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Abstract. The exploration of the molecular mechanisms and
signaling pathways on lung cancer is very important for devel-
oping new strategies of diagnosis and treatment to this disease,
such as finding valuable lung cancer markers and molecularly
targeted therapies. Previously, a number of studies disclose that
heat shock protein 90 (Hsp90) is upregulated in cancer cells,
tissues and serum of lung cancer patients, and its upregulation
intimately correlates with the occurrence, development and
outcome of lung cancer. On the contrary, inhibition of Hsp90
can suppress cell proliferation, motility and metastasis of lung
cancer and promote apoptosis of lung cancer cells via complex
signaling pathways. In addition, a series of Hsp90 inhibitors
have been investigated as effective molecular targeted therapy
tactics fighting against lung cancer. This review, systematically
summarizes the role of Hsp90 in lung cancer, the molecular
mechanisms and development of anti-Hsp90 treatment in lung
cancer.
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1. Introduction

With the development of tumor molecular biology, progress
of the detection and treatment of cancer has led to an impres-
sive reduction in both mortality and morbidity. However,
cancer still remains one of the most clinically challenging
diseases (1). Todays, it is believed that systemic chemotherapy
improves the survival and quality of life of patients with
advanced stage cancer, and improved the outcome of first-line
therapy for advanced and metastatic cancer have primarily
focused on the addition of targeted agents to platinum-based
two-drug regimens (2). Medical studies suggest that under-
standing the molecular mechanism of tumors is critical for
improving the diagnosis and treatment. Especially, the level
of certain protein expression is associated with the prognosis
and treatment of malignant tumors (3). Heat shock protein 90
(Hsp90) accounts for 1-2% of the amounts of cellular proteins
under non-stressed conditions. However, it contents would
go up approximately twice during environmental stress (4).
Hsp90 performs a series of biological functions via compli-
cated signals regulation by combining and disaggregation of
ATP, and various client proteins and co-chaperones of Hsp90
are implicated in this process (5). Human Hsp90 includes four
isoforms: Hsp90a and {3 (cytosolic isoforms), TRAPI (in mito-
chondria) and Grp94 (in endoplasmic reticulum) (6). Hsp90f
(Hsp90ABYI) is regarded as a constitutive expression while
Hsp90a (Hsp90A A1) as an inducible expression, it is proved
that they have 86% amino acid sequence identity (7). Hsp90
has been found as a critical regulator of cell proliferation,
development, mobility and metastasis in malignant tumors,
which facilitates maturation and activation of oncogenic
proteins, including many kinases and transcription regulatory
factors (8). Also, Hsp90 exerts anti-apoptotic activity and
affects growth processes tumor cells, and overexpression of
Hsp90 has been obviously associated with drug resistance
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Figure 1. Molecular structure and function domain of Hsp90. (A) Hsp90a, Hsp90f, gp96 and the TRAP1 are four members of Hsp90 family 4. (B) Each
protomer of Hsp90 comprises three regions, ATP-binding domain (N-domain), middle domain (M-do-main), and C-terminal dimerization domain (C-do-main);
the 25-kDa N-terminal of Hsp90 is relatively conserved, which is linked with 55 kDa C-terminal domains by a charged linker region; the N-terminal domain
of Hsp90 combined with ATP is intimately tied up with a middle domain via an unstructured charged linker, and the C-terminal domain; the middle domain
of Hsp90 is ~35 kDa, and a binding site for client proteins and nuclear localization signal, which is implicated in recognising of collaborating proteins and
adjusting the activation molecular chaperones. (C) Hsp90a and Hsp90p, exist as a result of the duplication of the original gene and share 86% homology; the
chromosome 14q32.33 encodes the Hsp90a, while Hsp90g is located at 6p21. Hsp90-coding genes include intron sequences and the second exon is the region
of translational initiation of both Hsp90a and Hsp90f. Hsp90, heat shock protein 90; TRAP1, TNF receptor associated protein 1; ATP, adenosine-triphosphate.

and survival time of tumor patients (9). Previous studies show
that Hsp90 is highly expressed in specimens of lung cancer
and are associated with poor post-surgical survival time and
lymphatic metastasis of lung cancer patients (10-13) indicating
that upregulation of Hsp90 potentially facilitates proliferation
and metastasis of lung cancer. However, anti-Hsp90 (Hsp90
inhibitors) studies have demonstrated that downregulation
and function disruption of Hsp90 inhibits cell proliferation,
motility and metastasis, and induces apoptosis of lung cancer
cells (11,12,14). Here, we reviewed new findings on the role of
Hsp90 in lung cancer, including the mechanisms and signaling
pathways, the pre-clinical results of Hsp90 inhibition (14).

