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Abstract. Recently, an increasing amount of evidence indi-
cates that human gonadotropin-releasing hormone (hGnRH) 
and its receptor (hGnRHR) are important regulatory compo-
nents not only to the reproduction process but also in the 
regulation of some cancer cell functions such as cell prolifer-
ation, in both hormone-dependent and -independent types of 
tumors. The hGnRHR is a naturally misfolded protein that is 
retained mostly in the endoplasmic reticulum; however, this 
mechanism can be overcome by treatment with several phar-
macoperones, therefore, increasing the amount of receptors 
in the cell membrane. In addition, several reports indicate 
that the expression level of hGnRHR in tumor cells is even 
lower than in pituitary or gonadotrope cells. The signal trans-
duction pathways activated by hGnRH in both gonadotrope 
and different cancer cell types are described in the present 
review. We also discuss how the rescue of misfolded recep-
tors in tumor cells could be a promising strategy for cancer 
therapy.
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1. Introduction

Cancer remains among the leading causes of mortality word-
wide with an increase of 7.5 million of deaths in 2008 to 8.2 
million in 2012. Furthermore, 32.6 million people are living 
with cancer according to the latest Globocan estimated 
cancer incidence, mortality and prevalence (http://globocan.
iarc.fr/Pages/fact_sheets_cancer.aspx). Despite the advances 
in the diagnosis and treatment of human malignancy, it is neces-
sary to find new improved strategies to treat cancer. The human 
gonadotropin-releasing hormone (hGnRH) is a key hormone 
in the regulation of reproduction. However, an increasing 
number of reports have been shown the participation of GnRH 
and its receptor, not only in the reproduction but also in the 
regulation of tumor cell behavior. The hGnRH has been shown 
effective in controlling cell growth and invasiveness in certain 
type of tumors, both in vivo and in vitro. Furthermore, in some 
cases it has been reported to possess anti-oncogenic activity. 
These characteristics make the hGnRH/hGnRH receptor 
(hGnRHR) an ideal model in the study of new approaches for 
cancer treatment. The present review will focus on the signal 
transduction pathways activated when the hormone binds its 
receptor, in gonadotrope cells and in several types of cancer 
and how the relatively new concept of hGnRHR overexpres-
sion by pharmacoperons could be a new therapeutic strategy 
for cancer treatment.

2. GnRH receptor signaling in the pituitary

The tissue distribution pattern of the hGnRH and its receptor 
is wide and diversified. Therefore, it is not surprising that 
the cell signaling pathways produced from the interaction of 
the receptor with its hormone largely depend on the cellular 
context in which this occurs (1). In pituitary gonadotropes, the 
interaction between hGnRHR with its ligand induces confor-
mational changes in both, the receptor itself and the coupled 
G-protein. The G protein family belongs to the heterotrimeric 
GTPases that are integrated by three subunits: Gα, Gβ and 
Gγ. There is a wide range of G proteins, which have been 
subclassified based on their structural differences in the Gα 
subunit. However, in gonadotrope cells the hGnRHR can be 
coupled to Gαq/11, and according to some reports, to Gαs 
subunit (2). The structural change of the G protein modifies 
the affinity for GDP, and the guanine nucleotide exchange 
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factor facilitates the passive substitution of GDP for GTP. This 
nucleotide exchange causes the Gα subunit separation of the 
heterotrimer without affecting the association between the Gβ 
and Gγ subunits, which remain as one (3). Early studies on 
hGnRH signaling pathway in gonadotrophs, showed that only 
the Gαq/11 subunit could initiate an intracellular signaling 
cascade, through its main effector, the phospholipase Cβ 
(PLCβ) (4). However, further functional studies have shown 
that Gβγ dimer is also able to activate PLCβ; in fact it has been 
observed that in response to a sustained stimulation of hGnRH 
other effectors such as phospholipase A2 (PLA2) and D (PLD) 
can also be activated consecutively through both, Gα or Gβγ 
(Fig. 1) (5).

