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Abstract. Recent advances have been made in the under-
standing of Fanconi anemia (FA), a hereditary disease that 
increases the risk for head and neck squamous cell carcinomas 
(HNSCC) by 500- to 700-fold. FA patients harbour germline 
mutations in genes of cellular DNA repair pathways that are 
assumed to facilitate the accumulation of mutations during 
HNSCC development. Mutations in these FA genes may also 
contribute to HNSCC in general. In the present study, we 
analysed three FA genes; FANCF, FANCG and BRIP1, that 
are involved in the repair of DNA inter strand cross-links, 
in HNSCC and their potential role for patient survival. We 
measured loss of heterozygosity (LOH) mutations at eight 
microsatellite loci flanking three FA genes in 54 HNSCC of 
the oral cavity and corresponding blood samples. Survival 
analyses were carried out using mutational data and clinical 
variables. LOH was present in 17% (FANCF region), 41% 
(FANCG region) and 11% (BRIP1 region) of the patients. 
Kaplan-Meier survival curves and log-rank tests indicated 
strong clinical predictors (lymph node stages with decreased 
survival: p=2.69e-12; surgery with improved survival: 
p=0.0005). LOH in the FANCF region showed a weaker 

association with decreased overall survival (p=0.006), which 
however, did not hold in multivariate analyses. LOH may 
predominantly indicate copy number gains in FANCF and 
losses in FANCG and BRIP1. Integration of copy number data 
and gene expression proved difficult as the available sample 
sets did not overlap. In conclusion, LOH in FA genes appears 
to be a common feature of HNSCC development seen here in 
57% of patients and other mutation types may increase this 
mutation frequency. We suggest larger patient cohorts would 
be needed to test the observed association of LOH in FANCF 
and patient survival comprehensively.

Introduction

Squamous cell carcinoma (SCC) is the most frequent tumour 
entity within head and neck cancers occurring in 90% of 
patients (1,2) and the 6th most frequent cancer worldwide (3,4). 
Despite advances in therapy, the prognosis for HNSCC patients 
remains poor, with a 5-year survival of 46-50% (5,6). As exog-
enous factors, alcohol consumption and smoking are assumed 
to cause lesions and HNSCC in a dose-dependent manner (7-9). 
An infection of human papilloma virus (HPV) is present in 
~25% of HNSCC and is associated with an improved prog-
nosis (10,11). Also, endogenous risk factors, such as genetic 
predisposition may promote hereditary HNSCC (12,13).

The acquisition of somatic mutations during HNSCC 
development is well understood for the tumour suppressor 
gene TP53, which is mutated frequently in 30-78% of 
HNSCCs  (14-19). TP53 mutations are associated with a 
reduced radiosensitivity of HNSCC tumours and with poor 
prognosis (20). Other potentially important genes in HNSCC 
are the genes known to be mutated in Fanconi anemia (FA). 
Patients with this rare autosomal-recessive disorder have a 
500- to 700-fold increased risk to develop HNSCC (21-23) 
and suffer from chromosomal instability, predisposition to 
congenital anomalies, bone marrow failure and cancer.

FA genes are candidate genes for HNSCC. Sixteen FA genes 
are currently known, the gene products are involved in the 
surveillance and repair of DNA crosslinks (24). A recent study 
found germline mutations of FA genes in 27 analysed FA 
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families (25). All FA genes are active in the S-phase of the cell 
cycle, where DNA damage recognized during DNA replication 
triggers the accumulation of FA proteins and their interaction 
with other repair mechanisms. In the present study, we focused 
on three FA genes that have not been studied extensively, the 
FANCF, FANCG and BRIP1.

Expression analyses using quantitative PCR showed 
reduced expression of all three genes, FANCF, FANCG and 
BRIP1 in HNSCC, with a reduction of gene expression by up 
to 40-fold (26). A possible cause for the reduced expression of 
FA genes is an allelic gene loss that can be detected as a loss of 
heterozygosity (LOH). Measurements of LOH have previously 
indicated FA genes frequently altered in oral HNSCC (27-31). 
A frequent LOH on chromosome 9 for instance, is potentially 
overlapping with many genes such as tumour suppressors p16 
and FANCG (32).

Clinical relevance. LOH in FA genes may impact the prognosis 
for HNSCC patients under different treatment regimens. It was 
shown that poly(ADP-ribose) polymerase (PARP) inhibitors 
can be used to kill specifically FANCD1 (BRCA2)-deficient 
tumour cells (33). Recently, the assessment of FA genes, such 
as FANCD2 was proposed to aid patient stratification for treat-
ment with DNA inter-strand crosslinking agents and PARP 
inhibitors  (34). Thus, FA genes may be used as predictive 
biomarkers in cancer therapy.

The three FA genes studied here. Fanconi anemia, comple-
mentation group F - FANCF is localized on chromosome 
11p14.3 and involved in stabilization of multimeric FA protein 

complexes (35,36). The protein, Fancf interacts with Fanca, 
Fancc and Fancg to stabilize the dimers of Fanca and Fancc 
as well as Fanca and Fancg which are core components of the 
FA DNA repair pathway (24,37). Methylation of FANCF is 
associated with a decreased expression of the gene and with 
ovary, breast, lung, cervix and testis cancer (38-42).

Fanconi anemia, complementation group G - FANCG 
(XRCC9) is localized on chromosome 9p13.3 (43). Fancg inter-
acts with Fanca and Fancf and supports the formation of the 
DNA repair core complex (44). Mutations in FANCG lead to 
chromosomal instability in a number of different cancers (45). 

The BRCA1 interacting protein C-terminal helicase 1 - 
BRIP1 (FANCJ) is localized on chromosome 17q22.2 (46-48). 
BRIP1 associates with BRCA1 and thus, contributes to genomic 
stability through its role in cellular DNA repair  (48,49). 
Mutations in BRIP1 are associated with hereditary breast 
cancer and Fanconi anemia (50).

In this study, we established microsatellite markers for 
the assessment of LOH in three genetic loci comprising FA 
genes. To identify a potential effect on patient survival in oral 
HNSCC, we evaluated LOH in FA genes and clinical param-
eters in survival analyses. We then discuss an observed weak 
association of LOH in one of the three FA genes and consider-
able frequencies of LOH in all three genes in light of potential 
therapeutic relevance.

