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Abstract. Glioblastoma (GBM) is both the most common and 
the most aggressive intra-axial brain tumor, with a notoriously 
poor prognosis. To improve this prognosis, it is necessary 
to understand the dynamics of GBM growth, response to 
treatment and recurrence. The present study presents a math-
ematical diffusion-proliferation model of GBM growth and 
response to radiation therapy based on diffusion tensor (DTI) 
MRI imaging. This represents an important advance because 
it allows 3-dimensional tumor modeling in the anatomical 
context of the brain. Specifically, tumor infiltration is guided 
by the direction of the white matter tracts along which glioma 
cells infiltrate. This provides the potential to model different 
tumor growth patterns based on location within the brain, and 
to simulate the tumor's response to different radiation therapy 
regimens. Tumor infiltration across the corpus callosum is 
simulated in biologically accurate time frames. The response 
to radiation therapy, including changes in cell density gradients 
and how these compare across different radiation fractionation 
protocols, can be rendered. Also, the model can estimate the 
amount of subthreshold tumor which has extended beyond 
the visible MR imaging margins. When combined with the 
ability of being able to estimate the biological parameters of 
invasiveness and proliferation of a particular GBM from serial 
MRI scans, it is shown that the model has potential to simulate 
realistic tumor growth, response and recurrence patterns in 
individual patients. To the best of our knowledge, this is the 
first presentation of a DTI-based GBM growth and radiation 
therapy treatment model.

Introduction

Glioblastoma (GBM) is both the most common and the most 
aggressive intra-axial brain tumor, with a notoriously poor 
prognosis (1,2). Despite the aggressiveness of GBM, radiation 

therapy has been shown to significantly improve survival in 
multiple trials (3,4). However, the standard approach to radia-
tion therapy has remained relatively stable for several decades, 
using conformal radiation therapy with regimens such as 
60 Gy over 30 doses of 2 Gy or 63 Gy over 35 doses of 1.8 Gy 
with 1-2 cm margins surrounding the visible tumor (5,6).

These treatment plans constitute standardized therapeutic 
regimens which do not account for the biological heterogeneity 
of GBM among different patients (6). Thus, investigators have 
recently started trying to optimize radiation therapy protocols 
using a concept termed ‘the fundamental principle of person-
alized management’ (7). When applied to GBM, this concept 
seeks to individualize both prognostic estimates and treatment 
plans based on the biological parameters of each patient's 
tumor (6). It is suggested that this individualized approach may 
allow more tailored treatment based, for example, on differ-
ences in tumor invasiveness and proliferation, which would 
lead to different cell density profiles between patients (6,8).

At the heart of these efforts is the push to develop accurate 
mathematical models of GBM growth and infiltration in the 
brain. Such models would not only have the potential to opti-
mize therapy, but also to potentially predict individual patient 
response patterns to a proposed treatment regimen (6,9,10).

Among the best known of these models is one origi-
nally pioneered by Murray  et  al  (11), Harpold  et  al  (12), 
Swanson et al (13) and Tracqui et al (14), using a reaction-
diffusion partial differential equation model of cell density as 
a function of space and time. The model accounts for both the 
infiltrative nature of GBM using a diffusion term, and the net 
proliferation of tumor cells using a proliferation term (11-14).

The one-dimensional radially symmetric form of this 
model has been previously used to model the effects of both 
chemotherapy and surgery on the survival of patients with 
glioma (14,15). More recently, Rockne et al (9,16) extended 
this model to include the effects of radiation therapy.

