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Abstract. Identification of new biomarkers for breast cancer 
remains critical in order to enhance early detection of the 
disease and improve its prognosis. Towards this end, we 
performed an untargeted metabolomic analysis of breast 
ductal fluid using an ultra-performance liquid chromatography 
coupled with a quadrupole time-of-light (UPLC-QTOF) mass 
spectrometer. We investigated the metabolomic profiles of 
breast tumors using ductal fluid samples collected by ductal 
lavage (DL). We studied fluid from both the affected breasts 
and the unaffected contralateral breasts (as controls) from 
43 women with confirmed unilateral breast cancer. Using 
this approach, we identified 1560 ions in the positive mode 
and 538 ions in the negative mode after preprocessing of the 
UPLC‑QTOF data. Paired t-tests applied on these data matrices 
identified 209 ions (positive and negative modes combined) 
with significant change in intensity level between affected and 
unaffected control breasts (adjusted p-values <0.05). Among 
these, 83 ions (39.7%) showed a fold change (FC) >1.2 and 66 
ions (31.6%) were identified with putative compound names. 
The metabolites that we identified included endogenous 
metabolites such as amino acid derivatives (N-Acetyl-DL-
tryptophan) or products of lipid metabolism such as N-linoleoyl 
taurine, trans-2-dodecenoylcarnitine, lysophosphatidylcholine 
LysoPC(18:2(9Z,12Z)), glycerophospholipids PG(18:0/0:0), 

and phosphatidylserine PS(20:4(5Z,8Z,11Z,14Z). Generalized 
LASSO regression further selected 21 metabolites when 
race, menopausal status, smoking, grade and TNM stage 
were adjusted for. A predictive conditional logistic regression 
model, using the LASSO selected 21 ions, provided diagnostic 
accuracy with the area under the curve of 0.956 (sensitivity/
specificity of 0.907/0.884). This is the first study that shows 
the feasibility of conducting a comprehensive metabolomic 
profiling of breast tumors using breast ductal fluid to detect 
changes in the cellular microenvironment of the tumors and 
shows the potential for this approach to be used to improve 
detection of breast cancer.

Introduction

Breast cancer is one of the most genetically heterogeneous 
cancers. It is also one of the most commonly diagnosed cancers 
and the second most common cause of cancer mortality in 
women  (1). Despite the improvement of current screening 
methods which rely on imaging techniques and the targeted 
classification of breast cancer based primarily on hormone 
receptors (estrogen and progesterone) and the HER2/NEU 
status, mortality remains high for advanced breast cancer, 
particularly when drug resistance develops.

Since Warburg first hypothesized that cancer cells had a 
significantly higher rate of glycolysis than normal cells (2), 
researchers have shown that changes in metabolism can lead 
to large changes in metabolites that occur downstream of 
genomic and proteomic alterations (3,4). How signal pathways 
control energy metabolism in cancer cells has become a high 
priority in cancer research, reflecting an increased focus on 
the interaction of gene expression (i.e. receptors), microenvi-
ronment (i.e. hypoxia), and glucose metabolism, and how the 
downstream expression of metabolites can be used for both 
early detection of breast cancer as well as targeted drug thera-
pies (5-7).

Traditional methods of analysis have evolved into large-
scale data gathering through different ‘omics’ approaches: 
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genomics, transcriptomics, proteomics and more recently, 
metabolomics. This latter growing technology permits simulta-
neous monitoring of thousands of macro and micro metabolites 
that serve as substrates and products of metabolic pathways (8). 
Integration of these pathways and their interactions provides 
insight into the development of malignant processes and could 
lead to the discovery of cancer biomarkers (9).