2. Molecular structure and function domain of Hsp90

As a homodimeric protein of ~90 kDa, Hsp90 performs
complicated biological functions reacting with many
collaborating proteins (co-chaperons and clients proteins of
Hsp90) (15). As shown in Fig. 1A, Hsp90a., Hsp90p, gp96 and

the TRAP1 are four members of Hsp90 family (7). Different
members of Hsp90 family present the same action pattern but
binding to specially appointed clients proteins, which depends
in part on their locations and distribution within the different
cells (16). Each protomer of Hsp90 comprises three regions,
ATP-binding domain (N-domain), middle domain (M-domain),
and C-terminal dimerization domain (C-domain) (17)
(Fig. 1B). Constructively, the 25-kDa N-terminal of Hsp90 is
relatively conserved, which is linked with 55 kDa C-terminal
domains by a charged linker region and middle domain (16)
(Fig. 1B). The middle domain of Hsp90 is ~35 kDa, has been
investigated as a binding site for client proteins and nuclear
localization signal, which is implicated in recognising of
collaborating proteins and adjusting the activation molecular
chaperones (18) (Fig. 1B). Hsp90 exerts relevant functions
via binding and hydrolysis of ATP like a molecular clamp,
which facilitates the combining and dissociation of its client
proteins (19) (Fig. 1B). The important two members of Hsp90,
Hsp90a and Hsp90p, exist as a result of the duplication of the
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Figure 2. Co-chaperons and client proteins of Hsp90. (A) More than 20 different proteins regulate the activity and function of Hsp90, which are known as
co-chaperones and these proteins regulate the chaperoning function of Hsp90 by activating and inhibiting the activity of Hsp90 ATPase and sometimes by
recruiting the specific client proteins; some key co-chaperones include Hop/Stil, Cdc37, p23/Sbal, PP5, Fkbp51, Fkbp52, Cyp40, Unc45b, Tahl, Ahal and
CHIP. (B) The specific co-chaperones of Hsp90 could have a specific intimate relationship with one, even more than one client protein and participate in a
series of specific biological reactions; some key co-chaperones include ErbB2/HER2, IGF-1 and TGF receptor I and II; the members of Src family, Yes, Fes,
Fps, Abl and Lck; ERK1, ERK2, Rafl, B-Raf, Cdk4, Cdk6, hTERT, MMP2, p53, CK2, MOK, MAK, MRK, DAPK. Hsp90, heat shock protein 90; ATPase,
adenylpyrophosphatase; Hop/Stil, a co-chaperone adaptor protein for Hsp90; Cdc37, cell division cycle 37; p23/Sbal, the protein encoded by the PTGES3 gene;
PP5, protein phosphatase 5; Fkbp51 and Fkbp52, Hsp90-associated human peptidyl prolyl cis/trans isomerases; Cyp40, cyclophilin 40; Unc45b, unc45 myosin
chaperone b; Tahl, TPR7-containing protein associated with Hsp90; Ahal, activator of Hsp90 ATPase; CHIP, carboxyl-terminus of the Hsp70 interacting
protein; ErbB2/HER2, human epidermal growth factor receptor-2; IGF-I, insulin-like growth factor 1; TGF, transforming growth factor; Yes, Fes, Fps, Abl
and Lck, some of Src family tyrosine kinases; ERK, extracellular-signal-regulated kinase; Raf, rapidly accelerated fibrosarcoma gene; Cdk, cyclin-dependent
kinase; hTERT, human telomerase reverse transcriptase; MMP2, matrix metalloproteinase-2; pS3, tumor suppressor p53; CK2, casein kinase 2; MOK, MAK
and MRK, MAPK-related protein kinases; DAPK, death associated protein kinase.

original gene and share 86% homology (20). In humans, the
chromosome 14q32.33 encodes the Hsp90a, while Hsp90p is
located at 6p21. Hsp90-coding genes include intron sequences
and the second exon is the region of translational initiation of
both Hsp90a and Hsp90p (7) (Fig. 1C).

