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Abstract. Incorporation of genetic variants such as single 
nucleotide polymorphisms (SNPs) into risk prediction 
models may account for a substantial fraction of attributable 
disease risk. Genetic data, from 2385 subjects recruited into 
the Liverpool Lung Project (LLP) between 2000 and 2008, 
consisting of 20 SNPs independently validated in a candidate-
gene discovery study was used. Multifactor dimensionality 
reduction (MDR) and random forest (RF) were used to explore 
evidence of epistasis among 20 replicated SNPs. Multivariable 
logistic regression was used to identify similar risk predictors 
for lung cancer in the LLP risk model for the epidemiological 
model and extended model with SNPs. Both models were 
internally validated using the bootstrap method and model 
performance was assessed using area under the curve (AUC) 
and net reclassification improvement (NRI). Using MDR and 
RF, the overall best classifier of lung cancer status were SNPs 
rs1799732 (DRD2), rs5744256 (IL-18), rs2306022 (ITGA11) 
with training accuracy of 0.6592 and a testing accuracy 
of 0.6572 and a cross-validation consistency of 10/10 with 
permutation testing P<0.0001. The apparent AUC of the 
epidemiological model was 0.75 (95% CI 0.73-0.77). When 
epistatic data were incorporated in the extended model, the 
AUC increased to 0.81 (95% CI 0.79-0.83) which corresponds 
to 8% increase in AUC (DeLong's test P=2.2e-16); 17.5% by 
NRI. After correction for optimism, the AUC was 0.73 for 

the epidemiological model and 0.79 for the extended model. 
Our results showed modest improvement in lung cancer risk 
prediction when the SNP epistasis factor was added.

Introduction

Lung cancer risk prediction models provide an estimate of 
individual's risk of developing lung cancer such that ‘at-risk’ 
subjects can be targeted for preventive and treatment interven-
tions (1). Risk models hold promise for improving patient care 
by aiding the clinicians decision making process regarding 
choice of interventions and/or treatments. Risk models can 
also guide selection of individuals at the population level, for 
screening: this ensures limited resources are focussed on those 
individuals who are most likely to benefit. This risk guiding 
strategy ensures minimisation of unnecessary, invasive and 
potentially harmful interventions. Existing lung cancer abso-
lute risk prediction models are mostly based on traditional 
epidemiological and/or clinical risk factors  (2-7), limiting 
their predictive and discriminative abilities. For an improved 
precision, incorporation of genetic and molecular markers of 
disease in risk models has been advocated (8) and aided by 
recent proliferation of genetic/genomic research which has 
led to the identification of susceptibility genes and biological 
markers in many diseases (9-12).

Common gene variants involved in lung cancer have been 
recently identified through a number of large, collaborative, 
genome-wide association studies. Susceptibility genes iden-
tified to date include those on chromosomes 5p15.33, 6p21, 
and 15q24-25.1  (13-15). Apart from these, other genetic 
loci have also been identified in candidate gene association 
studies targeting specific molecular pathways; such as genes 
encoding proteins in cell cycle control, oxidant response, 
apoptosis, DNA repair, cell adhesion and airways inflamma-
tory response (16,17).

While genomics research has been very fruitful in 
identifying these common, low-risk allelic variants, there 
is a growing scepticism regarding their usefulness in risk 
prediction. It has been shown that risk profiles generated by 
common low-moderate susceptibility loci, in a simple additive 
model, provides limited discrimination (18,19). The limited 
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contribution of single nucleotide polymorphisms (SNPs) to 
risk profiling has been partly blamed on restriction to a limited 
number of significant alleles, methodological limitations 
regarding assessment of model performance and statistical 
approaches for incorporating the variants (19). Whilst the usual 
approach has been to utilise only the significant variants for 
risk profiling, an improved disease prediction may be attained 
by accounting for a large ensemble of markers (20). For the 
relatively few markers arising from candidate-gene studies, 
incorporation of the interactive effect of these genes, through 
epistasis modelling, may provide better predictions beyond 
that afforded by the limited effect of multiple loci using addi-
tive effects (21). Models including epistatic interactions take 
into account the complex biological relationships among the 
loci and extend the traditional method that focuses only on 
additive score using a weighted or unweighted number of risk 
alleles, which assume independence between the markers (22).

In the past three decades, improvements in risk prediction 
models brought about by the inclusion of markers and genetic 
factors were quantified using changes in the area under the 
receiving-operating characteristic curve (AUC) (23). Recently, 
an increasing popular measure of evaluating improvements in 
risk predictions, the net reclassification improvement was intro-
duced (24). This measure involves cross-tabulating categories 
of predicted risk for 2 models, usually one with the new marker 
under study and the other without it, to see how persons are 
classified differently when these models are used (25).

In this study, we investigated the presence of epistasis 
among a panel of SNPs previously validated individually in 
lung cancer (26) and used both area under the receiver oper-
ating characteristic (AUC) analysis and net reclassification 
improvement (NRI) to assess the contribution of adding an 
interactive epistatic effect to an extensively validated clinical-
based risk model for lung cancer.