The one-dimensional model uses a single rate of diffu-
sion, D, applicable throughout the brain, thereby modeling 
isotropic tumor growth (12,16). However, such models do not 
simulate tumors in the context of actual brain anatomy, and in 
particular, ignore the differential infiltration of glioblastoma 
in the direction of white matter tracts. Thus, the most recent 
work has begun to incorporate diffusion tensor imaging (DTI) 
data into models of glioma growth, allowing for anisotropic 
tumor extension (17,18). DTI-based growth models represent 
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an important advance in tumor growth modeling because 
they allow 3-dimensional tumor modeling in the anatomical 
context of the brain. Specifically, tumor infiltration (modeled 
by the diffusion term) is guided by the direction of the white 
matter tracts along which glioma cells infiltrate. Such a 
3D-DTI model was originally introduced by Jbabdi et al (17) 
to model the growth of low grade gliomas. In the present study, 
this model is applied to GBM, and extended to incorporate 
the effects of radiation therapy, thus producing a robust model 
which simulates both the growth of GBM and its response to 
radiation therapy. The model allows direct simulation of tumor 
growth with anisotropic infiltration along white matter tracts, 
along with estimates of cell density gradients. It has the poten-
tial to model different tumor growth patterns based on location 
within the brain, and response patterns to different radiation 
therapy regimens. When combined with the potential of being 
able to estimate the biological parameters of invasiveness and 
proliferation from serial MRI scans for a specific patient, it is 
hoped that such a model will represent a significant advance in 
individualized treatment regimens and prognostic estimates.

To the best of our knowledge, this is the first presentation 
of a DTI-based GBM growth and radiation therapy treatment 
model. Using the model, a GBM is ‘grown’ in brain tissue, 
then treated with radiation, and then monitored as it naturally 
recurs via the model.

Materials and methods

The 3D-DTI model. In its initial formulation, the reaction-
diffusion model was used to simulate glioblastoma growth in 
one spatial dimension:

where the various terms are defined as follows: c(t,x) is the 
tumor cell density, in terms of cells/mm3, which is a function 
of position x and time t.

D(x) is the diffusion term, in mm2/day, which models local 
tumor invasion of tumor cells.

is a logistic tumor growth term, where ρ is the tumor prolifera-
tion rate in units of (/day), governed by a tissue tumor carrying 
capacity K, in units of cells/mm3.

With the 3D-DTI model, D becomes a tensor incorporating 
the magnitude and directionality of the diffusion coeffi-
cient (17).

Thus, the model can be rewritten as:

where D(x) is the 3x3 diffusion tensor that describes aniso-
tropic diffusion as a function of location. This diffusion tensor 
is derived from the standard water diffusion tensor

Dw is then modified by the use of a ‘stretch factor’ as per 
Jbabdi et al (17) to account for the fact that cellular migration 
along white matter tracts displays greater anisotropy than does 
water diffusion.

After D(x) has been calculated, the equation can be devel-
oped as follows: once again as per Jbabdi et al (17),

 

can be transformed into the following equation:

where 

For any given initial condition c(0,x) = co(x) and zero flux 
boundary conditions such that tumor cells are prohibited from 
migrating outside the domain of the brain or into the ventricles 
(D(x)▽c)•→n= 0, this model can be used to evaluate tumor cell 
concentration as a function of both time and space.

The model is then solved using a forward finite differences 
approach, using ∆t as a time step and (∆x, ∆y, ∆z) as space 
steps (17).

The initial condition used in the present study is a tumor 
cell concentration of 0.8*K confined to a single voxel.

K is the tissue tumor carrying capacity in units of cells/mm3 
and is typically set at 105 cell/mm3 (19).

The trace of the diffusion tensor is scaled to a global D 
value which is similar to the one-dimensional model. For 
the current model, various values of D and ρ are used for 
simulations, drawn from the range of published values for 
GBM (16,20).

The model predicts a gradient of cell density, gradually 
advancing from the center of the tumor guided by the diffu-
sion coefficient and the direction of adjacent white matter 
tracts. The model then uses cell density thresholds for tumor 
visibility on both T1 post contrast images and FLAIR/T2 
images. The T1 post contrast detection threshold, used to 
simulate the enhancing T1 tumor radius (T1C), is set at 0.8K, 
while the T2 threshold is 0.16K, keeping consistent with esti-
mates from prior work (6).