Materials and methods

Samples. All patients were enrolled for observation and treat-
ment of HNSCC between 1993 and 2007 at the Department 

Figure 1. Location of three Fanconi anemia gene regions on chromosome 9, 11 and 17. Three microsatellite markers span the regions of FANCG and FANCF 
and two markers are located adjacent to BRIP1.
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of Oral and Maxillofacial Surgery, University Hospital Carl 
Gustav Carus, Technische Universität Dresden (Dresden, 
Germany). Fifty-four patients, 40 male and 14 female, with a 
median age of 60 years were included in the study (Table I). 
We collected clinical information about the tumour-, node- and 
metastatic stage as well the radiotherapy and chemotherapy 
used. To study the effects of lifestyle factors we obtained data 
on smoking and alcohol consumption for each patient.

Tumour specimens were initially chosen to represent 
primary HNSCC tumours of the locally advanced stages T3 
and T4 (51) and were collected in surgeries and biopsies. Five 
tumour samples were later re-assigned to stage T2. Tumour 
and corresponding blood samples were collected during the 
time of surgery or biopsy, snap-frozen in liquid nitrogen and 
stored at -80˚C. Written informed consent was obtained from 
all the patients.

Ethics statement. The study was approved by the ethics 
committee of the faculty for medicine at the Technische 
Universität Dresden, Germany (study ID EK37022001).

DNA extraction, microsatellite amplification and detection of 
LOH. DNA extraction from tumour samples and corresponding 
blood was performed with the QIAamp DNA Mini kit (Qiagen, 
Hilden, Germany) following standard procedures. Eight 
microsatellite markers were used to determine heterozygosity 
and microsatellite instability (MSI) using their polymorphic 
repeat length. We used eight pairs of oligonucleotide primers 
(Applied Biosystems, Darmstadt, Germany) which were 
previously published (Table II) in polymerase chain reaction 
(PCR) to amplify loci in proximity to three FA genes (Fig. 1) 
(43,44,52-59). Six loci were repeats of dinucleotides (D9S1853, 
D9S171, D9S163, D11S1359, D17S1855 and D17S1607) and two 

Table I. Clinical data for patients evaluated for loss of heterozygosity (LOH) in FA gene regions.

	 No LOH	 LOH FANCF	 LOH FANCG	 LOH BRIP1	 Any LOH	 All
Variables	 (n=23)	 region (n=9)	 region (n=22)	 region (n=6)	 (n=30)	 (n=54)

Age (median, 	 59 (46;66.50)	 55 (53;68)	 59.5 (52.25;66)	 57 (51.25;62.75)	 60 (53.5;66)	 60 (52;66.75)
1st and 3rd quartile)

Gender
  0-Female	 6 (26.09%)	 2 (22.22%)	 4 (18.18%)	 2 (33.33%)	 7 (23.33%)	 14 (25.93%)
  1-Male	 17 (73.91%)	 7 (77.78%)	 18 (81.81%)	 4 (66,67%)	 23 (76.67%)	 40 (74.07%)

Tumour stage
  2	 2 (8.7%)	 1 (11.11%)	 2 (9.09%)	 0 (0%)	 2 (10%)	 5 (9.25%)
  3	 2 (8.7%)	 2 (22.22%)	 6 (27.27%)	 1 (16.67%)	 8 (26.67%)	 10 (18.52%)
  4	 19 (82.61%)	 6 (66.67%)	 14 (63.63%)	 5 (83.33%)	 19 (63.33%)	 39 (72.22%)

Node stage
  0	 12 (52.17%)	 1 (11.11%)	 5 (22.72%)	 2 (33.33%)	 6 (20%)	 19 (35.19%)
  1	 1 (4.35%)	 2 (22.22%)	 5 (22.72%)	 2 (33.33%)	 9 (30%)	 10 (18.52%)
  2	 8 (34.78%)	 6 (66.67%)	 11 (50%)	 2 (33.33%)	 14 (46.67%)	 22 (40.74%)
  3	 0 (0%)	 0 (0%)	 1 (4.55%)	 0 (0%)	 1 (3.33%)	 1 (1.85%)

Metastasis stage
  0	 19 (82.61%)	 8 (88.89%)	 22 (100%)	 6 (100%)	 29 (96.67%)	 49 (90.74%)
  1	 1 (4.35%)	 0 (0%)	 0 (0%)	 0 (0%)	 0 (0%)	 1 (1.85%)

Tumour grading
  1	 1 (4.35%)	 0 (0%)	 2 (9.09%)	 0 (0%)	 2 (6.67%)	 3 (5.56%)
  2	 13 (56.52%)	 4 (44.44%)	 14 (63.63%)	 5 (83.33%)	 20 (66.67%)	 34 (62.96%)
  3	 3 (13.04%)	 3 (33.33%)	 4 (18.18%)	 0 (0%)	 5 (16.67%)	 8 (14.81%)

Recurrence
  0	 15 (65.22%)	 5 (55.56%)	 14 (63.64%)	 4 (66.67%)	 20 (66.67%)	 35 (64.81%)
  1	 8 (34.78%)	 4 (44.44%)	 8 (36.36%)	 2 (33.33%)	 10 (33.33%)	 19 (35.19%)
Surgery	 21 (91.30%)	 7 (77.78%)	 18 (81.82%)	 6 (100%)	 26 (86.67%)	 48 (88.89%)
Radiotherapy	 21 (91.30%)	 9 (100%)	 20 (90.90%)	 6 (100%)	 28 (93.33%)	 49 (90.74%)
Chemotherapy	 8 (34.78%)	 4 (44.44%)	 5 (22.73%)	 1 (16.67%)	 7 (23.33%)	 15 (27.78%)
Nicotin/Alcohol	 18 (78.26%)	 7 (77.78%)	 19 (86.36%)	 3 (50%)	 25 (83.33%)	 43 (79.63%)
Survival (months, 	 21.33	 10.30	 20.40	 40.73	 19.48	 20.60
median, 1st and 3rd Qu.)	 (13.61; 73.77)	 (7.53; 22.13)	 (8.30; 98.21)	 (16.10; 73.72)	 (7.80; 78.31)	 (11.30; 78.80)
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were repeats of tetranucleotides (D11S1392 and D11S1981). We 
established three multiplex PCR reactions and one singleplex 
PCR. The reactions contained primers, MgCl2 (concentrations 
given in table III), and 100 ng of template DNA in the Qiagen 
Multiplex PCR kit (Qiagen) and were run in a total reaction 
volume of 25 µl on a PCR cycler (Bio-Rad Laboratories, 
München, Germany). After an initial heating step at 95˚C 
for 15 min, PCR cycling was carried out at 95˚C for 35 sec, 
56˚C for 90 sec and 72˚C for 90 sec for 27 cycles. Fluorescent 
labelling of one primer each per pair was utilized to detect 
the amplification products in capillary gel electrophoresis 
using a 3130xl Genetic Analyzer, the GeneScan 500 LIZ size 
standard and software GeneMapper version 4.0 (all Applied 
Biosystems).