Phospholipase C uses phosphatidylinositol 4,5 bisphos-
phate (PIP2) as substrate and the enzymatic hydrolysis of this 
phospholipid produces the first wave of the second messen-
gers, diacylglycerol (DAG) and inositol 1,4,5 triphosphate 
(IP3) (2). The endoplasmic reticulum membrane contains IP3 
receptors that can function as Ca2+ channels when activated 
by their specific ligand. The interaction of IP3 changes the 
structural conformation of its receptor, causing an increase 
in Ca2+ channel sensitivity with the consequent release of 
the cation into the cytosol. Subsequently, an increase in the 
concentration of Ca2+ activates the L-type voltage-sensitive 

calcium channels located in the cell membrane (6,7). Several 
studies have demonstrated the functional association between 
the accumulation of intracellular Ca2+ induced by hGnRH and 
the exocytosis of gonadotropins (8). In gonadotrope cells, the 
production of DAG and Ca2+ release into the cytosol are the 
main events in the synthesis and release of gonadotropins in 
response to hGnRH through the activation of protein kinase C 
(PKC) (9).

Due to the pleiotropic activity of the PKC, its activation 
is considered to be the central event in the activation of the 
hGnRH system. Studies performed in different cell systems 
have reported that two PKC isoforms α and βII have the 
ability to directly phosphorylate several residues of PLD 
and therefore activate the kinase  (10,11). PLD hydrolyzes 
the phosphatidylcholine (PC) producing fosfatidilethanol 
(PET) and phosphatidic acid (PA), and both can act as second 
messengers increasing furthermore the signaling pathways 
initiated by hGnRH. PLD also rapidly activates fibrosarcoma 
protein kinase 1 (Raf-1), protein tyrosine kinase SRC and 
some mitogen-activated protein kinases (MAPKs) that are the 
immediate effectors in gonadotropes (10,12-14).

The direct or indirect activation of PKC upon via the 
Raf-1/MAPKs ends with the phosphorylation of transcrip-
tion factors, such as Elk-1, c-Fos and c-Jun, which positively 

Figure 1. Signal transduction pathways activated by hGnRH. In pituitary cells (left panel) the hGnRHR once activated by its ligand is able to couple to Gαq/11 
protein initiating the signal transduction pathway mediated by protein kinase C (PKC). This kinase is able to phosphorylate and activate another protein the 
phospholipase D (PLD) and the latest also phosphorylate the fibrosarcoma protein kinase 1 (Raf-1), protein tyrosine kinase SRC and some mitogen-activated 
protein kinases (MAPKs). The activation of Raf-1/MAPKs ends with the phosphorylation of transcription factors, such as Elk-1, c-Fos and c-Jun, which 
positively regulate the transcription of the gonadotropin α subunit gene, of the same PKC gene and the phospholipase A2 gene (PLA2). On the other hand 
in cancer cells (right panel) the receptor once activated by GnRH is able to couple both Gαi and Gαq/11 proteins depending on the cell background. When 
the receptor couples to Gαi it activates the adenylate cyclase (AC) that converts ATP in cyclic AMP (cAMP) that also in turn activate the protein kinase A 
(PKA). Once the PKA signal tranduction pathway is active the kinase phosphorylates and activated downstream kinases that directly or indirectly induce a 
decrease in epidermal growth factor receptor (EGFR), insulin-like growth factor I receptor (IGF-1R) and insulin-like growth factor 1 (IGF-1) that inhibit cell 
proliferation. In ovarian cancer, for instance, the hGnRHR also couples to Gαq/11 protein initiating the PKC signaling pathway resulting also in inhibition of 
cell proliferation. 
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regulate the transcription of the gonadotropin α subunit gene 
and the phospholipase A2 (PLA2) gene  (2,15,16). In the 
gonadotrope cell line αT3-1, the PLA2 generates arachidonic 
acid (AA), which in turn is substrate for the lipoxygenase that 
converts AA into leukotrienes. These leukotrienes are also 
involved in the induction of gene expression of the gonadotro-
pins α subunit as well as PKCβ (17,18). In turn all the signal 
transduction pathways induced by hGnRH and transduced by 
the axis hGnRHR/Gαq/11/PLC/PKC, culminate in the event 
of synthesis and release of gonadotropins, luteinizing hormone 
(LH) and follicle-stimulating hormone (FSH) (Fig. 1) (19).  
The activation of a second G protein by the hGnRH stimula-
tion in the gonadotrope remains controversial, some reports 
have indicated the activation of Gαs with the consequent 
activation of adenylate cyclase (AC) and the formation of the 
second messenger, cyclic adenosine monophosphate (cAMP), 
which in turn is the cofactor of the protein kinase A (PKA); 
however, further experiments are necessary to confirm these 
results (20).