Radiation therapy. To model treatment, an additional radiation 
therapy term is added:

Similar to the work of Rockne et al (9,10), the R term quan-
tifies the loss of tumor cells due to radiation therapy, which is 
delivered as discrete doses, and is hence amenable to modeling 
different dosing schedules. R is defined as a function of S, the 
fraction of cells surviving a radiation dose, using the well-
known linear-quadratic dose-response model: S = e-(αd+βd2), 
where α (in units of Gy-1) and β (in units of Gy-2) reflect type 
A (single ionizing event) and type B (pairwise interaction of 
ionizing events) tissue damage. Since tissues can be somewhat 
characterized by an α/β ratio, and to simplify the model to a 
single radiation parameter, the α/β is held fixed, as in prior 
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work (6,9,10). In the present study, similar to prior studies, this 
ratio is held at 10 Gy (6,9,10). Thus, S can be written as:

It is noted that this formulation is fully in accordance with 
the standard definition of B.E.D., the biologically effective 
radiation dose, which is defined as:

Hence, S can be rewritten as S = e-α(B.E.D) (16).
If S is the surviving cell fraction for a given dose, then 

(1-S) is the probability of cell death. In this formulation, α can 
be regarded as the parameter defining radiation sensitivity.  A 
higher α corresponds to a decreased probability of survival.  
Also d reflects the given radiation dose, which is a function of 
both space and time, d(x,t), allowing specific radiation therapy 
protocols to be modeled.

As per Rockne et al (9,10), the effect of radiation therapy is 
also cast as a function of cell density, using the same logistic 
formulation as the tumor growth model as follows:

Hence, at locations of high cell density, when the tumor cell 
proliferation is decreased according to the logistic configura-
tion, the effect of radiation therapy is likewise decreased. This 
is consistent with the understanding that radiation is most 
effective in regions of high mitotic activity and high cellular 
turnover. Conversely, at low cell densities, the effect of radia-
tion therapy is essentially linearly related to the fraction of 
cells killed. The above formulation is equivalent to a Taylor 
series approximation of having the logistic term as part of the 
exponent of S.

In keeping with previous studies, radiation therapy is 
modeled as a total of 61.2 Gy/34 doses, using the University 
of Washington protocol (16). The first 28 doses are given in a 
field using the T2 tumor boundary + 2.5 cm, while the last 6 
doses are given as a more spatially limited booster field using 
the enhanced T1 radius + 2 cm.

Relying on previously published estimates, including the 
variation of α with tumor proliferation, various values of are 
used, ranging from an α of 0.03 Gy-1 to an α of 0.09 Gy-1 (16,21). 

MR imaging. The model simulation was carried out on a DTI 
series from a healthy volunteer. Imaging was performed on a 
Siemens 3T Magnetom scanner, with standard T1 (TR 487 ms, 
TE 16 ms, 5 mm slice thickness) and T2 (TR 3670 ms, TE 
93 ms, 5 mm slice thickness). DTI imaging was performed 
using a 128 x 128 matrix with a voxel size of 1.7 x 1.7 x 4 mm, 
TR 4100 ms, TE 95 ms, using a diffusion schema with 64 
non-colinear imaging directions, b-values= 0 and 1000 s/mm2, 
NEX = 3, with 30 contiguous slices covering the entire brain. 

Results

The model can be used to simulate GBM growth, showing a 
realistic growth pattern, with tumor spreading along the direc-
tion of fiber tracts as mapped by DTI (Figs. 1 and 2).

The model can also be used to simulate the response to 
radiation therapy, as per the Materials and methods. There is 
visible tumor shrinkage with radiation therapy, and this is a 
function of both the tumor parameters D and ρ, as well as the 
radiation sensitivity as set by α. In fig. 3, a simulation of tumor 
response to a standard radiation therapy protocol (Materials 
and methods) is shown for two tumors. By setting different cell 
density thresholds, the model can also simulate what is referred 
to as the ‘subthreshold zone’, of low density tumor cells that are 
below the T2 visibility threshold. Although the second tumor 
(D=0.4 mm2/day and ρ=0.04/day) shows a more pronounced 
response to radiation therapy on T1C images (fig. 3B vs. E), 
the model suggests that after treatment, the second tumor actu-
ally has a larger subthreshold zone of low density infiltration 
of tumor cells streaming through the white matter tracts into 
adjacent brain, including crossing the splenium of the corpus 
callosum. This is because the second tumor has a higher diffu-
sion coefficient (D=0.4 mm2/day vs. 0.2 mm2/day). Thus, the 

Figure 1. Serial axial slices of a simulated tumor seeded in the right aspect 
of the splenium of the corpus callosum, overlaid on a DTI image, with 
D=0.04 mm2/day and ρ=0.05/day. Images are at 105, 135, 165, 195, 240, 270 
and 345 days. The model shows tumor growing along adjacent fiber tracts.