Larger microsatellite markers may show LOH more 
frequently than shorter markers, because they amplify less 
well in PCR. To avoid this problem we used a high amount 
of input DNA (100 ng). Consequently, the larger microsatel-
lite markers showed a lower frequency of LOH for FANCF 
and FANCG and a higher frequency of LOH for BRIP1 when 
compared to the smaller markers in the same locus (Table IV). 
When comparing the two alleles of each microsatellite marker, 
the LOH affected the larger allele in 33% of the markers (stan-
dard deviation 16.6). Thus, a preferential amplification of the 
smaller microsatellite markers is not apparent in our samples.

To detect LOH all informative microsatellite markers were 
analysed for their peak area (60-62). The peak area of the 
higher peak was divided by the area of the lower peak, and 
a quotient of the values for tumour and blood was calculated. 
When above 1.5, we called LOH in the tumour tissue as previ-
ously described (62). Non-informative and unstable (MSI) 
markers were excluded.

Statistical analysis of clinical data. Clinical data were obtained 
from the regional clinic cancer registry Dresden (Table I). To 
investigate if LOH was more frequent in subgroups of the 
patients we tested for an association of LOH with age (above 
vs. below 60 years), gender, tumour stages (T2, T3 and T4), 
smoking, alcohol consumption and recurrent disease (Table I). 
For this we used Chi-square tests and Fisher's exact tests if 
expected frequencies were <5 using IBM SPSS Statistics 
version 19 (IBM, Ehningen, Germany).

We further investigated the potential impact of LOH on 
patient survival R v. 3.0. (63). Survival time was obtained and 
right censored for alive subjects and also if death occurred not 
due to HNSCC. First, we tested for an association between 

Table II. Primers used for amplification of microsatellite markers.

Primer	 Sequence	 Label	P roduct size (bp)	 Refs.

D9S171 s	 AGCTAAGTGAACCTCATCTCTGTCT	 VTC	 158-177	 (52-54)
D9S171 as	 ACCCTAGCACTGATGGTATAGTCT
D9S1853 s	 GATCCAGCCTCACTGAA	 6-FAM	 247-265	 (44,52)
D9S1853 as	 TTGGGCATAGAATTTTTACTTT
D9S163 s	 TGCTGCACATCTTAGGGAGT	 NED	 270-271	 (52,55)
D9S163 as	 ACAGCGCTCAGAAATCATATAA
D11S1359 s	 TTGGAAGACACATGCACAAA	 NED	 148	 (43)
D11S1359 as	 ATTTTCCAGCCTCCATAATC
D11S1981 s	 AATTCCTTTACTCCAGAAAGG	 VTC	 134-178	 (56)
D11S1981 as	 CAGATTTCTGCTTTCCCAGA
D11S1392 s	 TTGCATCCATACGGAAAGTC	 6-FAM	 200-220	 (57)
D11S1392 as	 ACATCTGAGACTTGTAGTAGAAGGC
D17S1607 s	 CAGATAAAAAACACAAGTTTCTGAC	 NED	 103-123	 (58)
D17S1607 as	 GCTCCACCCCAGACCTA
D17S1855 s	 GGGGACCNCTAGAAACC	P ET	 219-225	 (52,58)
D17S1855 as	 GAGAATACATTGTAACAACTCCAGT

Label, fluorescent labeling of the forward primers; S, sense; As, antisense.

Table III. Combinations of primers and concentrations for 
multiplex PCR.

	P rimer	P rimer	 MgCl2

Combination	 name	 concentration	 concentration

1	 D9S171	 0.20 µM	 1.8 mM
	 D9S163	 0.15 µM
	 D17S1607	 0.30 µM
2	 D11S1392	 0.20 µM	 1.5 mM
	 D11S1359	 0.20 µM
3	 D17S1855	 0.20 µM	 1.5 mM
	 D11S1981	 0.20 µM
4	 D9S1853	 0.20 µM	 1.5 mM
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Table IV. Loss of heterozygosity (LOH) in FA gene regions. 

	 FANCG	 FANCF	 BRIP1
	 ----------------------------------------------------------------------------	 ---------------------------------------------------------------------------	 -------------------------------------------------
	 D9S171	 D9S1853	 D9S163	 D11S1981	 D11S1359	 D11S1392	 D17S1607	 D17S1855
Tumour no.	  158-177 bp	 247-265 bp	 270-271 bp	 134-178 bp	 148 bp	 200-220 bp	 103-123 bp	 219-225 bp