Several studies have demonstrated the efficacy of using 
metabolomics to discriminate between cancer and normal 
tissues in different organs including the breast. Sitter et al (10) 
analyzed 88 tumor samples from breast cancer patients and 18 
tissue samples from adjacent non-tumor tissue using high-reso-
lution magic-angle spinning magnetic resonance spectroscopy 
(HRMAS). Principal component analysis (PCA) allowed for 
correct sample classification in the majority of the cases with 
82% sensitivity and 100% specificity. Mountford et al (11) 
performed proton nuclear magnetic resonance (1HNMR) 
spectroscopy analysis of breast tumor extracts. Fine needle 
aspiration biopsies from 140 patients with breast lumps (83 
malignant and 57 benign) were analyzed by 1HNMR spec-
troscopy. Using a classification strategy, they were able to 
classify samples as malignant or benign with a sensitivity and 
specificity of 93 and 92%, respectively. More recently, using 
high-throughput gas chromatography with time-of-flight mass 
spectrometer (GC-TOFMS)-based metabolomic analysis, 
Budczies et al (12) identified significant differences between 
metabolites from breast tumors compared to normal tissues, 
specifically the cytidine-5-monophosphate/pentadecanoic 
acid metabolic ratio. This allowed the discrimination between 
normal and cancer tissue samples with high specificity (93.9%) 
and high sensitivity (94.8%). Furthermore, a comparison 
of estrogen receptor positive and estrogen receptor nega-
tive breast cancer revealed significant changes in glutamine 
and β-alanine metabolism between these two breast cancer 
subtypes (13). Metabolomic profiling was used to discrimi-
nate between localized early breast cancer and advanced 
metastatic disease (14), and to develop a prediction model 
for the early detection of recurrent breast cancer from serum 
samples (15). Of interest, Budhu et al (16), showed that there 
was a specific metabolomic signature of tumors depending on 
the tissue of origin and suggested that the metabolites were 
generally unique for each tissue and cancer type. Comparing 
the metabolic changes between cancer and normal cells could 
identify the metabolic reprograming involved in tissue specific 
tumorigenesis.

To date, metabolomic analysis has been performed on 
many different tissue types, including solid tissues, serum, 
plasma and urine  (17). Originally, ductal lavage  (DL) and 
nipple aspirate fluid (NAF) were used for cytological evalua-
tion of breast epithelial cells in the ductal fluid. They have also 
been used for different molecular studies. However, because 
they contain proteins and metabolites of breast tissue metabo-
lism in addition to ductal epithelial cells, they are very useful 
for metabolomic studies, thus providing a unique opportunity 
to evaluate more directly metabolomic changes in the breast 
tumor microenvironment itself and avoiding questions of tissue 
specificity, which arise when evaluating blood and urine. The 
feasibility of performing metabolomic analysis in NAF was 
recently demonstrated in a small study of eight subjects (18). 
The study was conducted on samples obtained from healthy 

pre- and post-menopausal individuals and compared the find-
ings in NAF with matching plasma samples from the same 
patients. They showed that NAF is metabolically distinct 
from matched plasma samples which supports the theory that 
the cellular environment (tumor microenvironment) is more 
directly mirrored in breast biofluids (DL and NAF). We have 
recently identified a panel of microRNAs that are differentially 
expressed in ductal fluid from breasts with tumors compared 
to paired ductal fluid samples from the contralateral normal 
breast (19), further substantiating the importance of a more 
direct analysis of the tumor microenvironment and the poten-
tial for biomarker development using ductal fluid obtained in a 
non-invasive or minimally invasive approach. Here, we report 
the first metabolomic analysis of breast ductal fluid samples 
obtained from 43 patients with unilateral breast cancer. We 
evaluated paired samples from the breast with cancer compared 
to the contralateral non-affected breast (control) and identified 
several metabolites with significant changes in levels between 
affected and non-affected breasts. This approach provides an 
exciting opportunity to detect metabolomic changes in the 
cellular microenvironment reflecting tumor evolution, and 
has the potential for significantly improving breast cancer 
screening and detection

Materials and methods

Patient population. We enrolled 43 patients with unilateral, 
biopsy-confirmed, breast tumors [invasive breast cancer (IBC) 
and/or ductal carcinoma in situ (DCIS)], who were sched-
uled for surgery (mastectomy/lumpectomy) at the MedStar 
Georgetown University Hospital. Patients were identified by 
the surgeon and offered the opportunity to participate in the 
study. If they agreed, they were asked to sign an IRB-approved 
informed consent.

Ductal lavage. Prior to starting the operative procedure, for 
each subject, the surgeon obtained breast ductal fluid from 
the affected breast and the non-affected contralateral breast, 
using ductal lavage. Each patient served as her own control. 
The ductal lavage procedure was performed as previously 
described (20), except that the collected fluid was placed in a 
sterile tube with no preservative solution, and was transferred 
immediately to the laboratory, and divided into different 
aliquots which were frozen at -80˚C for future studies. One 
fresh aliquot was used for cytopathology evaluation to inves-
tigate the presence of benign, atypical or malignant cells by a 
certified breast pathologist, using the established criteria for 
ductal lavage cytologic analysis (21).