Materials and methods

Study population. This study was performed as part of 
the Liverpool Lung Project (LLP). Details of recruitment 
procedure, study design and validation have been previously 
reported (3,27). Briefly, incident cases of histologically or 
cytologically confirmed lung cancer, ages between 20 and 
80 years, were included. Lung cancer included any of topo-
graphical subcategories of code C34 of the International 
Classification of Disease for Oncology 9th revision. Two popu-
lation controls per case, matched on year of birth (±2 years) and 
gender, were selected from registers of general practitioners 
in Liverpool area. All participants were Caucasians, residents 
in the Liverpool area. The study protocol was approved by 
the Liverpool Research Ethics Committee, and all research 
participants provided written informed consent in accordance 
with the Declaration of Helsinki.

In this study, we utilised complete genotype data on 
individuals included in the independent validation of SNPs 
identified in a candidate-gene genetic association study (26). 
The data comprises of 2385 subjects (cases=718, controls=1667) 
selected from individuals recruited into the LLP between 2000 
and 2008. Of this number, 1362 (cases=418 and controls=914) 
were included in LLP case-control data used to develop the 
LLP risk model  (3). Data on epidemiological, clinical and 

lifestyle factors were collected using a standardised question-
naire supplemented with hospital case note reviews conducted 
by trained LLP research nurses. Information documented 
includes: patients smoking status (smoking duration), previous 
history of pulmonary diseases (pneumonia, COPD and bron-
chitis), previous history of malignant diseases excluding skin 
melanoma, occupational exposure to asbestos, family history 
of lung cancer with age at onset, and case diagnosis details 
(date of diagnosis, histological subtype and staging).

Genetic data consist of 20 SNPs independently validated 
from 157 SNPs screened in a candidate-gene discovery study; 
details of selection and genotyping have been described 
elsewhere (26). Briefly, 157 candidate SNPs were screened 
in a discovery cohort of 439 subjects (200 controls and 239 
lung cancer cases), which identified 30 SNPs associated with 
either the healthy smokers (protective) or lung cancer (suscep-
tibility) phenotype. After genotyping this 30 SNP panel in a 
validation cohort of 491 subjects (248 controls and 207 lung 
cancers) and, using the same protective and susceptibility 
genotypes from the discovery cohort, a 20 SNP panel were 
selected based on replication of SNP associations in the 
validation cohort that includes variants in the metabolism of 
smoking-derived carcinogens (NAT2 and CYP2E1), inflam-
matory cytokines [interleukins 1(IL1B), 8(IL8), and 18(IL18), 
tissue necrosis factor α1 receptor (TNFR1), toll-like receptor 9 
(TLR9)], smoking addiction [dopamine D2 receptor (DRD2) 
and Dopamine transporter 1(DAT1)], nicotine dependency 
[α5-nAChR (CHRNA3)], antioxidant response to smoking 
[α1 anti-chymotrypsin (SERPINA3) and extracellular super-
oxide dismutase (SOD3)], cell cycle control, DNA repair and 
apoptosis (XPD, TP73, Bcl-2, FasL, Cerb1, and REV1) and 
integrins (ITGA11, ITGB3) implicated in apoptosis. Genomic 
DNA was extracted from whole blood samples by standard 
salt-based methods and purified genomic DNA was aliquoted 
(10 ng/µl concentration) into 96-well plates. Genotyping was 
performed on a Sequenom™ system (Sequenom Autoflex 
Mass Spectrometer and Samsung 24 pin nanodispenser) (26).

Statistical analysis. Characteristics of the subjects in the cases 
and controls were compared using t-test for continuous vari-
ables and χ2 test or Fisher's exact test for discrete variables as 
appropriate. Genotype and allele frequencies were checked for 
each SNP for Hardy-Weinberg equilibrium (HWE).

Identification of SNPs epistasis. The multifactor dimension-
ality reduction (MDR) and random forest (RF) were used to 
investigate gene-gene interactions by identifying SNP combi-
nations that provide the best discrimination of the status of 
the subjects. MDR is a non-parametric, model-free method 
that utilises a constructive induction technique to collapse 
high-dimensional genetic data into a single dimension (28,29). 
It pools multi-locus genotypes into high and low risk groups 
using an exhaustive search to identify optimal combination 
of polymorphisms, which can then be evaluated for its ability 
to classify or predict disease status. In our implementation of 
MDR, three separate genotypes were analysed for each SNP. 
The Relief-F algorithm as implemented in the MDR was used 
as a first approach to select among the 20 SNPs that are most 
likely to interact. An exhaustive search of all possible 1-5 loci 
were then explored using 10-fold cross validation as described 
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by Hahn et al (28). Cross-validation allows estimation of the 
prediction error by leaving out a portion of the data as an inde-
pendent test set. With 10-fold cross-validation, the data are 
divided into 10 equal parts, the model was developed on 9/10 
of the data (i.e. the training data) and then evaluated on the 
remaining 1/10 of the data (i.e. the independent testing data). 
This is repeated for each possible 9/10 and 1/10 of the data 
and the resulting ten prediction errors are averaged (29). MDR, 
then, seeks to find the single-locus or multi-locus predictor(s) 

for explaining the outcome (based on a balanced accuracy 
measure - the arithmetic mean of sensitivity and specificity), 
based on the available genomic information (30). The predic-
tion accuracy and cross-validation consistency defined as the 
number of cross-validation replicates (partitions) in which that 
same n-locus predictor(s) was chosen as the best predictor 
of lung cancer status i.e. the number of replicates in which it 
minimised the classification error were used to select the best 
SNPs in each 1 to 5-locus combination (31). The overall best 

Table I. Epidemiology, clinical and lifestyle characteristics of the subjects by case-control status.