    2	 LOH	 LOH	 n.i.	 i.	 i.	 i.	 i.	 i.
    3	 n.i.	 i.	 i.	 i.	 i.	 i.	 i.	 i.
    7	 LOH	 n.i.	 LOH	 i.	 i.	 n.i.	 i.	 i.
  14	 i.	 i.	 i.	 LOH	 LOH	 i.	 LOH	 n.i.
  20	 i.	 n.i.	 i.	 i.	 i.	 i.	 i.	 i.
  23	 i.	 LOH	 i.	 i.	 i.	 i.	 n.i.	 i.
  26	 LOH	 n.i.	 n.i.	 LOH	 LOH	 LOH	 i.	 i.
  27	 i.	 i.	 i.	 n.i.	 i.	 n.i.	 n.i.	 i.
  30	 i.	 n.i.	 i.	 i.	 i.	 i.	 i.	 i.
  37	 i.	 i.	 n.i.	 n.i.	 n.i.	 n.i.	 i.	 i.
  40	 i.	 i.	 i.	 i.	 n.i.	 i.	 n.i.	 i.
  48	 n.i.	 LOH	 i.	 i.	 i.	 i.	 i.	 i.
  53	 LOH	 LOH	 LOH	 i.	 i.	 i.	 n.i.	 i.
  60	 i.	 i.	 n.i.	 i.	 i.	 i.	 n.i.	 LOH
101	 i.	 i.	 i.	 i.	 i.	 i.	 i.	 i.
107	 i.	 i.	 i.	 i.	 LOH	 LOH	 i.	 n.i.
114	 i.	 n.i.	 n.i.	 i.	 i.	 i.	 i.	 n.i.
116	 LOH	 n.i.	 LOH	 n.i.	 LOH	 n.i.	 LOH	 i.
117	 i.	 i.	 n.i.	 i.	 n.i.	 i.	 n.i.	 i.
118	 LOH	 n.i.	 n.i.	 i.	 n.i.	 n.i.	 n.i.	 i.
120	 i.	 i.	 n.i.	 i.	 i.	 i.	 i.	 i.
121	 n.i.	 i.	 i.	 n.i.	 n.i	 i.	 i.	 i.
123	 LOH	 LOH	 i.	 n.i.	 i.	 i.	 i.	 i.
144	 LOH	 LOH	 i.	 i.	 i.	 i.	 i.	 i.
145	 i.	 n.i.	 LOH	 i.	 n.i.	 i.	 i.	 n.i.
150	 LOH	 LOH	 LOH	 i.	 i.	 MSI	 i.	 n.i.
152	 i.	 i.	 i.	 i.	 i.	 i.	 i.	 n.i.
154	 LOH	 LOH	 LOH	 i.	 i.	 i.	 i.	 i.
155	 n.i.	 i.	 n.i.	 i.	 i.	 n.i.	 n.i.	 LOH
157	 n.i.	 i.	 i.	 i.	 i.	 n.i.	 i.	 i.
171	 i.	 n.i.	 i.	 LOH	 LOH	 LOH	 i.	 i.
179	 i.	 n.i.	 i.	 i.	 n.i.	 i.	 i.	 i.
180	 n.i.	 i.	 n.i.	 i.	 i.	 i.	 n.i.	 LOH
181	 i.	 n.i.	 n.i.	 i.	 i.	 n.i.	 i.	 i.
185	 i.	 i.	 n.i.	 i.	 i.	 i.	 i.	 i.
193	 n.i.	 i.	 i	 n.i.	 n.i.	 LOH	 i.	 i.
196	 i.	 i.	 n.i.	 i.	 i.	 i.	 i.	 i.
206	 i.	 i.	 i.	 n.i.	 i.	 i.	 n.i.	 i.
213	 i.	 i.	 n.i.	 i.	 i.	 i.	 i.	 n.i.
325	 LOH	 LOH	 LOH	 i.	 n.i.	 i.	 i.	 i.
326	 LOH	 n.i.	 n.i.	 i.	 i.	 i.	 i.	 i.
328	 LOH	 n.i.	 LOH	 i.	 n.i.	 n.i.	 i.	 i.
336	 i.	 i.	 i.	 i.	 n.i.	 i.	 i.	 i.
385	 LOH	 i.	 LOH	 i.	 i.	 i.	 i.	 i.
386	 n.i.	 LOH	 LOH	 i.	 n.i.	 i.	 i.	 i.
393	 n.i.	 n.i.	 i.	 i.	 i.	 LOH	 i.	 i.
401	 n.i.	 i.	 i.	 i.	 i.	 i.	 i.	 i.
409	 i.	 i.	 i.	 i.	 i.	 i.	 i.	 i.
457	 i.	 n.i.	 i.	 i.	 i.	 i.	 i.	 i.
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LOH in regions around the FA genes, the mentioned clinical 
parameters and overall patient survival using Kaplan-Meier 
curves and log-rank tests (Table V). We reported raw p-values 
using a significance level alpha of 0.05 as well as corrected 
significance levels (alpha') depending on the number of tests 
carried out according to the Bonferroni method (64).

To investigate the combined effect of several variables on 
patient survival we employed Cox proportional hazards (PH) 
regression models in R v. 3.0. (63). We estimated the propor-
tional hazards for different sets of variables on survival, firstly 
using all variables in one Cox PH model. Secondly, we tested 
all variables which were significant in the first model. A third 
test used backwards elimination, starting with all and deleting 
the least significant variable at each step until reaching a stage 
where all remaining variables were significant. Since smoking 
and alcohol consumption coincided in many patients and both 
are seen as mutagenic substances we merged them into one 
binary variable (absence/presence) for survival analyses. For 
analyses of LOH and survival in Cox PH we evaluated each 
FA gene region independently. However, we did not evaluate 
each microsatellite marker independently since those showed 
similar results as the corresponding FA gene regions in 
log‑rank tests.

Analysis of copy number data. From a published dataset of 
106 HNSCC genotyped on microarrays  (18) we extracted 
called copy number variants (CNV) that spanned the genes 
FANCF, FANCG and BRIP1.

If the reported ploidy deviated from 2 and was <1.8 or 
>2.2, we noted a loss or a gain, respectively.

Expression data. We accessed publicly available expression 
profiles of three studies on HNSCC tumours and corresponding 
normal tissues in NCBI Gene Expression Omnibus. For acces-
sions GDS2520 and GDS3838 we queried the genes of interest 
directly retrieving lists of expression values. Fold-change 
in expression was calculated by comparing the cancerous 
and normal tissue per each tested patient. For GSE55550 we 
queried for differentially expressed genes by grouping (pooled) 

Table IV. Continued.

	 FANCG	 FANCF	 BRIP1
	 ----------------------------------------------------------------------------	 ---------------------------------------------------------------------------	 -------------------------------------------------
	 D9S171	 D9S1853	 D9S163	 D11S1981	 D11S1359	 D11S1392	 D17S1607	 D17S1855
Tumour no.	 158-177 bp	 247-265 bp	 270-271 bp	 134-178 bp	 148 bp	 200-220 bp	 103-123 bp	 219-225 bp

458	 n.i.	 LOH	 n.i.	 n.i.	 n.i.	 LOH	 n.i.	 i.
474	 LOH	 LOH	 n.i.	 i.	 i.	 i.	 i.	 i.
477	 n.i.	 n.i.	 i.	 i.	 i.	 i.	 n.i.	 i.
478	 LOH	 n.i.	 LOH	 i.	 i.	 i.	 LOH	 n.i.
479	 LOH	 LOH	 LOH	 LOH	 LOH	 n.i.	 i.	 MSI
∑ i.	 42/54	 37/54	 37/54	 46/54%	 41/54	 44/54	 42/54	 46/54
	 77,78%	 68,52%	 68,52%	 85,19	 75,93%	 81,48%	 77,78%	 85,19%
∑ LOH	 17/42	 13/37	 12/37	 4/46	 6/41	 6/44	 3/42	 3/46
	 40,48%	 35,14%	 32,43%	 8,69%	 14,63%	 13,64%	 7,14%	 6,52%

Length of amplicons is given for each microsatellite marker. N.i., not informative; I, informative; MSI, microsatellite instability.