Metabolite extraction from ductal lavage. Metabolite 
extraction was performed as per the protocol described by 
Sheikh et al (22). Briefly, 150 µl of ductal lavage fluid was 
plunged into dry ice for 30 sec followed by heat shock at 
37˚C for 30 sec. A total of 600 µl of methanol containing 
4-nitrobenzoic acid and debrisoquine were then added and 
the samples were vortexed, transferred to room temperature 
and extracted with chloroform. The tubes were transferred to 
-20˚C for overnight incubation and subsequently centrifuged at 
4˚C for 10 min at 12,000 rpm. The top and bottom phases were 
transferred to different tubes carefully avoiding the middle 
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interface (containing precipitated proteins). An equivalent 
amount of chilled acetonitrile (ACN) was then added and the 
samples cooled on ice for 15 min after vortexing. Samples 
were centrifuged at 4˚C for 10 min at 12,000 rpm and the 
supernatant was transferred to a fresh tube and dried under 
vacuum. The residual pellet was re-suspended in 200 µl of 
solvent A (98% water, 2% ACN and 0.1% formic acid) for 
UPLC-Q-TOF/MS analysis.

UPLC-QTOF data acquisition. Each sample (5 µl) was injected 
onto a reverse-phase 50 x 2.1 mm BEH 1.7 µm C18 column 
using an Acquity UPLC system (Waters Corp., Milford, Ma, 
USA). The mobile phase comprised of water containing 0.1% 
formic acid solution (A) and acetonitrile containing 0.1% 
formic acid solution (B). Each sample was resolved for 10 min 
at a flow rate of 0.5 ml/min. This approach has been extensively 
used for metabolomic profiling of biofluids; UPLC gradient 
conditions and the mass spectrometry parameters have been 
described in detail (23,24). The column eluent was introduced 
directly into the mass spectrometer by electrospray. Mass 
spectrometry was performed on a Quadrupole-time-of-flight 
mass spectrometer operating in either negative or positive 
electrospray ionization mode with a capillary voltage of 3.2 kV 
and a sampling cone voltage of 35 V. The desolvation gas flow 
was 800 l/h and the temperature was set to 350˚C. The cone 
gas flow was 50 l/h, and the source temperature was 150˚C. 
Accurate mass was maintained by infusing sulfadimethoxine 
(311.0814 m/z) in 50% aqueous acetonitrile (250 pg/µl) at a 
rate of 30 µl/min via the lockspray interface every 10 sec. 
Data were acquired in centroid mode from 50 to 850 m/z mass 
range for TOF-MS scanning, in duplicate (technical replicates) 
for each sample in positive and negative ionization mode and 
checked for chromatographic reproducibility. For all profiling 
experiments, the sample queue was staggered by randomizing 
samples to eliminate bias. We acquired UPLC-QTOF data by 
analysis of DL from 43 subjects. For each subject two samples, 
one from the affected and one from the contralateral normal 
breast, were generated. Each sample was injected twice.

Data preprocessing. The raw UPLC-QTOF data were 
converted into Network Common Data Format (NetCDF) 
using the MassLynx software (Waters Corp.). The R-package 
XCMS (Scripps Center for Metabolomics, La Jolla, CA, USA) 
was used to preprocess the datasets acquired in the electro-
spray positive and negative ion modes. The first step in XCMS 
is to detect the peaks. The peak detection algorithm first cuts 
the data into slices, a fraction of a mass unit wide, and then 
applies a model peak matched filter on those individual slices 
over the chromatographic time domain. After detecting peaks 
in individual samples, the peaks are matched across samples 
to allow calculation of retention time (RT) deviations and rela-
tive ion intensity comparison. This is accomplished using a 
grouping method that uses kernel density estimation to group 
peaks in the mass domain. The peak matching algorithm in 
XCMS takes into account the two-dimensional anisotropic 
nature of data. These groups are then used to identify and 
correct drifts in RT from run to run.