Another component of these complex networks of signal 
transduction pathways is regulated by both frequency and 
amplitude of pulses of hypothalamic hGnRH secretion into 
the bloodstream depending on the physiological needs of the 
organism (21). It has been reported that when gonadotrope 
cells are exposed to a high frequency pulsation of hGnRH, 
the synthesis and release of gonadotropin α subunit and the 
β subunit of LH is induced. While hGnRH-low frequency 
pulsatility induces the synthesis and release of the β subunit 
of FSH (22).

3. Human GnRH receptor signaling in cancer cells

Prostate cancer. Prostate tumors and cell lines derived from 
these cancers express hGnRH, as well as the hGnRHR; in fact, 
almost 80% malignant prostate tumors present binding sites 
for hGnRH (23,24). Assays carried out in human prostate-
cancer biopsy, shown that these binding sites were mediated 
by specific hGnRH receptors (25). Several studies have shown 
that the hGnRH/hGnRHR system promotes a decrease in 
cellular proliferation of malignant prostate tumors (26,27).
Keeping this in mind, several research groups have been 
employing hGnRH as antineoplastic drugs for many years 
(28-33).

In tumor cell lines such as LNCaP (androgen-sensitive 
prostatic-cancer cell line), DU145 cells (a human androgen-
independent cancer-cell line) and in PC-82 cells (an 
androgen-dependent cell line) specific binding sites by hGnRH 
have been shown (26,27,30). The complete mechanism by 
which hGnRHR is activated in prostate cancer is unknown; 
however, the identification of mRNA for hGnRH in LNCaP 
cells suggests a local paracrine/autocrine system in this tumor 
cells (34).

Many research groups have investigated the signaling 
pathway activated by the hGnRH/hGnRHR system to 
inhibit cell proliferation and ultimate demonstrate cross-talk 
between growth factor-receptors and hGnRHR. This inter-
action was observed in LNCaP and DU145 cells, where an 
association between hGnRHR and epidermal growth factor 
receptor (EGFR) was shown. In both cell lines the hGnRH 
stimulation abrogates epidermal growth factor (EGF)-induced 

transcription factor c-fos expression and reduces the number 
of EGF-binding sites in membrane. Furthermore, in DU145 
cells, inhibition of the EGF receptor phosphorylation and 
reduction of EGF-binding sites in cell membrane after hGnRH 
treatment were demonstrated (35). Collectively, these results 
demonstrated that hGnRHR activation abrogates cell prolif-
eration via EGFR signaling. On the other hand, an important 
inhibition of the mitogenic action of the insulin-like growth 
factor 1 (IGF-1) was also observed in DU145 cells after 
hGnRH-stimulation (36). The inhibitory effects of hGnRH in 
the proliferation of prostate cancer cells, appears to be medi-
ated via coupling and activating the G protein Gαi, and not 
by Gαq/11 as observed in gonadotropes (37). In addition to 
the antiproliferative effect exhibited by the hGnRH/hGnRHR 
system in prostate cancer it also comprises direct induction 
of apoptotic signaling (38,39). hGnRH induces apoptosis in 
DU145 cells involving the activation of c-Jun N-terminal 
kinase (JNK) by a decrease of protein kinase B (PKB) activity.  
The activation of JNK could also be mediated by inhibition 
of the upstream activator of JNK, the mixed-lineage kinase 3 
(MLK3) (38). However, details in the mechanisms by which 
hGnRH induced apoptosis remain to be determined.

Ovarian and endometrial cancer. Temporal and specific 
expression of hGnRH/hGnRHR has been shown in human 
ovary cells  (40). Radioligand assay carried out in different 
cell lines and tumor biopsy specimens demonstrated high-
affinity binding sites for 125I-labeled hGnRH agonist ([D-Trp6]
LHRH) in 70% of primary ovarian cancers as well as in 83% 
of primary endometrial cancers (41,42). The elucidation of the 
cellular function of hGnRHR system in extra-pituitary tumor 
cells has been the goal of many researches. These reports have 
shown that the expression of both hormone and receptor are 
able to cause growth inhibition in malignant cells  (42-45).  
At the same time, clinical data show that the expression of 
hGnRH/hGnRHR in epithelial malignant ovary tumors could 
be considered as a favorable prognostic factor (46).