Table V. P-values from log-rank tests comparing survival in 
HNSCC patients related to clinical variables and LOH at FA 
gene regions.

		P  atients with
	                               All patients        tumour stage T4
Test	 -----------------------------	 ----------------------------
no.	 Variables	 p-value	 n	 p-value	 n

  1	 Gender	 0.495	 53	 0.819	 39
  2	 Tumour stage	 0.636	 53
  3	 Node stage	 2.69e-12	 51	 2.58e-09	 37
  4	 Metastasis stage	 0.662	 49	 0.868	 36
  5	 Tumour grading	 0.0418	 44	 0.108	 32
  6	 Surgery	 0.000466	 53	 0.00368	 39
  7	 Radiotherapy	 0.246	 53	 0.197	 39
  8	 Chemotherapy	 0.0742	 53	 0.133	 39
  9	 Nicotin/Alcohol	 0.24	 53	 0.434	 39
10	 D11S1981	 0.19	 45	 0.286	 34
11	 D11S1359	 0.0248	 40	 0.0617	 32
12	 D11S1392	 0.0326	 42	 0.00254	 31
13	 FANCF region	 0.00617 	 52	 0.00595	 38
14	 D9S171	 0.344	 41	 0.902	 31
15	 D9S1853	 0.901	 36	 0.309	 27
16	 D9S163	 0.438	 35	 0.573	 26
17	 FANCG region	 0.682	 53	 0.452	 39
18	 D17S1607	 0.983	 41	 0.876	 31
19	 D17S1855	 0.768	 44	 0.586	 30
20	 BRIP1 region	 0.762 	 53	 0.537 	 39
21	 >1 FA gene region	 0.6	 53	 0.483	 39

Bold indicates significance for raw p-values. Italics indicates 
p-values significant after correcting for multiple tests (alpha'=0.0024 
for 21 tests and alpha'=0.0038 for 13 tests omitting the individual 
microsatellite markers).
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normal tissues and tumours. Then we extracted array probes 
corresponding to our genes of interest from the resulting gene 
lists and retrieved the fold change in expression when the raw 
p-value was <0.05.

Differential gene expression analysis using TCGA data. We 
queried the Cancer Genome Atlas data for head and neck squa-
mous cell carcinoma comprising 521 samples with RNAseq 
data (queried in November 2016) using the TCGA Browser 
v0.9 at http://tcgabrowser.ethz.ch:3839/TEST/ (65). The top 
200 differentially expressed genes for FANCG, FANCF and 
BRIP1 were subjected to the gene set enrichment analysis (66). 
We computed overlaps with hallmarks gene sets and with gene 
sets of known molecular function.

In order to identify protein partners that interact physically 
with FANCG, FANCF and BRIP1, a network analysis was 
performed using GeneMANIA (67).

Results

Detection of LOH. The information content of the microsatel-
lite markers was high with 68-85% of informative patients per 

marker, in 53 of 54 patients at least one microsatellite marker 
was informative (Table IV). Patient 37 had to be excluded 
from the analysis of FANCF since none of the markers was 
informative here. We detected LOH in 30 of 53 (57%) patients 
(Table IV), 23 patients had at least one informative marker but 
did not show LOH.

LOH was detected most frequently in the gene region 
containing FANCG in 40.74% (22/54) of HNSCCs. The gene 
region of FANCF showed LOH in 16.98% (9/53) and the BRIP1 
region was affected in 11.11% (6/54) of HNSCC. Patient 116 
showed LOH in all three FA gene regions. Patients 26, 458 and 
479 showed LOH in FANCG and FANCF regions. Patient 478 
showed LOH in FANCG and BRIP1 and patient 14 in FANCF 
and BRIP1 regions.

Association analysis. We tested if the frequency of LOH 
was associated with age (either below or above 60 years), 
gender, tumour stages (T2, T3 and T4), node stage, metas-
tasis stage, histological tumour grading, smoking or alcohol 
consumption and recurrent disease. None of these variables 
was significantly associated with an increased or decreased 
frequency of LOH at the FA gene regions, when combining 

Table VI. P-values from Cox proportional hazards models.

		  One Cox PH model with
		  significance in log-rank	 Cox PH model with best
	 One Cox PH model	 tests of Kaplan-Meier	 likelihood ratio,
	 with all variables	 analysis	 Wald and Score tests
	 -------------------------------------------------------------	 ------------------------------------------------------	 --------------------------------------------------------
No.	 Variables	P -value	 LCI	 UCI	P -value	 LCI	 UCI	P -value	 LCI	 UCI

  1	 Gender	 0.88885	 0.206970	 39.176
  2	 Tumour stage	 0.57460	 0.509899	 33.673
  3	 Node stage	 0.34330	 0.732887	 24.415	 0.1584	 0.87206	 23.155	 0.02539	 107.130	 28.550
  4	 Metastasis stage	 0.21420	 0.013535	 26.236				    0.12550	 0.01837	 16.319
  5	 Tumour grading	 0.10808	 0.084520	 12.771	 0.0469	 0.09622	 0.9838	 0.01890	 0.06185	 0.7785
  6	 Surgery	 0.00298	 0.006957	 0.3615	 0.0139	 0.09975	 0.7709	 0.00265	 0.04769	 0.5267
  7	 Radiotherapy	 0.97083	 0.155178	 69.173
  8	 Chemotherapy	 0.53866	 0.080760	 37.230
  9	 Nicotin/Alcohol	 0.07382	 0.040165	 11.592
10	 FANCF region	 0.10518	 0.631867	 1262.340	 0.1723	 0.74051	 53.587
11	 FANCG region	 0.37524	 0.393851	 118.390
12	 BRIP1 region	 0.86562	 0.187164	 73.337
13	 >1 FA gene region	 0.09701	 0.001591	 17.071
14	 Age	 0.54531	 0.919269	 10.455

Test statistics:
	 n	 40	 42	 41
	 events	 27	 28	 27
	 Rsquare	 0.509	 0.335	 0.432
	 Likelihood ratio test	 28.42 on 14 df, p=0.01249	 17.15 on 4 df, p=0.001806	 23.19 on 4 df, p=0.0001162
	 Wald test	 24.09 on 14 df, p=0.04469	 17.48 on 4 df, p=0.001561	 22.93 on 4 df, p=0.0001308
	 Score (log-rank) test	 35.05 on 14 df, p=0.001444	 20.63 on 4 df, p=0.0003744	 30.97 on 4 df, p=3.1e-06

Bold indicates significance for raw p-values. Italics indicates p-values significant after correcting for multiple tests (testing three models, 
alpha'=0.0167). LCI, lower confidence interval (95%). UCI, upper confidence interval (95%).
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several microsatellite markers per region (Fisher's exact 
tests and Chi-square tests, data not shown). Individual 
microsatellite markers were, moreover, not associated 
with any factor except for D17S1607 (in the BRIP1 region) 
which was associated with smoking or alcohol consumption 
(p=0.029). However, this association was not significant 
when corrected for multiple testing (alpha' of 0.006) and 

LOH overall was more frequent in patients without smoking 
or alcohol consumption.