Following peak matching, we used the R-package 
CAMERA to identify derivative ions originating from the 
same compound in the form of adducts, isotopes, and in-source 

fragments  (25). Adducts of a molecule are formed during 
the electrospray ionization (ESI) process, e.g. sodium and 
ammonium adduct. Ions of molecular isotopes are detected 
with distinct m/z values during MS analysis and the peak with 
the lowest m/z is defined as the monoisotopic peak. In-source 
fragments are formed during ionization such as ion fragments 
of [M+H-H2O]+ or [M-H-H2O]- through neutral loss of water 
molecule. Different adducts/isotopes/water-loss products of 
the same compound theoretically share the same retention 
time in chromatograms. As long as the scan rate is properly 
adjusted and enough scanning points are acquired to define 
the chromatographic peaks, the ions from the same compound 
share similar-shaped elution profiles which can be represented 
by their extracted ion chromatograms (EICs). Thus, clustering 
of similar elution profiles was performed by CAMERA prior 
to statistical analysis. Recognition of such metabolites, often 
represented by multiple peaks with distinct m/z values at 
similar retention times, can facilitate metabolite identification 
in LC-MS based metabolomics.

Statistical analysis. To identify ions with significant changes 
in intensity levels, we used parametric statistical methods 
that we implemented in-house using MATLAB (MathWorks, 
Natick, MA, USA) and R scripts. Before performing the statis-
tical analysis, intensities from double injections were averaged 
to achieve a single intensity for each right or left DL sample. 
For pre-screening of ions, both univariate analyses and multi-
variate analyses were performed. For each ion, paired t-tests 
were performed to compare profiles of metabolites between 
the tumor samples and the paired normal samples. P-values 
obtained from multiple testing were adjusted to q-values based 
on Storey's method (26). A robust pairwise fold change (FC) 
was calculated based on the median of the relative intensity of 
tumor/normal samples for each pair. In addition, we performed 
principal component analysis (PCA) and multilevel PLS-DA 
(MPLS-DA) that accounts for the paired data (27). The first 
screening was performed based on q-values <0.05. To further 
identify which ions are associated with the normal/tumor 
tissues, generalized LASSO regression adjusting for race, 
menopausal status, smoking, grade, and TNM stage and condi-
tional logistic regression with LASSO penalties were fitted 
where LASSO penalty parameters were determined through 
10-fold cross-validation (using the ‘glmnet’ and ‘clogitL1’ R 
package, respectively) (28,29). Conditional logistic regression 
with the selected ions was employed as a predictive model 
where the diagnostic performance of the selected ions was 
assessed using the area under the receiver operating character-
istic (ROC) curves. In addition, one way ANOVA and linear 
regression were used to compare cancer metabolomic profiles 
of LASSO selected ions across different demographic and 
clinical characteristics.

Putative identifications for the resulting ion list were 
obtained through a mass-based search using MetaboSearch 
(30), which searches for putative identifications against 
four databases: the Human Metabolite DataBase (HMDB) (31), 
Metlin  (32), Madison Metabolomics Consortium Database 
(MMCD) (33), and LIPID MAPS (34). The mass tolerance 
in the database search was set to 10 ppm. The m/z values of 
annotated isotopes/adducts/in-source fragments peaks were 
converted to the corresponding neutral mono-isotopic masses 
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before searching them against the databases. Identities of a 
subset of the putative metabolite identifications were verified 
by comparing their MS/MS fragmentation patterns and RT 
with those of authentic standard compounds.

Results

Clinical and tumor characteristics of the patients are summa-
rized in Table I. Our patient population was 52 years of age 
on average, the majority being post-menopausal (58%). 
Approximately 60% of our patients were white, and a quarter 
of them were African Americans. The great majority were 
never or former smokers. Most of the tumors were invasive 
ductal carcinoma (IDC) (72%), early stage (I and II) (81%), 
with no lymph node involvement (67%), hormone receptor 
positive (88% ER+, 70% PR+), and HER2 negative (70%). 
More than two thirds of our patients had insufficient cells for 
analysis in the ductal lavage samples from the affected breast 
(70%), emphasizing the limitation of ductal lavage cytology for 
detecting breast cancer. Subjects who received pre-operative 
chemotherapy were excluded from the study.