Figure 2. (Top left to bottom right) Coronal, sagittal and axial slices of the 
simulated tumor from above at 405 days. An axial view of an actual GBM 
in the corpus callosum is shown for comparison. The DTI growth model 
provides a fairly accurate simulation of tumor growth. GBM image from 
Kiely and Twomey (31).
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model gives some insight into the complex nature of tumor 
growth and treatment.

The model also allows the simulation of any desired 
radiation therapy protocol, and hence provides a simulation 
environment within the anatomic context of the brain where 
different therapeutic protocols may be experimented with, at 
least to examine qualitative differences. For example, in fig. 4, 
the standard radiation therapy protocol is compared to a hypo-
fractionation protocol. Hypofractionation protocols similar to 
the one below have been tried in some studies with a thought 
to limiting the number of hospital visits which patients with a 
limited life expectancy need to make for treatment, and hope-
fully improving quality of remaining life (22).

The most significant potential use of the model, however, 
would be to model a priori the expected growth pattern and 

response to treatment in a given patient. This will require a 
significant amount of correlation between the model and 
actual patient data, as well as how to ‘calibrate’ the model for 
an individual patient's GBM beyond location of the tumor.  
However, fig. 5 is presented to illustrate the potential of the 
model to simulate tumor response to therapy and tumor recur-
rence post therapy. The comparison of simulation to actual 
images shows a reasonably accurate set of results both in terms 
of tumor morphology and in terms of time frame. The model 
images were obtained at time-points matching the available 
MRI scans and dates of radiation therapy.

Discussion

Accurate mathematical modeling of glioblastoma growth and 
spread is an important adjunct to developing both optimal 
treatment plans and accurate prognostic estimates. The 
reaction-diffusion partial differential equation model provides 
a method of doing this by characterizing both the infiltration 
and proliferation of glioblastoma (11,12).

In general terms, this model has been used to simulate the 
response of GBM to both surgery and chemotherapy (14,15) 
as a function of the model's parameters. More importantly, the 
model has shown the capacity to characterize the behavior of 
GBM in individual patients. This is done by estimating the 
tumor parameters, D and ρ, from two serial MR scans (6). In 
this way, the model has been used to estimate the survival of 
individual patients as well as individual response to radiation 
therapy (9,13).

In this initial form, the reaction-diffusion equation was 
used to model isotropic diffusion of tumor cells in one spatial 
dimension. In such a context, there is a single, constant value of 
D that is applicable throughout the domain of the brain (11,16). 
However, this assumption does not capture the anatomical 
complexities of the brain. Hence, based on the finding that 
glioma cells diffuse more quickly through white matter than 
gray matter, a refinement of the model by Swanson  et  al 
incorporated preferential white matter diffusion into the reac-
tion-diffusion tumor model, with D now taking different values 
in gray matter (Dg) and white matter (Dw) (12,23). However, 
even in white matter, it is known that diffusion is not isotropic, 
and that tumor cells migrate preferentially in the direction of 
white matter tracts (24-28). Thus, the most recent research has 
begun to incorporate diffusion tensor MR imaging (DTI) data 

Figure 3. Simulations of the response of two tumors to radiation therapy.  
(A-C) are for a tumor with D=0.2 mm2/day and ρ=0.1/day, representing 
a fairly aggressive GBM. For this tumor, is set at 0.09 Gy-1. (D-F) are for 
a tumor with D=0.4 mm2/day and ρ=0.04/day. For this tumor, α is set at 
0.06 Gy-1. (A and D) projected T1C appearance of tumor prior to radiation 
therapy. (B and E) projected T1C appearance after radiation therapy. (C 
and F) simulated post-therapy subthreshold zone appearance of tumor, with 
a projection of tumor extension beyond the visible T2 margins. For this and 
all figures, red represents the highest cellular concentrations, while yellow, 
violet, blue and black represent progressively lower concentrations.