Survival analysis. We tested for an association of the LOH 
in regions of FA genes and overall patient survival using 
Kaplan-Meier curves and log-rank tests (Table V). Higher 
lymph node stages were most significantly associated with 

Figure 2. Kaplan-Meier survival curves. Curves shown for (A) node stages 0 to 3, (B) surgery; 0, no and 1, yes, (C) LOH in the FANCF region and (D) tumour 
grading of 1 to 3 (see Table I).

Table VII. LOH, CNV and expression of FANCF, FANCG and BRIP1 in HNSCC.

Gene	 LOH	 CNV (18)		  Expression

	 This study	 Sum	 Gain	 Loss	 22 HNSCC,	 139 HNSCC,	 17 ESCC,
					     22 normal tissues,	 16 normal tissues, 	 17 normal tissues, 
					     dataset GDS2520 (65)	 dataset GSE55550	 dataset GDS3838 (66)
FANCF	 16.98%	 20%	 16.2%	 3.8%	 NA	 Underexpressed	 Underexpressed in14/17
FANCG	 40.74%	 35.2%	 6.7%	 28.6%	 Overexpressed in 17/22	 Overexpressed	 Overexpressed in 14/17
BRIP1	 11.11%	 35.7%	 4.1%	 31.6%	 NA	 Overexpressed	 Overexpressed in 15/17

LOH in HNSCC measured here and data on CNV previously published match roughly for FANCF and FANCG. BRIP1 shows LOH less often. 
LOH may predominantly indicate copy number gains in FANCF and losses in FANCG and BRIP1. Expression data indicate underexpression 
of FANCF and overexpression of FANCG and BRIP1 in HNSCC. NA, not available.
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decreased survival (p=2.69e-12) and surgery was most 
significantly associated with improved survival (p=0.0004; 
Fig. 2). Node stage and surgery were significant also when 
corrected for multiple testing (21 variables: alpha'=0.0024 or 
13 variables: alpha'=0.0038, see Table V). LOH in the FANCF 
region was associated with decreased survival (p=0.006; 
Fig. 2 and Table I) and higher tumour grading was associated 
with increased survival (p=0.0418; Fig. 2). However, these 
associations were not significant when corrected for multiple 
testing. LOH in FANCG and BRIP1 regions were not signifi-
cantly associated with survival, accordingly LOH in more 
than one FA gene region was also not significantly associated 
with survival. Stratification for patients with tumour stage 
T4 showed similar associations. Only node stage remained 
significantly associated after correcting for multiple testing 
(Table V). We did not stratify for T3 and T2 patients since 
they were too few (≤10).

To increase our understanding of LOH in FA gene regions 
and survival in the context of clinical covariates we employed 
Cox PH regression models (Table VI). We evaluated three 
different Cox PH models: firstly, a model with all variables, 
secondly one with only those variables which were significant 
in the previous log-rank tests. We also used backwards elimi-
nation of variables to obtain the third Cox PH model with the 
most significant likelihood ratio test, Wald test and score (log-
rank) test. Applying a raw significance level of alpha=0.05, 
surgery was always significantly associated with survival 
(p-values between 0.003 and 0.014) and tumour grading was 
significantly associated with survival when fewer variables 
were in the model (p-values between 0.047 and 0.019). Node 
stage was significantly associated only in the Cox PH model 
with best likelihood ratio, Wald and score tests (p=0.025). 

LOH in FA gene regions were not significantly associated 
with survival in the Cox PH models. Moreover, age, gender, 
tumour stage, metastatic stage, radiotherapy, chemotherapy 
and smoking or alcohol consumption were not significantly 
associated with survival. When correcting for multiple testing, 
applying an alpha' of 0.0167 (due to the three Cox PH models 
evaluated), only surgery showed a significant association with 
survival, most prominently in the Cox PH model with the best 
test statistics. 

We did not explore associations of survival and MSI, 
because of a very small sample for MSI in only two patients.

Analysis of copy number data. To analyse if LOH in FANCF, 
FANCG and BRIP1 may be associated with amplifications 
or deletions, we checked if published copy number data of 
HNSCC (18) showed gains or losses of these genes (Table VII). 
Twenty prercent of HNSCC samples showed copy number 
variants (CNV) spanning FANCF; 3.8% (4/105) were losses 
and 16.2% (17/105) were gains. FANCG was lost in 28.6% 
(30/105) and gained in 6.7% (7/105), in sum it was affected in 
35.2% of samples. BRIP1 was lost in 31.6% (31/98) and gained 
in 4.1% (4/98), in sum affected in 35.7%. For comparison, 
TP53 showed losses in 47% (49/103) of the samples and did 
not show gains.

Our frequencies of LOH correspond to the frequencies of 
copy number variants (CNV) recently published in a genome 
wide screen of HNSCC for FANCF (17% LOH, 20% CNV) 
and FANCG (41% LOH, 35% CNV) (18). The estimates depart 
for BRIP1 (11% LOH, 36% CNV) possibly reflecting differ-
ences between the sample sets. However, at least for FANCF 
and FANCG we think that our measurement of LOH approxi-
mate the measurement of CNV in array based methods.

Figure 3. Physical interaction network. FANCF, FANCG and 5 other genes (FANCE, C19Orf40, FANCC, FANCL and FANCA) are members of the Fanconi 
anemia nuclear complex (solid circles). BRIP1, BRCA1, BRCA2, BLM and PALB2 are involved in double-strand break repair (dotted circles). Physical interac-
tions are indicated by lines.
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Analysis of expression data. One dataset, GDS2520, comprised 
22 pairs of HNSCC corresponding normal tissues (68). Here, 
FANCG was overexpressed in 17 HNSCC samples when 
compared to the corresponding normal tissue. The highest 
change in expression was 1.6-fold. Data for FANCF and BRIP1 
were not available in this dataset (Table VII).