Characteristics	 Case (n=718)	 Control (n=1667)	 All subjects (n=2385)

Age (yrs.)
  <60	 162 (22.6)	 457 (27.41)	 619 (25.9)
  60-70	 264 (36.8)	 647 (38.8)	 911 (38.2)
  70+	 292 (40.7)	 563 (33.8)	 855 (35.9
Gender
  Male	 414 (57.7)	 969 (58.1)	 1383 (58.0)
  Female	 304 (42.3)	 698 (41.9)	 1002 (42.0)
Smoking statusa

  Never	 43 (6.0)	 575 (34.5)	 618 (25.9)
  Former	 316 (44.0)	 820 (49.2)	 1136 (47.6)
  Current	 353 (49.2)	 267 (16.0)	 620 (26.0)
Smoking duration (yrs.)a

  Never	 43 (6.0)	 575 (34.5)	 618 (25.9)
  1-20	 38 (5.3)	 341 (20.5)	 379 (15.9)
  21-40	 175 (24.4)	 440 (26.4)	 615 (25.8)
  41-60	 399 (55.6)	 278 (16.7)	 677 (28.4)
  >60	 51 (7.1)	 27 (1.6)	 78 (3.3)
Previous pneumoniaa

  Yes	 105 (14.6)	 243 (14.6)	 348 (14.6)
  No	 590 (82.2)	 1420 (85.2)	 2010 (84.3)
Previous malignant
  Yes	 183 (26.3)	 38 (2.3)	 221 (9.4)
  No	 512 (73.7)	 1625 (97.7)	 2136 (90.6)
Asbestos exposurea

  Yes	 134 (18.7)	 158 (9.5)	 292 (12.2)
  No	 395 (55.0)	 1505 (90.3)	 1900 (79.7)
Family lung CA
  No history	 566 (78.8)	 1348 (80.9)	 1914 (80.3)
  Early onset	 74 (10.3)	 101 (6.1)	 175 (7.3)
  Late onset	 78 (10.9)	 218 (13.0)	 296 (12.4)
Histology
  Squamous cell carcinoma	 239 (33.3)	 -
  Adenocarcinoma	 228 (31.8)	 -
  Small cell	 87 (12.1)	 -
  NSCLC	 77 (10.7)	 -
  Other	 87 (12.1)	 -

aNumbers do not add up to total due to missing data; NSCLC, non-small cell lung cancer.
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SNP classifier of lung cancer status was selected as the one 
with the maximum prediction accuracy and cross-validation 
consistency and evaluated statistically using 1000-fold permu-
tation test.

For comparison, we used the freely available Willows 
software package for generating RF (32). RF ranks variables 
by a variable importance index, a measure which reflects the 
‘importance’ of a variable on the basis of the classification accu-
racy, while considering the interaction among variables (33). 
A classification tree was built by the recursive partitioning 
method; each tree is constructed using a different cohort of 
bootstrap samples from the original cohort. Approximately 
one-third of the samples are left out of the bootstrap (oob) 
samples and hence not used in the construction of the tree. 
The number of trees was set to 10,000 and the default values 
of the other parameters as provided by the program were used. 
Several classification trees were created with replacement 
from the original data imput into the program. To determine 
the importance of an SNP, first the values of the SNP in the 
oob samples are randomly permuted; then both the original 
oob samples and the permuted oob samples are classified by 
the corresponding tree. The difference in the correct classifi-
cation rates between the original and permuted oob samples 
determines the importance of the SNP, and the variable impor-
tance is obtained by averaging the differences over all trees in 
the random forest (32,34).

Risk model predictions and incorporation of SNPs epistasis. 
Risk prediction was performed using the same risk factors 
included in the LLP risk model  (3). Multivariable logistic 
regression was employed to generate estimates of predicted 
5-year absolute risk of lung cancer in i) a model with epide-
miological data and ii) an extended model with both genetic 
and epidemiological data. The baseline risk (α, the constant 
term in the regression model) for the prediction of 5-year  
absolute risk using the extended model with both genetic and 
epidemiological data was recalculated. The method for calcu-
lating the baseline α from age- and gender-specific lung cancer 
incidence rates from the Liverpool area has been described (3). 
The only difference is that the probability model now includes 
information on rs1799732 (DRD2), rs5744256 (IL-18) and 
rs2306022 (ITGA11).