Figure 4. Simulations of the effects of different radiation therapy protocols. Simulation of a tumor with D=0.4 mm2/day and ρ=0.04/day, with α=0.06  Gy-1. 
(A) pretherapy T1C. (B) post-therapy T1C with an accelerated hypofractionated protocol consisting of 35 Gy given as 5 doses of 7 Gy/dose, one dose per week. 
(C) post-therapy T1C with standard radiation protocol described in Materials and methods.
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into models of glioma growth, allowing for modeling aniso-
tropic tumor growth (17,18). In this latest refinement of the 
model, tumor infiltration (modeled by the diffusion term) is 

guided by the direction of the white matter tracts along which 
glioma cells infiltrate, based on a diffusion tensor associated 
with each voxel (17). This study implements the 3d-DTI model 

Figure 5. Model simulations of an individual GBM patient who underwent only radiation therapy. Row 1, day 0, when patient presented; simulated T1C vs. 
actual T1C axial and coronal images. The simulated and actual tumors have a similar shape in the centrm semiovale, slightly ovoid with a horizontal long axis, 
but with central anterior and posterior protrusions. Patient underwent radiation therapy on day 12, with 60 Gy over 30 doses in 6 weeks. Row 2, simulated 
response to radiation therapy. No MR images available immediately post-therapy. Row 3, day 102. Axial and coronal simulated and actual MR images. Tumor 
has begun to regrow post-therapy. However, simulations show decreased intra-tumoral cell concentrations compared to pre-therapy images, corresponding to 
less internal enhancement in tumor on actual MR images. Row 4, day 146, actual vs. simulated images, with increased tumor growth and spread across the 
corpus callosum. Row 5, day 177, actual vs. simulated tumor, with further tumor growth including further spread across the midline. Both the simulated and 
actual coronal images show tumor wrapping around the inferolateral margin of the right lateral ventricle in very similar configurations.
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and further refines it by incorporating radiotherapy into the 
model. This model thus provides the most realistic available 
tool for modeling GBM growth and response to therapy. In 
fig. 1, the model simulates the growth of a butterfly glioma 
beginning at the right margin of the splenium of the corpus 
callosum. It is noted that the pattern of growth is anatomically 
realistic, and also provides reasonable temporal estimates of 
tumor growth. The evolution of the GBM and the distribu-
tion of tumor cells in the brain are thus seen to be entirely 
different in this model than would be predicted by an isotropic 
spherically symmetric model. Furthermore, by incorporating 
volumetric DTI data, the model allows a true 3-dimensional 
simulation of tumor growth within the brain volume (fig. 2), 
rather than the concatenation of 2-dimensional slices to create 
a 3-dimensional volume.

The new model presented here also has the capacity to 
simulate response to radiation therapy. In fig. 3, the response 
of two different tumors is compared. In the first tumor, 
D=0.2 mm2/day and ρ=0.1/day. This tumor, because of its 
relatively high proliferation coefficient, shows a positive but 
fairly limited response to radiation therapy. In the second 
tumor, D=0.4 mm2/day and ρ=0.04/day. In this tumor, there is 
significantly more shrinkage with radiation therapy, as well as 
decreased cellular concentrations within the remaining tumor. 
Most interestingly, the current model also allows estimation of 
the subthreshold zone of ‘invisible’ tumor cells, below the T2 
visibility threshold (fig. 3C and F). It is noted that although the 
second tumor shows a significantly better response to radiation 
therapy on T1C, it actually has a larger zone of subthreshold 
tumor cells spreading beyond the radiation field, because of a 
higher diffusion coefficient. Of particular interest is the spread 
of a low concentration of tumor cells to the contralateral hemi-
sphere across the splenium of the corpus callosum (fig. 3F). 
The extent and pattern of the subthreshold zone are of signifi-
cant import in planning and optimizing radiation fields (18).

The model thus provides a virtual in silica laboratory to 
compare the expected response to different radiation therapy 
protocols. In fig.  4, the same tumor is treated with the 
traditional protocol (see Materials and methods), as well as 
with a hypofractionated protocol, with a total dose of 35 Gy 
delivered in 5 doses of 7 Gy, one dose per week. The model 
predicts a positive response to both therapies, but with a better 
response to the traditional dosing regimen. These results are 
in keeping with some of the empirical results on hypofraction-
ated therapy. For example, the work of McAleese et al (29) 
compared an accelerated hypofractionated protocol consisting 
of 30 Gy in 6 fractions to matched controls receiving a stan-
dard 60 Gy/30 fraction protocol, and found that although the 
hypofractionated protocol had a palliative benefit, it showed 
a shorter median survival of 2.5-4.5 months compared to the 
standard protocol. Of course, the objective of the present study 
is not to rigorously compare hypofractionated to standard 
protocols, but the simulation is presented to show the utility of 
the current model.