Although the signaling pathways by which hGnRHR 
affects cell proliferation in ovarian cancer are still undeter-
mined, it is clear that they are distinct from that in the anterior 
pituitary (Fig. 1). The specific intracellular signaling cascades 
that could be coupled to hGnRH in human ovary cancer are 
the activation of the PKC system. In the human endometrial 
cancer cell line HHUA, hGnRHR activation was able to 
downregulate the cellular proliferation via PKC and in human 
ovarian mucinous cystadenocarcinoma samples, hGnRH 
agonists also activate PKC protein (47,48). The PKC activation 
by hGnRHR, could be the link between receptor activation 
and MAPK kinase cascades to inhibit cell proliferation. In 
ovarian cancer cells SKOV-3 and OVCAR-3, a pronounced cell 
proliferation inhibition and activation of extracellular signal-
regulated kinase (ERK)1/2 via Gαq/PKC, was demonstrated 
after hGnRH-stimulation (49).

On the other hand, the antiproliferative action of hGnRHR 
via ERK1/2 also has been reported as a PKC-independent 
process suggesting that hGnRHR signaling may vary by cell 
type (50). In ovarian carcinoma and endometrial carcinoma 
samples, the activation of the signaling pathways by hGnRHR 
could be associated with the coupling between the receptor 
and the Gi protein (51,52). The link between hGnRHR and Gi 
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could explain the differences in the signal transduction path-
ways activated by hGnRH receptors in malignant tumors and 
the anterior pituitary. Caov-3 cells shown growth inhibition 
in response to hGnRH, and also are able to activate several 
proteins such as adapter protein Src homology 2 domain 
containing (SHC), superoxide dismutase protein (SOD), MAP 
kinase kinase protein (MEK) and activation of ERK, via Gi 
coupling (50).

As mentioned above for prostate cancer, the effects of 
hGnRHR in mitogenic signaling pathways have also shown  
cross-talk between this receptor and growth factor receptors 
in ovary cancer cells. In endometrial (HEC-1A) and ovarian 
(EFO-21 and EFO-27) cancer cells, hGnRH receptor activa-
tion suppresses the phosphorylation of EGFR and inhibits 
the activation of MAP-kinase/ERK1/2 (53). Similar results 
were observed in DU-145 cells where hGnRH receptor 
activation abrogates EGFR-induced c-fos expression and 
reduces the concentration of EGF-binding sites, resulting in 
downregulation of cellular proliferation (35). In EFO-21 and 
EFO-27 cells the inhibition of the EGF receptor is mediated 
through the coupling between hGnRHR and Gi protein (54).  
The molecular mechanism for hGnRHR to inhibit the EGFR 
action may be mediated by direct interaction with intracel-
lular mechanisms activated by EGF as well as by the decrease 
in the number of EGF receptors present on these cells. For 
example, in xenografts of OV-1063 cells, hGnRH agonists 
were able to significantly decrease tumor growth as well as 
the levels in membrane of EGFR and also its mRNA (55).  
Furthermore, chronic treatment with hGnRH, in these cells, 
was able to decrease the levels of insulin-like growth factor  I 
receptor (IGF-1R)  (44). A completely new mechanism of 
GnRH action in endometrial cancer cells has been recently 
described by Cho-Clark and colleagues (56) demonstrating 
the participation of a hGnRH metabolite, the GnRH(1-5), 
as an active component in the transactivation of EGFR via 
an orphan GPCR, the GPR101, in Ishikawa cells. Although 
cross-talk between hGnRHR and growth factor receptors 
has been clearly demonstrated, it seems to vary in different 
cellular contexts. Taken together these results show different 
layers in the complexity of the hGnRH/hGnRHR system 
regulation in cancer cells. Furthermore, a compound develop 
by Schally's group, the Dox-14-O-hemiglutarate conjugated 
to [D-Lys6] GnRH-I (AN-152, AEZS-108; Æterna Zentaris 
Inc., Quebec, QC, Canada) is currently in phase III clinical 
trial on ovarian and endometrial cancer due to its promising 
results in cancer treatment (57).