The area under the receiver-operating characteristics 
(AUC) was used to i) assess the discriminatory ability of the 
models, and ii) compare the models with and without SNPs. 
The increase in AUC was evaluated and tested for significance 
using DeLong test (35). Furthermore, the net reclassification 
improvement (NRI) was used to assess the added discrimina-
tion offered by the addition of SNPs to the risk model (24). 
Bootstrapping techniques were utilised for internal validation 
of the models (36). Bootstrap samples were drawn 1000 times 
to adjust model parameters for overfitting. Improvement in 
model calibration was assessed using Akaike information 

Table II. Univariable analysis of associations between 20 candidate SNPs and lung cancer (33).

	 Genotype
	 ------------------------------------------------------------------------------------------------------------------------------------	 Additive model
	 Wilda	H eterozygote	H omozygote	 assumption
	 ------------------	 -----------------------------------------------------	 -----------------------------------------------------	 ----------------------------
SNP	 Chromosome	 Gene	 ca/co (%)	 ca/co (%)	 OR (95% CI)	 ca/co (%)	 OR (95% CI)	 P-valuetrend

rs2279115	 18q21.3	 Bcl-2	 30.1/29.0	 49.0/50.4	 0.91 (0.75, 1.11)	 20.1/20.6	 0.91 (0.71, 1.17)	 0.91
rs10115703	 9p22.3	 Cerb1	 86.2/84.7	 12.7/14.6	 0.85 (0.66, 1.10)	 1.1/0.7	 1.66 (0.66, 4.15)	 0.21
rs16969968	 15q25.1	 α5-nAChR	 40.1/44.9	 45.7/44.1	 1.16 (0.96, 1.40)	 14.2/10.9	 1.46 (1.11, 1.93)	 0.012
rs2031920	 10q26.3	 CYP2E1	 94.7/94.7	 5.2/5.2	 0.99 (0.67, 1.47)	 0.1/0.1	 1.16 (0.11, 12.8)	 0.71
rs6413429	 5p15.33	 DAT1	 87.2/86.4	 12.5/13.3	 0.93 (0.72, 1.21)	 0.3/0.3	 0.92 (0.18, 4.76)	 0.74
rs1799732	 11q23.2	 DRD2	 79.5/79.4	 13.0/7.4	 1.74 (1.31, 2.32)	 7.5/13.1	 0.57 (0.42, 0.78)	 0.30
rs13181	 19q13.32	 XPD(ERCC2) 	 38.6/39.9	 43.3/47.3	 0.95 (0.78, 1.15)	 18.1/12.8	 1.46 (1.13, 1.89)	 0.10
rs763110	 1q24.3	 FasL	 42.5/40.2	 43.4/46.6	 0.88 (0.73, 1.07)	 14.1/13.2	 1.00 (0.77, 1.32)	 0.27
rs5744256	 11q23.1	 IL18	 32.7/47.2	 43.7/44.5	 1.42 (1.16, 1.72)	 23.6/8.3	 4.07 (3.11, 5.31)	 <0.0001
rs16944	 2q13	 IL1B	 42.9/46.1	 44.7/43.2	 1.11 (0.92, 1.34)	 12.4/10.7	 1.24 (0.93, 1.65)	 0.24
rs4073	 4q13.3	 IL8	 27.6/29.9	 51.3/47.4	 1.17 (0.96, 1.44)	 21.7/22.7	 1.01 (0.79, 1.30)	 0.50
rs2306022	 15q23	 ITGA11	 65.9/83.6	 30.6/15.4	 2.53 (2.06, 3.12)	 3.5/1.0	 4.09 (2.21, 7.56)	 <0.0001
rs2317676	 17q21.32	 ITGB3	 87.9/87.5	 11.6/12.2	 0.95 (0.72, 1.24)	 0.6/0.3	 1.54 (0.43, 5.48)	 0.88
rs1799930	 8p22	 NAT2	 50.3/48.4	 39.4/42.7	 0.89 (0.74, 1.07)	 10.3/8.9	 1.12 (0.82, 1.52)	 0.95
rs3087386	 2q11.2	 REV1	 31.6/31.4	 49.7/49.4	 0.99 (0.82, 1.22)	 18.7/19.3	 0.96 (0.75, 1.24)	 0.63
rs4934	 14q32.13	 SERPINA3	 26.9/27.3	 50.3/49.2	 1.04 (0.84, 1.28)	 22.8/23.5	 0.99 (0.77, 1.26)	 0.99
rs1799895	 4p15.2	 SOD3	 96.7/97.2	 3.3/2.7	 1.25 (0.75, 2.06)	 0.0/0.1	 -	 0.44
rs5743836	 3p21.2	 TLR9	 71.2/69.0	 25.4/28.1	 0.88 (0.72, 1.07)	 3.5/2.9	 1.15 (0.70, 1.88)	 0.24
rs1139417	 12p13.31	 TNFR1	 32.0/31.5	 49.3/50.8	 0.96 (0.78, 1.16)	 18.7/17.8	 1.03 (0.80, 1.34)	 0.96
rs2273953	 1p36.33	 TP73	 58.5/62.8	 35.5/31.7	 1.20 (0.99, 1.45)	 6.0/5.5	 1.17 (0.80, 1.70)	 0.11

aReference genotype; ca, cases; co, controls.
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criteria (AIC) and Bayesian information criteria (BIC). Unless 
otherwise stated, all analyses were performed using R version 
3.1.1 and STATA® version 13.1 (StataCorp LP, College Station, 
TX, USA).