Preprocessing of the UPLC-QTOF data identified 2098 
ions, 1560 ions in the positive mode and 538 ions in negative 
mode (Table II). These data matrices were used to select ions 
with significant differences between ductal lavage fluid from 
the affected breast and the non-affected contralateral control 
breast. Paired t-tests were applied on these data matrices and 
identified 209 ions, out of the 2,098 ions, with q-values <0.05 
(Table ii). Among the 209 significant ions, 66 (31.6%) were 
assigned putative compound names by MetaboSearch. When 
ranking these ions according to the fold change (FC) in ion 
intensity levels between the affected and non-affected breasts, 
83 (39.7%) metabolites showed an FC ≥1.2, 37 of these, being 
metabolites with a putative compound name identified through 
the databases. The great majority of these compounds were 
most likely of exogenous origin, being found in plants, dietary 
supplements or drugs; however, some were endogenous 
metabolites such as amino acid derivatives (N-Acetyl-DL-
tryptophan, FC=-2.02, p=0.006) or products of lipid 
metabolism such as N-linoleoyl taurine (FC=-1.24, p=0.001), 
trans-2-dodecenoylcarnitine (FC=-3.58, p=0.006), lysophos-
phatidylcholine LysoPC(18:2(9Z,12Z)) (FC=-1.20, p=0.018), 
and glycerophospholipids PG(18:0/0:0) (FC=-1.45, p=0.018) 
and phosphatidylserine PS(20:4(5Z,8Z,11Z,14Z) (FC=-1.49, 
p<0.001). Logistic regression with lasso penalties further 
selected 21 metabolites, when race, menopausal status, 
smoking, grade and TNM stage were adjusted for (Table III). 
However, conditional logistic regression with LASSO penalties 

Table I. Subject characteristics.

Characteristics	 N	 %a

Age (mean ± SD)	 52.20 (±12.25)
Menopause
  Pre	 18	 41.86
  Post	 25	 58.14
Race/Ethnicity
  A	 4	 9.30
  AA	 11	 25.59
  CA	 26	 60.46
  H	 2	 4.65
Family history of breast cancer
  Yes	 18	 41.86
  No	 25	 58.14
Tumor site
  Right	 16	 37.21
  Left	 27	 62.79
Smoking history
  Current	 4	 9.30
  Former	 7	 16.28
  Never	 32	 74.42
Histological type
  DCIS	 7	 16.28
  IDC	 31	 72.10
  ILC	 4	 9.30
  mixed	 1	 2.32
Stage
  0	 7	 16.28
  I	 17	 39.54
  II	 18	 41.86
  III	 1	 2.32
Grade
  Low	 3	 6.98
  Intermediate	 14	 32.56
  High	 26	 60.46
Lymph node involvement
  Yes	 13	 30.23
  No	 29	 67.44
ER
  Positive	 38	 88.37
  Negative	 5	 11.63
PR
  Positive	 30	 69.77
  Negative	 13	 30.23
HER2
  Positive	 8	 18.60
  Negative	 30	 69.77
Affected breast cytology
  Atypical cells	 4	 9.30
  Benign cells	 9	 20.93
  Insufficient cells	 30	 69.77

amay not add to 100% due to missing values. A, Asian; AA, African 
American; CA, Caucasian; H, hispanic; DCIS, ductal carcinoma 
in  situ; IDC, invasive ductal carcinoma; ILC, invasive lobular car-
cinoma.

Table II. Number of ions detected and those selected by statis-
tical analysis.

		  No. of ions
	 No. of ions	 with adjusted	 No. of ions selected
Mode	 detected	 p-value <0.05	 by LASSO

Positive	 1560	 197	 19
Negative	 538	 12	 2
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yielded five ions where the predictive model does not provide 
adequate prediction performance (AUC=0.679, sensitivity/
specificity of 0.744/0.581). Thus, further inferences focused on 
the 21 ions.

We performed principal component analysis (PCA) 
and multilevel PLS-DA (MPLS-DA) that accounts for the 
cross-over data and examined the performance of selected 
biomarkers. The PCA plot based on the 21 ions (identified 
using the LASSO regression analysis; Fig. 1B) shows visually 
better clustering performances of both sets of ions than the 
PCA plot based on 209 ions (q-values <0.05; Fig. 1A).

We evaluated whether the LASSO-selected 21 ions can 
be used as potential biomarkers for breast cancer detection. 
Conditional logistic regression with the 21 ions was employed 
as a predictive model where the diagnostic performance of 
the 21 ions was assessed using the area under the receiver 
operating characteristic (ROC) curves. ROC based on the 
conditional logistic regression model gave highly accurate 
diagnostic performance with an area under the curve (AUC) 
of 0.956 along with a sensitivity of 90.7% and specificity 
of 88.4% (Fig. 2). In addition, one way ANOVA and linear 
regression were used to compare cancer metabolomic profiles 
of the LASSO-selected ions across different demographic and 
clinical characteristics. Among the 21 LASSO-identified ions, 
we found ten metabolites that show statistically significant 
differences based on menopausal status (pre/post), ER (+/-), 

Figure 1. MPLS-DA score plot shows the separation between two class labels (normal and tumor) based on (A) the significant 209 ions with q-value <0.05 and 
(B) the 21 ions that were selected from LASSO regression with the pre-screened 209 ions.