Most importantly, the model can also potentially be used to 
simulate the growth of GBM and its response to treatment in 
individual patients, as seen in fig. 5. That figure illustrates the 
case of a patient treated only with a standard radiation therapy 
protocol, and compares the results of the model to the patient's 
images. The initial simulation images, with a tumor grown 

in the right centrum semiovale, show a tumor shape similar 
to the actual images, with a tumor that is slightly ovoid, with 
a horizontal long axis, but with small anterior and posterior 
protuberances, and with a slight extension across the midline 
(fig. 5, first row). The time course and growth pattern of the 
tumor recurrence after radiation therapy are comparable to 
the patient's follow-up images. The coronal image growth 
patterns across the corpus callosum and the extension around 
the frontal horn of the right lateral ventricle are quite similar.  
Most interestingly, there is a change in tumor shape after radia-
tion therapy, with a shift from an ovoid shape with a horizontal 
long axis to a rounded shape and then to tumor growth with a 
more anterior-posterior long axis (fig. 5). Of course, this case 
represents only anecdotal evidence of the utility of the model, 
and is once again presented simply to illustrate the potential 
utility of the model.

The present study thus presents a significant refinement 
to existing GBM growth and treatment models, and initial 
investigations suggest that the model's results are at least a 
reasonable facsimile to reality. The model provides a method 
of predicting the spread of GBM along white matter tracts, 
and provides estimates of the extent of ‘subthreshold’ tumor 
below the MR visibility threshold (fig. 3C and F). Also, the 
model provides a method to simulate the response of GBM to 
different radiation therapy regimens, as in fig. 4, where the 
model predicts that the standard protocol is more effective 
than the modeled hypofractionation protocol. Notably, when 
the same comparison is carried out for a tumor with a ρ of 
0.1/day (results not shown), the model predicts that the advan-
tage of the standard protocol becomes more pronounced as the 
proliferation index of the tumor increases.

All of these results are preliminary, and the utility of the 
model will only be elucidated by close empirical comparisons 
in future studies. Of course, the current model still has limi-
tations. For example, it is unclear whether it is sufficient to 
model GBM invasiveness as a passive diffusion process. Also, 
to individualize the model, the D and ρ of the tumor need 
to be determined, which requires two serial MR scans, and 
this is quite uncommon for GBM. Therefore, the model may 
need to rely on average values and provide only qualitative 
predictions. Much empirical testing will need to be performed 
to see if the model will be quantitatively accurate in terms of 
the growth of GBM and its response to therapy even if values 
of D and ρ are known. The radiation therapy simulations also 
rely on the linear-quadratic model, and on values of α and a 
α/β fixed ratio, which are only rough approximations. Initial 
results, for example, suggest that the value of α varies with 
the proliferative index of the tumor (9). Also, temozolomide 
has become a standard part of glioblastoma treatment, and it 
remains unclear how to incorporate the effects of temozolo-
mide into the model. Initial results by Barazzuol et al (21) 
suggests that temozolomide enhances radiation sensitivity, 
and that this can be modeled as a decrease in the α/β ratio. If 
so, that can be easily incorporated into the model, but again 
will require close correlation to empirical data. That said, 
evidence suggests that temozolomide is less effective for the 
subset of GBM with unmethylated MGMT promoter, and 
thus the impact of excluding temozolomide from the current 
treatment model is likely to be smaller for this subset (30). 
The current model focuses on radiation therapy, and does 
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not include surgery simulations. Once again, this can also be 
incorporated into future iterations of the model, and will be 
necessary for accurate modeling of tumor treatment and recur-
rence. However, even with these significant limitations, it is 
hoped that the current model provides an important addition to 
current modeling efforts, and shows encouraging initial results 
and insights into the morphology of GBM growth, spread, 
response to therapy and recurrence after treatment.
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