Results

Seven hundred and eighteen cases and 1667 population 
controls were successfully genotyped for 20 SNPs, which 
had been independently validated from 157 SNPs screened 
in a candidate-gene discovery study (26). Table I presents the 
general demographic and clinical characteristics of the study 
population. Men constituted the majority of the study popula-
tion cases (57.7%) and (58.1%) controls. The proportion of ever 
smokers was significantly higher in cases (93.2%) compared 
with controls (65.2%). Significant differences were observed in 
other risk factors including smoking duration, prior diagnosis 
of pneumonia, occupational exposure to asbestos, and prior 
diagnosis of tumour (P<0.001).

Table II presents the results of additive gene-dosage model 
for all SNPs. Heterozygosity for rs1799732 (DRD2), rs5744256 
(IL-18) and rs2306022 (ITGA11) conferred an increased risk 
for lung cancer in reference to the wild-type genotype [OR 1.74 
(95% CI 1.31-2.32); 1.42 (95% CI 1.16-1.72) and 2.53 (95% CI 
2.06-3.12), respectively]. The homozygote genotype for 
rs16969968 (CHRNA3/5), rs13181 (ERCC2), rs5744256 (IL-18) 
and rs2306022 (ITGA11) increased the risk of developing 
lung cancer with reference to the wild-type [OR 1.46 (95% CI 
1.11‑1.93); 1.46 (95% CI 1.13-1.89); 4.07 (95% CI 3.11-5.31) 4.09 
(95% CI 2.21-7.56), respectively].

Table III summarises the result obtained from the MDR 
analysis investigating epistatic effects among the SNPs. The 
best candidate classifiers of lung cancer status based on five 
SNP loci selected using the cross-validation consistency, 
training and testing accuracy were as follows: Single locus: 
rs2306022 (ITGA11); 2 loci: rs5744256 (IL-18), rs2306022 
(ITGA11); 3  loci: rs1799732 (DRD2), rs5744256(IL-18), 

rs2306022 (ITGA11); 4  loci: rs1696998 (CHRNA3/5), 
rs1799732 (DRD2), rs5744256 (IL-18), rs2306022 (ITGA11); 
5 loci: rs1799732 (DRD2), rs763110 (FasL), rs5744256 (IL-18), 
rs4073 (IL-8), rs2306022 (ITGA11). The 3 loci consisting of 
SNPs rs1799732 (DRD2), rs5744256 (IL-18) and rs2306022 
(ITGA11) appears to be the overall best classifier of lung 

Table III. Comparison of different Multi-locus SNP combinations using MDR.

Model of	 No. of 	 Selected SNPs in selected	 Cross Validation	 Balanced training	 Balanced testing
inheritance	 loci	 best model	 consistency (CV)	 accuracy	 accuracy

Additive effect	 1	 ITGA11_rs2306022	 10/10	 0.5886	 0.5886
	 2	 IL18_rs5744256	 10/10	 0.6418	 0.6418
		  ITGA11_rs2306022
	 3	 DRD2_rs1799732	 10/10	 0.6575	 0.6538
		  IL18_rs5744256
		  ITGA11_rs2306022
	 4	 CHRNA3_A5_rs16969968	   4/10	 0.6652	 0.6321
		  DRD2_rs1799732
		  IL18_rs5744256
		  ITGA11_rs2306022
	 5	 DRD2_rs1799732 FASL_rs763110	   6/10	 0.6869	 0.6178
		  IL18_rs5744256 IL8_rs4073
		  ITGA11_rs2306022

Table IV. Importance score results in the random forest.

SNP	 Gene name	 Variable importance

rs5744256a	 IL18	 18.0783
rs2306022a	 ITGA11	 14.2703
rs1799732a	 DRD2	 4.4401
rs4934 	 SERPINA3	 2.8533
rs13181	 XPD(ERCC2)	 2.7543
rs16969968	 α5-nAChR	 2.4906
rs16944	 IL1B	 2.1737
rs1139417 	 TNFR1	 1.5054
rs2273953	 TP73	 1.4667
rs3087386	 REV1	 1.4185
rs1799930 	 NAT2	 1.1701
rs10115703	 Cerb1	 0.9366
rs2279115	 Bcl-2	 0.8465
rs5743836 	 TLR9	 0.7407
rs4073	 IL8	 0.6093
rs763110	 FasL	 0.4508
rs2317676	 ITGB3	 0.0477
rs2031920	 CYP2E1	 -0.048
rs1799895	 SOD3	 -0.1922
rs6413429	 DAT1	 -0.3696

aTop 3 ranked SNPs using variable importance.
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cancer status. These loci had training and testing accuracy 
of 0.6592 and 0.6572 respectively, and the cross validation 
consistency of 10/10 (model selected as the best of 3 in 10 CV) 
P<0.0001 (permutation test).