3. Co-chaperons and client proteins of Hsp90

Co-chaperons of Hsp90. The discovery and structural charac-
terization of the ATP-binding site in the N-terminal domain
of HSP90, made it possible to determine the degree to which
the ATPase activity of HSP90 contributed to the essential
biological functions of HSP90 as a molecular chaperone.
There are more than 20 different proteins that regulate the
activity and function of Hsp90, which are known as co-chap-
erones (Fig. 2A). Of them, Hop/Stil inhibits the activity of
Hsp90 ATPase and recruits steroid hormone receptor to
Hsp90 (21,22). Cdc37 helps the loading of other co-chaperones
of Hsp90 (18), p23/Sbal inhibits the ATPase activity of Hsp90
and also promotes the maturation of client proteins (22,23).
PP5 stabilises the status of Hsp90 phosphorylation promoting
the efficient processing of client proteins (24,25). Human
peptidyl prolyl cis/trans isomerases, Fkbp51, Fkbp52 and
Cyp40 improve the client protein maturation of Hsp90 (26).
Unc45b forms a stable complex with Hsp90 and selectively
combines the myosin motor domain, and promotes motor
domain folding (27). Together with the Tahl cofactor, Hsp90
stabilize Pih1/Nopl7 and increases the chromatin remodeling
and small nuclear ribonucleoprotein maturation (28). Ahal
induces Hsp90 rearrangements that speeds up the conforma-

tional cycle, which defines a controlled progression through
distinct intermediates (29). Co-chaperones of Hsp90 are
also involved in other physiological processes, such as mito-
chondrial/chloroplast protein import, nuclear migration and
melanoma progression (30).

Client proteins of Hsp90. The client proteins of Hsp90 have
been found to be related to a wide aspects of physiological
procedures including the regulation of cell cycle, commu-
nication of cell signals and regulation of cell transcription
and post-transcriptional adjustment (Fig. 2B). Hsp90 plays a
critical role in the function and stability of ErbB2/HER?2 by
binding to IGF-I and TGF receptor I and II (18,31,32). The
members of Src family, Yes, Fes, Fps, Abl and Lck, have
been shown to be related to the exertion of Hsp90 function,
which activate the cascade reaction of downstream molecules
(18,33,34). Two proteins of MAPK pathway, ERK1 and ERK2
regulate the growth of cells by phosphorylating many kinds
of substrates within the nucleus. In addition, Hsp90 corre-
lates with the structure and function of Raf-1 and B-Raf by
interacting with Cdc37 (18,35,36). Clearly, the activity of CK2
depends upon the appearance of Hsp90 (12,37), estrogen and
androgen receptors, require the assistance of Hsp90 to enable
the steroid hormone ligand to bind (16). Inhibiting Hsp90
results in the proteolysis of hTERT, which affects the func-
tion of hTERT (38,39). Downregulation of Hsp90 reduces the
expression of MMP9 and protects the MMP2 from degrada-
tion in malignant cells (40,41). Also, p53 interacts with Hsp90
in a relatively folded state, which may be chalked up to the
destabilization by Hsp90 (42,43). Some Hsp90 client proteins,
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Figure 3. Influence of Hsp90 on the cell cycle regulation and cell apoptosis. Inhibition of Hsp90 induces G2/M phase arrest of lung cancer cells by reducing the
expression of Cdc2 and Cdc25C and promotes apoptosis via a caspase-dependent pathway; inhibition of Hsp90 induces an effective cell cycle arrest, which is
associated with DNA damage and cell cycle checkpoints, and apoptosis by regulating the expression of Bax and Bcl-2. Inhibition of Hsp90 causes the destabi-
lization of microtubules and degradation of CRAF-1 and ERBB2 and phosphorylated AKT, leading to cell cycle arrest at the G2/M phase and reinforcement
of apoptosis. Hsp90 inhibition leads to disruption of EML4-ALK and induces growth arrest and apoptosis in lung cancer cells. Hsp90 inhibition upregulates
Grp94, Grp78, ATF4 and CHOP and induces apoptosis of lung cancer cells by downregulation of Bcl-2, upregulation of Bax, release of cytochrome ¢ and
activation of caspases. Hsp90, heat shock protein 90; Cdc2, cell division cycle 2; Cdc25C, cell division cycle 25C; DNA, deoxyribonucleic acid; Bax, bcl-2-like
protein 4; Bcl-2, B-cell lymphoma-2; CRAF-1, threonine protein kinase; ERBB2, human epidermal growth factor receptor-2; AKT, anaplastic lymphoma
kinase; EML4-ALK, echinoderm microtubule associated protein like 4-anaplastic lymphoma kinase; Grp94, glucose-regulated protein 94; Grp78, glucose-
regulated protein 78; ATF4, anti-activating transcription factor 4; CHOP, nuclear transcription factor.