The second dataset (GSE55550, no publication available) 
contained gene expression profiles of 139 HNSCC and 16 
normal samples. For all of our three genes of interest, there 
was an array probe that showed significant differential gene 
expression (raw p-value<0.05). Here, FANCF was underex-
pressed in HNSCC compared to normal tissues and FANCG 
and BRIP1 were overexpressed.

A third dataset (GDS3838) compared 17 esophageal 
squamous cell carcinomas (ESCC) to corresponding normal 
tissues (69). FANCF was underexpressed in 14 of 17 samples. 
FANCG and BRIP1 were overexpressed in 14 of 17 and 15 
of 17 samples, respectively. The few samples that showed the 
opposite pattern (overexpression of FANCF and underexpres-
sion of FANCG or BRIP1), did not overlap.

Differential gene expression analysis using TCGA data. In 
order to identify cellular signaling pathways that are affected 
by mutations in FANCG, FANCF and BRIP1 we performed a 
differential gene expression analysis of the TCGA head and 
neck squamous cell carcinoma samples (n=521) with subse-
quent gene set enrichment to identify affected pathways.

The gene set enrichment analysis for FANCG revealed 
a significant overlap with genes that perform transfers of 
ubiquitin modifications (FDR q-value 0.00005 genes such 
as UBE2R2 and UBE2W), a process that has been described 
before to play a role in the damage response of FANCG (70).

Differentially expressed genes associated with FANCG are 
also of ribonucleotide binding activity (FDR q-value 0.00006), 
such as XRCC3 which is together with FANCG involved in 
homologous recombination to maintain chromosome stability 
and repair DNA damage and also physically interacts with 
FANCG (see below).

The gene set enrichment analysis for FANCF revealed a 
highly significant overlap with genes that have transcription 
factor activity (FDR q-value 4.86E-022), such as a number of 
zinc finger proteins. However, these are somewhat inconclu-
sive as a plethora of transcriptions factors is involved in the 
damage response.

The gene set enrichment analysis for BRIP1 revealed 
highly significant overlaps with genes involved in the G2/M 
checkpoint, as in progression through the cell division cycle 
(FDR q-value of 2.07e-41), such as e.g. BRCA2 and BARD1 
(BRCA1 associated RING domain 1). Also, genes differen-
tially expressed in association with BRIP1 are preferably genes 
encoding cell cycle related targets of E2F transcription factors 
(FDR q-value of 8.14e-30). Some of these, BRCA2 and BRCA1 
also physically interact with BRIP1 (see below).

In order to complement the gene set enrichment, protein 
partners that interact physically with FANCG, FANCF and 
BRIP1 were identified in a network analysis and are shown 
in Fig. 3. Highly associated protein sets are members of the 
Fanconi anemia nuclear complex (false discovery rate FDR of 
9.72e-18) and proteins involved in double-strand break repair 
(FDR of 1.79e-3).

Discussion

Frequent LOH in FA gene regions of HNSCC. The microsatel-
lite markers established here were informative for almost all 
patients and allowed us to assess the frequency of LOH at 
three FA gene regions in HNSCC tumours. LOH in at least one 
of the analysed regions containing the genes FANCF, FANCG 
and BRIP1 appears to be a frequent event in HNSCC develop-
ment in more than half of the cases analysed here. Such a high 
frequency of LOH supports an assumed role of these genes in 
HNSCC development, and might also influence the success of 
HNSCC therapy.

The frequencies of LOH in the three studied genes is much 
higher than that of reported point mutations (0.3-1.1%): BRIP1 
was mutated in 2 of 172 skin cancers, 4 of 173 esophageal 
cancers and 1 of 113 upper aerodigestive tract cancers, and 
the mutational frequencies of FANCG and FANCF were 
even lower (71). This suggests minor role of point mutations, 
however, non-coding point mutations have not been studied 
and may add onto these frequencies.

Mutations in HNSCC are thought to be induced by 
mutagens such as tobacco smoke and alcohol (7-9). In the 
present study we observed a mild negative association 
between smoking or alcohol consumption and FA mutation 
for one microsatellite marker, suggesting that in some cases 
mutagenesis induced by smoking or alcohol is not respon-
sible for HNSCC progression. The frequencies of LOH at 
FA gene regions reported here should be seen as a minimum 
estimate since the distance between FA genes and the used 
microsatellite markers was quite large and result in false 
negative assignments. The FANCG region presented with 
LOH in 41% of the tumours and is thus a strong candidate 
for further study. Similarly, the tumour suppressor CDKN2A 
on chromosome 9p has been implicated in cancer develop-
ment, and the loss of this gene is thought to be a frequent 
event in various cancers and in HNSCC with an estimated 
25%. A proposed progression model of HNSCC based on 
CGH data involved an early loss of 9p suggested ~80% of 
the samples (29). The LOH in this region may therefore be 
driven by loss of the tumour suppressor CDKN2A rather 
than that of FANCG. However, simultaneous loss of DNA 
repair mediated by Fancg may promote the accumulation 
of mutations and a deregulation of apoptosis at the same 
time (72,73). Future studies on cancer genomes will provide 
data to test whether heterozygosity is lost in CDKN2A and 
FANCG independently, or whether the loss of FANCG is a 
result of LOH in CDKN2A.

The markers used previously to study LOH in the FANCF 
region on chromosome 11p showed similar frequencies of LOH, 
partially using the same microsatellite markers (18-33%) (74) 
and also when markers were 2-3 Mb distant from our markers 
(17%) (32). These studies focused on primary HNSCCs. A 
proposed progression model of HNSCC implies that the 
same gene region 11p14 is lost in up to 60% of metastatic 
HNSCC (29). If the loss of FANCF predominantly happens 
during the progression of HNSCC to the metastatic stage, the 
gene may already be downregulated via other mechanisms in 
primary HNSCC, for instance methylation (40).

Markers previously used on chromosome 17q were more 
than 10 Mb distant from the BRIP1 region and showed a higher 



INTERNATIONAL JOURNAL OF ONCOLOGY  50:  2207-2220,  2017 2217

LOH frequency (31%) than our estimate (11%), (32). However, 
another study evaluated loci around 3 Mb distant from our 
marker positions and did not detect LOH (74).