Table IV shows the importance score results in the RF. 
RF ranks variables by a variable importance index, which is 
an indication of the importance of a variable on the basis of 
classification accuracy while considering interaction among 
variables. The three SNPs [rs1799732 (DRD2), rs5744256 
(IL-18) and rs2306022 (ITGA11)] selected as the overall best 
classifier of lung cancer status in MDR were also ranked top 3 
by RF using variable importance index.

Table V summarises reclassifications for cases and controls 
using epidemiological model and models with SNPs [rs1799732 
(DRD2), rs5744256 (IL-18) and rs2306022 (ITGA11)]. 
Subjects were categorised into three different thresholds; 
low-risk (<0.91), intermediate risk (0.91 to 5.12), and high-risk 
(>5.12) groups. The threshold values were defined from the 
predicted 5-year absolute risks for the original LLP control 
samples (n=1,272), assuming the risk distribution in this group 
is similar to that of the general Liverpool population. The 
upper threshold (5.12) corresponds to the value for the top 
20% of predicted absolute risks in the population; individuals 
whose 5-year predicted absolute risk is equal to or above this 
value are designated as ‘high risk’ group. The lower threshold 
value of 0.91 corresponds to the bottom 40% of absolute risks 
in the control population and represents the ‘low risk’ group. 
This definition of high risk and low risk groups was used in an 
earlier study (13). Overall, 42.7% of cases (311/727) and 35.7% 
of controls (592/1657) had their predicted risks re-classified 
into other risk groups when SNPs were incorporated into risk 
prediction model. This reclassification showed improvement 
(upward shift) in approximately 25% of cases and became 
worse (downward shift) for 18% resulting in a net gain of 
~6%. The net gain was higher for controls (10%) with overall 
improvement in risk (downward shift) for 23% and worse 

performance (upward shift) for 13%. The NRI was estimated 
at 13.5% (P<0.001).

Table VI depicts the odds ratios (OR) and 95% confidence 
intervals (95% CI) of the multivariate logistic regression 
models for the epidemiological model and the extended 
model with SNPs. The ORs and 95% CI for both models 
were comparable which suggests the absence of any serious 
confounding effects of SNPs on the relationship between each 
of the other clinical and epidemiological risk factors and lung 
cancer risk. Model fit was assessed using Akaike information 
criterion (AIC) and Bayes information criteria (BIC). There 
was an improvement in model fit as indicated by the reduc-
tion of the AIC from 2098.42 from the epidemiological model 
to 1930.14 for the extended model with SNPs. Likewise, a 
similar reduction was observed in BIC from 2167.75 from 
the epidemiological model to 2016.80 for the extended 
model with SNPs. Fig. 1 shows the AUC of the epidemio-
logical model and extended model with SNPs. The apparent 
AUC of the epidemiological model without SNPs was 0.75 
(95% CI 0.73‑0.77). When epistatic data were incorporated 
in the extended model, the AUC increased to 0.81 (95% CI 
0.79‑0.83) which corresponds to 8% increase in AUC for the 
model with SNPs (DeLong's test P=2.2e-16). After correction 
for optimism, the AUC was 0.73 for the epidemiological 
model and 0.79 for the extended model.

Discussion

This study demonstrates the use of comprehensive analytical 
techniques for investigating the contribution of adding an 
interactive effect of a panel of genetic markers (SNPs) to 
the prediction of individual absolute risk of developing lung 
cancer, using a risk model similar to the LLP model  (3). 
Using genotype data from 2385 individuals included in the 
independent validation of SNPs identified in a candidate-gene 
genetic association study from the LLP case-control study, we 

Table V. Reclassification of predicted risk for cases and controls using the epidemiological model and extended model with 
rs1799732 (DRD2), rs5744256 (IL-18) and rs2306022 (ITGA11).

	 Extended model with rs1799732 (DRD2), rs5744256 (IL-18) and rs2306022 (ITGA11)
Epidemiological	 ------------------------------------------------------------------------------------------------------------------------------------------------------------
model	 <0.91%	 0.91 to 2.5%	 >2.5 to 5.12%	 >5.12%	 Total

Cases
  <0.91%	 69 (57.5) 	 43 (35.8)	 8 (6.7)	 0 (0)	   120
  0.91 to 2.5%	 15 (12.4)	 46 (38.0)	 46 (38.0)	 14 (11.6)	   121
  >2.5 to 5.12%	 0 (0)	 43 (26.7)	 49 (30.4)	 69 (42.9)	   161
  >5.12	 2 (0.6)	 9 (2.8)	 62 (19.1)	 252 (77.5)	   325
  Total	 86	 141	 165	 335	   727

Controls
  <0.91%	 726 (89.9)	 77 (9.5)	 4 (0.5)	 1 (0.1)	   808
  0.91 to 2.5%	 180 (45.0)	 147 (36.7)	 58 (14.5)	 15 (3.8)	   400
  >2.5 to 5.12%	 20 (8.8)	 85 (37.4)	 70 (30.8)	 52 (22.9)	   227
  >5.12%	 3 (1.3)	 29 (13.1)	 68 (30.6)	 122 (55.0)	   222
  Total	 929	 338	 200	 190	 1657
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found the 3 loci genotype interaction rs2306022 (ITGA11), 
rs5744256 (IL-18) and rs1799732 (DRD2) provided the best 

classifier of disease status using both MDR and RF. Adding 
these SNPs to a clinically-based lung cancer risk model lead 

Table VI. Summary of multivariable risk model for the epidemiological model and the extended model with rs1799732 (DRD2), 
rs5744256 (IL-18) and rs2306022 (ITGA11).