Breast cancer. Breast cancer is the most common diag-
nosed cancer and the main global cause of death in women. 
Approximately, from 75 to 80% of breast cancers are 
hormone-dependent expressing both estrogen and proges-
terone receptors (58,59). Approximately 15-20% of breast 
cancers overexpress the human epidermal growth factor 
receptor-2 (HER2), and about half of these tumors also 
express steroid hormone receptors. Unfortunately, 10-15% 
of breast cancers do not express estrogen or progesterone 
receptors, nor HER2. These so-called triple-negative breast 
cancers do not benefit from specific therapies that target these 
receptors and, therefore, have the worst outcome (59). hGnRH 
stimulates gonadotropin secretion from the hypothalamus 

and thereby controls gametogenesis and steroidogenesis in 
the gonads (60). hGnRH-stimulated gonadotropin secretion 
can be blocked with antagonists or with a sustained stimula-
tion with agonists, causing the so-called ‘medical castration’ 
underlying the use of hGnRH analogs to treat hormone-
dependent neoplasms (59,60). In addition to expressing the 
hGnRHR, the tumors also revealed the presence of hGnRH, 
indicating the existence of an autocrine/paracrine hGnRH/
hGnRHR system that might regulate tumor growth and inva-
siveness (61). Approximately, 50-60% of human breast cancer 
expresses hGnRHR and it has been highly speculated that 
activation or inhibition of hGnRHR signaling may directly 
affect cell growth  (62-66). Morgan and colleagues  (66) 
demonstrated that hGnRH receptor was expressed in a wide 
range in 298 primary breast cancers, but most importantly, 
its expression was significantly higher in patients with triple- 
negative phenotype.

Initially, it was described that in tumor cells the hGnRHR 
was exclusively coupled to Gi and consequently inhibit the 
cAMP accumulation, this action presumably mediates the 
anti-proliferative effect in these cells (61,67,68). Some reports, 
however, indicated that for tumor cells the hGnRHR is able to 
activate several G-proteins in a specific cell background (69). 
The evidence so far indicates that the anti-proliferative 
response induced by hGnRHR activation results in apoptosis 
and G2/M arrest in the cell cycle. This process is mediated via 
a coordinated dynamic pattern of MAPK, cell cycle, apoptotic 
and cytoskeletal-related signaling (70).

4. Non-endocrine related cancers

As mentioned above, a broad variety of human cancers, but 
not normal tissue, express the hGnRH/hGnRHR system, thus, 
chronic administration of hGnRH agonists are widely and 
successfully used for the treatment of hormone-dependent 
tumors. However, study of the hGnRH system in non-
hormone-dependent cancers has recently been initiated. For 
instance, the cutaneous melanoma is still the leading cause of 
skin cancer deaths in developed countries (71). Moretti and 
colleagues (72) demonstrated that hGnRHR were expressed 
in melanoma cells, and the stimulation with a hGnRH agonist 
had a significant inhibitory effect on tumor progression and 
neoangiogenesis, by interfering with the activity of growth 
factors. In multiple myeloma cells RPMI 8226, the use of an 
hGnRH agonist induces apoptosis and inhibits cell growth by 
increasing the expression of anti-oncogenes p21 and p53 (73). 
hGnRH as treatment in colon cancer has been initiated, and 
preliminary reports suggest an anti-angiogenic property of 
the hormone (74). As an innovative colon cancer treatment, 
Schreier and colleagues (75) designed a derivate bioconjugate 
between a chemotherapeutic agent and a hGnRH analog to 
target colon cancer cells. Their results demonstrated that the 
treatment with the bioconjugate changed the protein expres-
sion profile of multiple intracellular processes. The use of 
hGnRH analogs in endometrial cancer had variable responses, 
some patients respond to therapy but the overall response was 
suboptimal  (76). In some cases, such as in human bladder 
cancer cells hGnRHR showed a tendency to form nanodo-
mains; however, the effect of any hGnRH analog has not been 
used in this type of cancer (77).
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5. Rescue of misfolded hGnRH receptors

The hGnRHR in its natural form exists as a misfolded protein 
indicating that the cell intentionally synthesizes conformational 
misrouted receptors. This characteristic made us hypothesize 
that the decrease in protein membrane expression is the result 
of a complex evolutionary reproductive process (78). This 
hGnRHR that is normally functional become misrouted 
and then degraded by the cell quality control, therefore 
ceasing its activity. Among the G-protein coupled receptors, 
hGnRHR has several specific characteristics including the 
absence of a terminal carboxy-tail. Another peculiarity of 
the hGnRHR is the presence of a Lys residue in position 191 
of the extracellular loop (EL) 2, in rodents GnRH receptors 
this orthologous amino acid is absent, making the last protein 
one residue smaller (327 amino acids). In rodent the lack of 
this residue confers the GnRH receptor an increased plasma 
membrane expression (79); therefore, the presence of Lys191 
in humans limits the number of receptors exported from 
the endoplasmic reticulum to the membrane by interfering, 
primarily, with formation of the Cys14-Cys200 disulphide 
bridge (Fig. 2) (80). When the disulphide bridge forms, the 
hGnRHR is recognized by the cell as correctly folded and 
allows it to be exported to the plasma membrane. As a result, 
the presence of the Lys191 interferes with the probability of 
bridge formation and could explain the decrease in trafficking 
to the plasma membrane. In fact, the deletion of Lys191 from 
the hGnRHR increases the plasma membrane expression of 
the protein (81,82). Another structural feature that modulate 
trafficking of the receptor to the plasma membrane is the 