Figure 2. Receiver operating characteristics (ROC) curve with the area under 
curve (AUC) showing the prediction performance of the 21 selected ions with 
a sensitivity and specificity of 90.7 and 88.4%, respectively, when the cut-off 
was set to 0.27.

Table iv. Metabolites, among the LASSO identified ions, that 
show statistically significant differences based on menopausal 
status (pre/post), ER (+/-) and HER2 (+/-).

M/z	 RT	 Menopause	 ER	 Her2

239.1486	 109.0287	 0.849	 0.045	 0.437
179.1841	 135.8769	 0.026	 0.432	 0.226
121.2079	 338.3861	 0.049	 0.788	 0.000
178.0316	 136.0036	 0.124	 0.3	 0.036
417.1127	 338.331	 0.238	 0.997	 0.022
454.4747	 337.7336	 0.538	 0.388	 0.003
622.627	 18.4193	 0.04	 0.777	 0.280
724.491	 20.4252	 0.269	 0.407	 0.004
788.4464	 20.4252	 0.649	 0.673	 0.001
466.729	 17.86	 0.026	 0.774	 0.133

P-values are in bold when statistically significant at p<0.05.
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and HER2 (+/-). Table IV shows these metabolites. P-values 
are in bold for the metabolites with p<0.05.

We found that menopausal status can affect the level of 
metabolite expression among our patients. Three metabolites 
(M179.1841, M121.2079 and M466.729) are higher in post-
menopausal patients (p<0.05; Table IV). On the other hand, 
one metabolite (M622.627) is higher in pre-menopausal 
patients (p=0.040; Table IV). HER2 positive receptor status 
also shows an association with increased levels of metabolites 
(M724.491 and M788.4464) in patients (p<0.005; Table IV), 
while four metabolites (M121.2079, M178.0316, M417.1127 
and M454.4747) are lower in HER2 positive patients (p<0.05; 
Table iv).

From the list of 209 significant monoisotopic ions with 
putative identifications, we selected eight metabolites with 
putative IDs and standard compounds for verification by 
comparing their TOF-MS/MS spectra against their corre-
sponding synthetic compounds. Specifically, we ran an 

authentic compound for each candidate and a patient sample 
side by side and compared the fragmentation patterns and 
their LC retention time. We were able to verify six metabo-
lites against their standards, experimentally. Table V shows 
a list of the six verified and two unverified metabolites, and 
Fig. 3 shows an example of the verification result for N-acetyl-
DL-tryptophan, comparing the fragmentation pattern of the 
analyte in ductal lavage against the pattern obtained from an 
authentic compound.

Discussion

The emerging technology of metabolomics has provided 
insights into cancer metabolic pathways in different organs, 
including the mammary gland, which can lead to the discovery 
of new cancer biomarkers and therapies. To the best of our 
knowledge, this is the first study that compares the metabo-
lomic profiles in the ductal fluid from cancer affected breasts 

Table V. The verified and unverified metabolites.

M/Z	 RT(sec)	 RT(min)	 Monoisotopic mass	 Putative name of the compound	 FC	 q-value

Verified metabolites
247.1071	 187	 3.12	 247.1070665	 N-Acetyl-Dtryptophan	 -2.02309	 0.049087
134.0966	 136	 2.27	 134.0965659	 1,2,3,4-tetrahydroisoquinoline	 -1.12989	 0.049087
179.0568	 136	 2.27	 179.0567725	 Gluconolactone	 -1.26445	 0.049087
513.3184	 351	 5.85	 513.3184402	 Phosphatidyl Glycerol (18:0/0:0)	 -1.45152	 0.049087
174.1487	 234	 3.90	 174.1487168	 9-amino-nonanoic acid	 -1.15122	 0.028858
433.2574	 440	 7.33	 433.2574371	 Hydrocortisone butyrate	 -1.08314	 0.028858

Unverified metabolites
620.5977	 19	 0.32	 620.5977263	 Ceramide (d18:2/22:0)	 -1.08974	 0.028858
429.2271	 365	 6.08	 429.2270941	 Phosphatidyl glycerol (12:0/0:0)	 1.03441	 0.019619

Figure 3. Verification of putative ID with mass 247.1071. Top panel is the MS/MS spectrum of the ion obtained in the ductal lavage samples and bottom panel 
is the MS/MS spectrum of authentic compound N-Acetyl-DL-tryptophan.
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vs. non-affected contralateral control breasts in the same 
subjects, allowing us to view the metabolites in the tumor 
microenvironment where breast cancer arises, in a unique 
well-controlled setting where each patient serves as her own 
control.