	 Epidemiological model	 Extended model with SNPs
	 ------------------------------------------------------------------------	 ------------------------------------------------------------------------
Covariates	 OR (95%CI)	 P-values	 OR (95%CI)	 P-values

Age	 1.01 (0.99-1.02)	 0.312	 1.00 (0.99-1.02)	 0.610
Gender	 1.24 (0.95-1.63)	 0.107	 1.14 (0.87-1.52)	 0.340
Smoking duration (years)
  None	 1.00		  1.00
  1-19	 1.41 (0.82-2.42)	 0.209	 1.23 (0.69-2.18)	 0.476
  20-39	 4.30 (2.81-6.57)	 <0.001	 4.90 (3.10-7.73)	 <0.001
  40-59	 11.12 (5.41-22.86)	 <0.001	 15.70 (7.22-34.14)	 <0.001
  ≥60	 13.91 (9.26-20.91)	 <0.001	 18.58 (11.90-29.01)	 <0.001
Pneumonia	 1.53 (1.12-2.09)	 0.007	 1.55 (1.11-2.15)	 0.008
Asbestos	 3.25 (2.34-4.52)	 <0.001	 3.10 (2.19-4.39)	 <0.001
Previous tumour	 16.97 (11.25-25.61)	 <0.001	 16.52 (10.79-25.31)	 <0.001
Family history of lung cancer
  None	 1.00
  Early onset (<60 years)	 1.33 (0.84-2.09)	 0.223	 1.11 (0.69-1.80)	 0.659
  Late onset (≥60 years)	 1.07 (0.76-1.54)	 0.672	 1.14 (0.78-1.66)	 0.495
rs1799732			   0.78 (0.63-0.97)	 0.028
rs5744256			   2.04 (1.69-2.46)	 <0.001
Rs2306022			   4.04 (3.10-5.26)	 <0.001
Goodness of fit statistic
  AIC	 2098.42		  1930.14
  BIC	 2167.75		  2016.80

Figure 1. Performance of lung cancer risk model with and without the SNP epistatic effect.
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to an increase in AUC (0.75 to 0.81); and increase in net reclas-
sification (NRI=17.5%).

We utilised two different approaches; discrimination and 
reclassification to evaluate the contribution of adding an inter-
active epistatic effect to a risk model for lung cancer. AUC is 
the most popular metric used for measuring the discriminatory 
power of a model to correctly classify subjects with or without 
a disease. Our result showed 8% increase in AUC (DeLong's 
test P=2.2e-16) for risk prediction in the extended model with 
SNPs (AUC=0.81) compared with the epidemiological model 
without SNPs (AUC=0.75), which is higher than that reported 
by Li  et  al  (9). Li  et  al, in a Chinese case-control study, 
genotyped five SNPs identified in Genome Wide Association 
study of 5068 subjects. The genetic risk scores based on these 
SNPs were estimated by two approaches: a simple risk alleles 
count (cGRS) and a weighted method (wGRS). Their AUC in 
combination with the bootstrap resampling method was used 
to assess the predictive performance of the genetic risk score 
for lung cancer. Smoking history contributed significantly 
to lung cancer (P<0.001) risk [AUC=0.619 (0.603-0.634)], 
and incorporated with wGRS gave an AUC value of 0.639 
(0.621-0.652) after adjustment for over-fitting (9). For clinical 
risk prediction, it is expedient that a new risk model correctly 
classify individuals into higher or lower risk categories (37). 
Pencina et al introduced a new metric, the NRI that assesses 
the improvement in model performance by quantifying the 
degree of correct classification (24). By applying the NRI, 
we demonstrated that the addition of SNPs lead to a 17.5% 
improvement in the risk classification of the subjects.

This study is the first to replicate the association between 
the ITGA11 locus and lung cancer described by Young 
and colleagues (26). ITGA11 (integrin α11) belongs to the 
family of transmembrane receptors that mediate physical 
interactions between cells and extracellular matrix protein 
collagens  (38). ITGA11 is localised to stromal fibroblast 
and commonly overexpressed in non-small cell lung cancer 
(NSCLC) (38). Earlier studies have reported that the inter-
actions of tumour cells with the stroma play a crucial role 
in tumour growth, invasion, metastases, angiogenesis, and 
chemoresistance (38-41). It has been shown that carcinoma-
associated fibroblasts in NSCLC express higher levels of 
ITGA11. One of the factors which are affected by higher 
levels of ITGA11 during tumour growth is IGF2  (38,42). 
Higher levels of IGF2, in turn, can stimulate growth of tumour 
epithelial cells leading to tumour progression and metas-
tasis (38). IL18 (Interleukin-18) is a multifunctional cytokine 
(an extracellular signalling molecule) that augments IFN-γ 
production and affects tumour immune response, leukocyte 
recruitment, cancer proliferation, and angiogenesis (43,44). 
An earlier study reported the presence of IL-18 in induced 
sputum of lung cancer patients  (45). Farjadfar et  al  also 
reported an association between IL-18 and lung cancer 
in a case-control study including 73  lung cancer patients 
(53 squamous carcinoma and 20 small cell lung carcinoma), 
and 97 healthy regional aged-matched individuals (46). They 
suggested that their finding may be attributed to the disrup-
tion of the potential of cAMP responsive element-binding 
protein site and subsequent reduction in IL-18 production as 
observed in other cancer types (46). Reduced production of 
IL-18 can result in decreased IFN-γ synthesis, imbalanced 