formation of a Glu90-Lys121 salt bridge that is essential for 
the transit through the quality control system of the cell, in 
fact the Glu90Lys mutant, which led to hypogonadotropic 
hypogonadism, was retained in the endoplasmic reticulum 
and represents a loss of function receptor  (83,84). Further 
studies led to the demonstration that this particular mutation 
was fully rescue by pharmacoperone drugs by the formation 
of a surrogate bridge from residues Asp98 and Lys121 that 
can substitute for the original salt bridge that is broken in 
Glu90Lys mutant (84). Moreover, this human receptor muta-
tion was able to be rescued by four different chemical classes 
of pharmacoperones that interact identically by creating the 
same surrogate bridge (85). In fact, pharmacoperones are able 
to rescue most of the hGnRH receptor mutants, even though 
mutations appear through the whole receptor sequence, further 
analysis indicated that these drugs might stabilize the relation 
between TMD2 and TMD3 domains on the hGnRHR allowing 
them to pass the quality control of the cell, and thus reaching 
the membrane. Therefore, it is clear that in human Lys191 is 
part of a complex motif that results in decreased efficiency in 
expression (80,82,86).

6. Conclusions

This overview shows that the hGnRH/hGnRHR system acti-
vates different signal transduction pathways in gonadotrope 
and tumor cells, coupling to different G-proteins depending 
on the cell context. Most interesting is the finding that this 
hormone/receptor system is present not only in reproductive 
tissue but also in tumor cells with various degrees of the expres-

Figure 2. Graphic representation of the human GnRH receptor. Simplified representation of the hGnRHR showing the disulphide bridges between Cys14-Cys200 
and Cys114-Cys196 (red lines), the extra amino acid found in primates and humans Lys191 (green circle), and the salt bridge between Glu90Lys121 
(blue circles).
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sion. In some cases the expression of hGnRHR is related to 
cancer progression; for example, in ovarian carcinomas of 
early stages the presence of this receptor is higher when 
compared with advanced stages of carcinoma. Also in prostate 
cancer loss of hGnRHR expression with tumor progression 
has been demonstrated (87,88). Moreover, nanomolar concen-
trations of GnRH II antagonists induce apoptotic cell death 
in human endometrial, ovarian, and breast cancer in vitro and 
in vivo, via dose-dependent loss of mitochondrial membrane 
potential and activation of caspase-3 (89). According to the 
literature, in several tumor cell lines, the expression level of 
GnRHR is significantly lower than in pituitary or the gonad-
otropes (57). The demonstration that hGnRHR exists as a 
misfolded protein has raised the speculation that in tumor 
cells this compartmentalization and retention of the receptor 
in the ER function as a protective mechanism to avoid cell 
death induced by hGnRHR activation (88,90). In prostate 
cancer cultures it was demonstrated that IN3 enhances the 
GnRH agonist apoptotic effect by increasing the hGnRHR 
in the plasma membrane (88). The use of a careful pulsatile 
pharmacoperone therapy in a knock-in mouse expressing the 
hGnRHR mutant E90K is able to restore the mutation from 
ER retention to the plasma membrane. Also spermatogenetic 
proteins associated with steroid transport and synthesis, and 
androgen levels were restored with pharmacoperone admin-
istration (91). The hGnRHR plasma membrane increase by 
pharmacoperones, due to the trafficking of the receptor from 
the ER, may represent an important research area to evaluate 
the clinical use of IN3 in tumor cells. Given the clinical 
utility of hGnRH, further studies of pharmacoperones are 
necessary to characterize this compound as a step to a more 
effective and perhaps new therapeutic strategy for cancer 
patients.
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