We analyzed ductal fluid samples obtained by ductal 
lavage from 43 subjects with unilateral breast cancer from 
both the affected breast and the contralateral non-affected 
control breast and identified 209 ions that showed a significant 
difference in intensity levels (q-values <0.05) between the fluid 
from the affected breast vs. the fluid from the non-affected 
control breast. We observed significant differences between 
the fluid from the affected breast vs. the fluid from the non-
affected control breast in the levels of tryptophan, products of 
lipid metabolism, derivatives of amino acid metabolism and 
phospholipids.

Interestingly, metabolomic profiles are not only different 
between cancer and normal tissue as we and others have 
shown, but also are cancer tissue type specific (16,35). In addi-
tion, specific metabolite changes occur at earlier stages for 
each tissue and cancer type. For instance, amino acid related 
metabolites, such as N-Acetyl-amino acids, and lipid related 
metabolites, such as carnitine and glycerophopsholipids, were 
shown to be significantly altered in breast tumors (14,16); in 
serum, amino acid changes were mainly observed in early 
stage breast cancer (stages I and II) compared to metastatic 
disease (14). A supervised class comparison analysis of tumor 
vs. non-tumor tissues revealed specific metabolites that could 
discriminate between liver, pancreas and breast, with the 
most evident differences occurring in amino acid and lipid 
pathways; glycerol and linolenate were upregulated only in 
breast tumors (16). In individuals with early stage disease, 8 
metabolites were significantly and uniquely altered in breast 
tumors vs. normal tissues; in a similar analysis, 81 metabolites 
in liver and 18 in pancreatic tumors were significantly and 
differentially altered (16). Comparing the metabolic changes 
between tissue specific cancer and normal cells could pinpoint 
the metabolic reprograming involved in tissue specific tumori-
genesis.

In the present study we identified lower levels of N-Acetyl-
DL-tryptophan in the fluid from the affected breasts compared 
to the control breast fluid, consistent with previous reports 
showing decreased amino acid metabolites in breast cancer 
(36-38). Cancer metabolism requires energy derived from 
both anaerobic and aerobic glycolysis, which means lower 
substrate levels like glucose and glutamine being siphoned off 
to the tricarboxylic acid (TCA) cycle, and higher levels of bio-
energic substrates, like lactate, which stimulates continuous 
growth  (36). In a recent study, Willmann  et  al  (39), used 
metabolomic profiling to sub-classify different breast cancer 
cell lines and differentiate not only between them, but also 
between the cancer cell lines and a non-cancer breast epithe-
lial cell line as well. Research has shown that elevated glycine 
and lactate indicate increased metabolic changes due to rapid 
growth of cancer cells, and hence poorer prognosis (5).

Levels of metabolites were also reported to differ by 
race (38). However, in this study, we were not able to detect 
a statistically significant difference in the metabolite levels 
based on the subjects' race possibly due to the small sample 
size per each race. None of the LASSO-identified 21 ions 

showed statistically significant difference among patients 
based on race (minimum p-values >0.50; data not shown).

When we stratified our patients by receptor status, we 
observed that the M239.1486 metabolite tends to be less 
expressed in ER+ patients (p=0.045; Table IV). Fan et al (35) 
analyzed plasma metabolite profiles of 96 breast cancer 
patients compared to 79 normal controls by UPLC-Q/TOF-MS 
and GC-Q/MS, and identified several metabolites that could 
discriminate between breast cancer and controls, and also 
between breast cancer subtypes according to HER2 and 
estrogen receptor status. ER positive (ER+) patients showed 
elevated alanine, aspartate and glutamate metabolism, 
decreased glycerolipid catabolism and enhanced purine 
metabolism compared to the ER negative (ER-) group (also 
described in plasma metabolites from breast cancer patients 
vs. normal controls  (38). ER- and triple-negative receptor 
status is indicative of more aggressive tumors and a poorer 
prognosis. In breast cancer, the substrate glutamine and end 
product lactate enhance cancer aggressiveness; additionally 
ER- breast cancers are dependent upon serine synthesis for 
continued growth (36).