Th1/Th2 differentiation, insufficient activation of natural 
killer cells and CD8+ lymphocytes (46,47) impairment of 
cancer cell apoptosis and efficient angiogenesis  (47,48). 
DDR2 is a receptor tyrosine kinase that binds collagen as 
its endogenous ligand  (49). It has been previously shown 
to promote cell migration, proliferation, and survival when 
activated by ligand binding and phosphorylation  (49,50). 
Harmmerman  et  al  reported that DDR2 mutations are 
present in 4% of small cell lung carcinomas; gain-of-function 
mutations in this gene are important oncogenic events and 
are amenable to therapy with dasatinib (49). However, the 
mechanism of this mutation is unknown.

Since epistasis is known to contribute to unexplained 
genetic variation of common diseases, some genetic vari-
ants may have a weak and insignificant independent effect, 
but strong epistatic effect (biological interaction) with other 
variants. The integration of genetic variants in risk prediction 
models beyond the traditional epidemiological covariates have 
been applauded as the way forward in lung cancer risk predic-
tion modelling (8). The result presented in this study supports 
this notion. Genetic factors function primarily through 
complex mechanisms that involve interactions between 
multiple genes and environmental factors (21,22). However, 
the effect of interaction will be disregarded if the genetic 
effect is examined in isolation, without taking cognisance of 
potential interactions with other unknown factors (31). The 
inherent nonlinearity implies that epistasis can occur among 
polymorphisms even in the absence of independent effect of 
the components, presenting computational intensive difficul-
ties and statistical challenges because an infinite number of 
combinations that needs to be evaluated (21,22). The use of 
nonparametric and genetic model-free machine learning 
algorithms such as MDR (28,29) and RF (32,33) have been 
proposed to overcome the caveat of the traditional parametric 
statistics and have proven to be useful in this study. Here we 
see that the addition of the three SNPs increases the AUC, 
indicating that the interaction of these loci may be important. 
There was an improvement in model fit, as indicated by the 
reduction of the AIC and BIC. Furthermore, the SNPs used in 
this study were internally validated using a two stage design as 
described by Young et al (26) and the use of HWE to minimise 
genotyping error are methodological advantages utilised to 
minimise false positive results.

To the best of our knowledge, this is the first study to 
evaluate the addition of these specific interactions of SNPs 
to a lung cancer risk model. However, the result of this study 
must be considered in the light of a number of limitations. 
First, our prediction model used covariates in the LLP risk 
model but did not include other risk factors for lung cancer 
such as chronic obstructive pulmonary diseases. However, 
the objective of this study is to evaluate the contribution of 
adding an interactive effect of a panel of genetic SNPs to the 
LLP risk model and the model has been validated in three 
independent external datasets with good discrimination and 
calibration (27). Second, our study demonstrates how a modest 
increase in AUC can lead to a substantial improvement in 
reclassification as quantified by the NRI. This finding supports 
a suggestion by Pencina et al that a small increase in AUC 
might still be suggestive of a meaningful improvement (24). 
Third, the LLP comprise predominantly Caucasians and 
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therefore, the lack of ethnic diversity implies that this model 
may be less applicable in non-white population. Fourth, our 
approach to reclassification did not distinguish between 
persons with competing events and those without an event 
because both are classified as not having the event of interest. 
Fifth, the lack of validation of the epistatic model in an inde-
pendent population is a limitation, however, the application of 
bootstrap correction for optimism addresses in part the lack 
of independent validation. Sixth, many of the 20 SNPs from 
Table II failed to replicate in the current study, particularly 
given the larger sample size (718 cases, 1667 controls) in the 
current study when compared with previous study (248 cases, 
207 controls). A plausible explanation for this observation 
may be due to the fact that the non-significant SNPs play 
lesser or no role in epistatic interaction. Finally, our threshold 
values for risk classification was based on the predicted 
5-year absolute risk for original LLP control samples but the 
appropriateness of these threshold values in other populations 
is uncertain. Using different values could have affected the 
results of our reclassification analyses and subsequent clinical 
implications.

In conclusion, our result shows in principle how an SNP 
epistatic factor can be incorporated into an epidemiological risk 
prediction model. In this study, inclusion of SNPs rs1799732 
(DRD2), rs5744256 (IL-18), rs2306022 (ITGA11) resulted in a 
modest improvement in lung cancer risk prediction.
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