benefit in the MSI patients, compared to the 
MSS patients, however, it must be noted that there were only 
24 patients in this study (133). In a slightly larger study of 83 
patients, An et al also did not find an association between MSI 
status and survival (134). Given the disparity between sample 
sizes, the evidence is pointing to the direction that gastric cancer 
patients with an MSI-H tumour are likely to have improved 
survival compared to patients whose tumours are MSS. Looking 
at MSI status and its predictive value in terms of response to 
5-FU-based chemotherapy, there is yet again conflicting data; 
a large study by An et al, of 1990 patients, identified an MSI-H 
rate of 8.5%. The group determined that MSI status was not 
prognostic, as DFS between MSI-H and the MSI-L/MSS groups 

was not significantly different, even taking each disease stage 
separately. However, DFS was improved in the MSI-L/MSS 
group treated with 5-FU-based chemotherapy (p=0.008) (135). 
Oki et al, determined that there was no correlation between MSI 
status and survival following 5-FU-therapy, in their study of 240 
patients, collected over a 9-year period (136). Clearly the gastric 
cancers with MSI form a distinct subset, and as such, are likely 
to be driven by slightly different signalling pathways. It still 
remains to be determined, how to identify and best and treat 
these patients.

11. Conclusion

Deficiencies in the DNA mismatch repair system have been 
identified in many unrelated cancer types. These deficiencies 
may be the result of either the inactivation of MLH1, through 
methylation, as seen in sporadic cancers, or through germline 
mutations of MLH1 or MSH2, as seen in inherited cancers. 
Despite it being almost 50 years since the initial observations 
by Henry Lynch, which subsequently lead to the term ‘Lynch 
syndrome’, there are still gaps in our knowledge of the role of 
dMMR in cancer. Progress is being made, however, particu-
larly in the field of colorectal cancer. We now have evidence 
that the prognostic role of dMMR is stage-dependent, and 
steps are beginning to be implemented, to ensure that every 
patient who may require screening actually has access to this 
service. In terms of identifying dMMR or MSI patients, there 
is now some standardisation of IHC and adoption of the use 
of the Bethesda marker panel, but with the recent introduction 
of next generation screening, the additional depth of sequence 
data, may complicate the situation as more VUS are identified. 
Furthermore, the clinical significance of low-level variants is 
yet to be elucidated, adding a further layer to complexity to 
the use of this emerging technology. Extracolonic cancers trail 
far behind in terms of what is known of the prognostic and 
predictive value of MMR, and, our understanding will remain 
limited unless large controlled trials are performed.
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