In the present study, metabolites involved in lipid signaling 
were decreased in the fluid from the breasts with tumors, 
similar to previously published study (36). Lower levels of 
lysophosphatidylcholines and higher levels of sphingomyelins 
and acylcarnitines were detected in the plasma of cancer 
patients compared to controls (37). The decrease in glycero-
phopsholipid levels in cancer patients may be due to a higher 
expression of phospholipase A2 (PLA2), a gene encoding for 
the enzymes responsible for their metabolism (37), and whose 
expression was found to be upregulated in breast cancer cell 
lines and tissues (40,41). Higher levels of lipid metabolites, 
including fatty acids and carnitine metabolites, have been 
found in breast cancer patients compared to normal controls 
(35,38,42). Wang et al (9) reported that several lipids including 
phosphatidylglycerol (PG) were upregulated in highly invasive 
breast cancer cells. Breast tumors are described as developing 
a ‘lipogenic phenotype’, and while cell growth is dependent 
on lipogenesis, lipolysis is upregulated, and is associated with 
tumor aggressiveness (36,37).

Although our findings do not show exactly the same 
metabolites being altered as reported in other studies, the 
metabolites that we identified belong to the same class of 
compounds and same metabolic pathways, especially in the 
case of lipid metabolites. Cancer cells have been shown to 
have an increased glucose uptake (Warburg effect), conversion 
to lactate (glycolysis) and changes in protein and lipid metabo-
lism (43). Some differences between studies can be attributed 
to the biological specimens analyzed (ductal lavage) vs. tissue 
and blood, or to technical or methodological differences. 
Moreover, a large part of the differentially expressed metabo-
lites from the present study are still unknown, emphasizing the 
complexity of metabolic alterations in cancer.

Because the ductal lavage samples were collected under 
anesthesia immediately before surgery when the patient 
was already medicated, we identified many drug-related 
metabolites in our samples. However, because many of these 
drug-related metabolites were different between the breasts 
with tumors and normal breasts, this altered drug metabo-
lism in the affected breast could be of possible therapeutic 
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benefit and requires additional analysis. Identification of the 
specific metabolites could be used to target specific enzymes. 
Enzyme expression levels and metabolic pathways could be 
used to target specific breast cancer phenotypes, or cancer cell 
survival within tumors (7).

A metabolomics based profile for the early detec-
tion of breast cancer recurrence has been developed by 
Asiago et al (15). They used 11 metabolites in their prediction 
model, several of which we have reported as being signifi-
cantly differentially expressed in the ductal lavage samples. 
A follow-up analysis of our patients might yield comparable 
results and contribute to improving earlier detection and better 
treatment in the cases of breast cancer recurrence.

Although our study design was unique in that we used 
ductal fluid obtained from the contralateral normal breast 
for comparison, which allowed us to control for several 
variables that could not have been controlled for otherwise, 
a drawback of such a design is the possibility that the contra-
lateral breast cells may already harbor metabolomic changes. 
We, and others, have shown that genomic aberrations occur 
very early in tumorigenesis and may precede morphologic 
changes (20,44‑46). Therefore, we cannot rule out the possi-
bility of similar changes affecting some metabolites in the 
contralateral clinically normal breast. A future study may 
include an additional control group of normal subjects (e.g., 
patients undergoing reduction mammoplasty) to account for 
this possibility.

In summary, this is the first study to assess metabolomic 
profiles in ductal fluid samples from breast cancer patients. 
The differences we saw were directly related to the tumor 
microenvironment and provide a snapshot of ongoing breast 
cancer metabolism. However, the identification of several 
metabolites with altered levels in the cancer affected breast, 
especially lipid related metabolites, previously reported in 
breast cancer tissue, cell lines and the circulation, provide 
confidence that these could constitute the basis for metabo-
lomics based markers for breast cancer detection. This study 
shows the feasibility of conducting a comprehensive metabo-
lomic profiling of breast tumors using breast ductal fluid to 
detect changes in the cellular microenvironment of the tumors 
and shows the potential for this approach to be used to improve 
detection of breast cancer.
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