Thus, our data on LOH in the regions of FANCG and 
FANCF are in concordance with previous estimates for LOH 
in regions containing the studied FA genes. Reports on BRIP1 
vary and it is currently difficult to conclude on the role of LOH 
adjacent to this gene in HNSCC.

LOH in FA genes and patient survival. Impaired DNA repair 
in tumour tissue due to mutated FA genes may increase the 
sensitivity to DNA damage by radiotherapy and even more 
by alkylating agents and may thus prolong patient survival 
(72,73,75,76). However, associations of LOH at FA gene regions 
and patient survival were not strongly supported from our 
data. We observed a mild association of LOH at the FANCF 
region and decreased survival in our Kaplan-Meier curves and 
log-rank tests. The loss of FANCF as a tumour suppressor is 
consistent with decreased survival in the affected patients and 
also with decreased expression of the gene in ovary, breast, 
lung, cervix and testis cancer (38-42). However, the weak asso-
ciation for FANCF is not as strong as that of known predictors 
for HNSCC survival, such as higher node stages and surgery 
(77,78). The Bonferroni correction may be overly conservative 
for the Cox PH models evaluated, as these can be assumed to 
be positively correlated and also weaker associations might be 
true positive results (79). Thus, in multivariate analyses with 
improved statistical power, the weak associations observed 
here may be correct.

The observed effect of tumour grading and improved 
survival was very weak and may not hold true, as we had a 
small sample size for this trait and higher tumour grading 
has repeatedly been described as associated with decreased 
survival (80-82). Our analysis may also lack statistical power 
since the analysed sample of 53 patients had varying clinical 
data. A rather uniform collection of tumours from patients 
with similar clinical data, e.g. all with surgery and radio-
therapy, would result in a strongly improved study design. A 
larger sample for only chemotherapy treated individuals may 
be necessary to explore a potential link of chemosensitivity 
with BRIP1 mutation.

Copy number and expression data. From the queried datasets 
we found that HNSCC tumours tend to overexpress FANCG 
and BRIP1 (Table VII), however, often exhibit chromosomal 
aberrations that predominantly involve the loss of these genes. 
After the induction of both genes for DNA repair, the copy 
number loss in a progressing tumour could remove both 
genes and allow the accumulation of mutations. This scenario 
supports the assumed role of FANCG and BRIP1 as tumour 
suppressors. These data differ from a previous study that 
found reduced expression of FANCG and BRIP1 in HNSCC 
in tongue carcinoma (26). However, a loss of FANCG and 
BRIP1 would diminish expression of the genes in later stages 
of HNSCC or in the more aggressive tongue carcinoma. 
Also in other cancer types FANCG was lost more often than 
gained (breast: 11.5% gains, 24.1% loss; lung: 13.9% gains, 
43.9% losses; and pancreas: 20.3% gains, 39.0% losses) (71). 
However, BRIP1 was gained more often than lost indicating 
differences of the various cancer types (breast: 32.8% gains, 

12.3% loss; lung: 36.8% gains, 6.9% losses; and pancreas: 
27.1% gains, 24.8% losses).

Intergrating copy number data and expression is somewhat 
inconclusive as well for FANCF as it shows underexpression 
in two sets of HNSCC and is affected by copy number gains 
in another set. Copy number gains are not characteristic for 
tumour suppressor genes, which FANCF was supposed to be. 
A decrease in gene expression, may be explained by point 
mutations or methylation of the gene in 15% of HNSCC as 
previously reported (40,83). This could also ameliorate copy 
number gains that involve FANCF by chance. In other cancer 
types FANCF is affected by CNV in 30-40% of samples, 
involving gains and losses (breast: 13.4% gains, 20.4% loss; 
lung: 13% gains, 27.1% losses; and pancreas: 29.7% gains, 
14.8% losses).

Thus, copy number mutations of FA genes are frequent in 
HNSCC and other cancer types. However, an improved under-
standing of the mechanisms leading from gene mutations to 
gene expression changes and a potential clinical relevance 
could come from data on LOH, CNV, point mutations and 
gene expression obtained for the same samples.

Differential gene expression analysis using TCGA data. 
Our pathway analyses using differential gene expression 
analysis with subsequent gene set enrichment and network 
analysis showed that physically interacting partners differ for 
the studied genes. FANCG and FANCF show some overlap 
in interacting with members of the Fanconi anemia nuclear 
complex while BRIP1 is rather involved in the double-strand 
break repair pathway.

Clinical relevance. As HNSCC is routinely treated with 
ionizing radiation and, less frequently, also with chemotherapy, 
mutations in DNA repair genes may be relevant for treatment 
success. Since we found LOH in FA gene regions in 57% of the 
patients and other mutation types may add to this frequency, 
a substantial proportion of HNSCC patients may be eligible 
for poly-adenosine diphosphate ribose polymerase (PARP) 
inhibition therapy. PARP inhibition impairs DNA repair selec-
tively in cancer cells, however, not in normal somatic cells 
and may enter the clinics for HNSCC treatment (33,84). In 
theory, cancer cells with an impaired pathway for homologous 
recombination (e.g. due to mutated FA genes) cannot perform 
double strand break repair. PARP inhibition then may be used 
to block the base excision repair pathway for single strand 
break repair as well. Unlike normal cells, cancer cells will 
then be sensitized to DNA damage induced by radiation and 
alkylating chemotherapy (85). In this regard, cells deficient 
in FANCA, FANCC or FANCD2 were previously found to be 
hypersensitive to PARP inhibition (86). Also human HNSCC 
cells showed enhanced cytotoxicity with radiation and PARP 
inhibition compared to either agent alone (87). PARP inhibi-
tors enhanced the effect of radiotherapy in a xenograft model 
of human HNSCC leading to reduced tumour volume and 
enhanced apoptosis (88). FANCF knockdown has been shown 
to induce chemosensitivity in cancer cells  (89,90). Thus, 
further studies are needed to explore the observed association 
of LOH in FANCF and decreased HNSCC survival as well 
as the potential use of FA gene mutations as an indicator for 
chemo- and radiosensitivity of head and neck tumours.
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In conclusion, analysing three FA gene regions, we found 
LOH in 57% of HNSCC tumours. LOH in FANCF showed 
a weak association with survival of radiotherapy and chemo-
therapy treated HNSCC patients. Tumours with LOH in FA 
genes may exhibit an altered sensitivity to cancer therapy 
utilizing DNA damaging agents. Thus, it is worthwhile to 
perform further studies screening for other types of mutations 
in FA genes and involving larger sample sizes to improve the 
statistical power of survival analysis. 
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