including RAF, ErbB2, EGFR, MAK and hTERT, have been
found to interact with Hsp90 and play important roles in the
development of lung cancer (44,45).

4. Expression of Hsp90 in lung cancer

Table I lists the recent important findings on the expression of
Hsp90 in lung cancer. Hsp90 is highly expressed in NSCLC
patients, and increased Hsp90 positively correlates with age,
lung squamous cell carcinoma (LSCC), ever-smoking history
and metastasis of lymph node (46). Also, overexpression
of Hsp90 in NSCLC patients relates with shorter overall
survival (47), suggesting that it could be used to predict
survival (48). In parental T2821 and T2851 cells of lung cancer,
the protein expression of Hsp90 is upregulated, and in radio-
resistant T2821/R and T2851/R cells lines this phenomena is
eminent and intimately correlates with the radioresistance of
T2821/R and T2851/R cells (49). Compared with the control
cells, the expression of Hsp90 in SPCA-1 and H446 cell lines
of lung cancer is upregulated remarkably, which presents a
dose-dependent pattern to geranylgeranylacetone (50). High
expression of Hsp90 is also associated with male patients,
patients with smoking index over 600, and SCLC (51). One

study reports that overall survival (OS) of high-Hsp90p
expression lung cancer is shorter than that of low-Hsp90f
group and Hsp90p is an independent prognostic factor (11).
In addition, overexpression of Hsp90f is found in tissues of
lung adenocarcinoma, which is related to the poorly differ-
entiated grade, shorten OS (52) and lymphatic invasion (10).
Increased serum Hsp90p correlates with the differentiated
grade and advanced clinical stage of patients with lung cancer,
and assists the diagnosis and prognosis estimation (13). In one
comparative study, Hsp90p in lung cancer tissues showed a
higher expression than that in normal lung tissue and Hsp90f3
presents a higher expression in LAC tissues than in LSCC, and
correlates with the poor survival of LAC patients (53). A study
with a total of 2,247 individuals demonstrates that the plasma
Hsp90a of lung cancer patients has a significantly higher level
and correlates with advanced stage of lung cancer patients
(stage III-IV) (54).

Currently, there are still some limitations on investigating
the expression of Hsp90 in lung cancer. First, we still lack
large number of samples and multiple center research. There is
no high quality research concerning the expression of Hsp90
in lung tissues, blood, BALF, and malignant pleural effussion
(MPE). Second, previous studies do not focus on Hsp90 gene
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Figure 4. Influence of Hsp90 on the growth of lung cancer via EGFR signaling pathways. Hsp90 inhibition decreases the growth of NSCLC cells by down-
regulating EGFR, Met, Her2, Akt, and Cdk4, and upregulating Hsp70, and inhibits the proliferation and induces cell death by downregulation of EGFR and
AXL. Hsp90 inhibition results in exhaustion of EGFR, Met, HER2 and AKT, which leads to the reinforcement of apoptosis; Hsp90 inhibition reduces the
lung cancer cell survival via reducing the expression of EGFR, ErbB2, ErbB3, Met and Akt. Hsp90 inhibition and erlotinib stabilizes the expression state of
EGFR inactivation and disrupts ERK and AKT signaling activity, which is associated with downregulation of EGFR and Met. Inhibition of Hsp90 exhausts
EGFR, AKT, MAPK, Cdk4, and cyclin DI and suppresses EGF activation of pAKT(473) and pSTAT3(705), pERK1/2 and pS6 and causes c-Met degradation;
suppression of Hsp90 reduces expression of Hsp90-dependent client protein EGFR and results in a potential conformational change and degrades multiple
oncoproteins and promotes EGF-induced wild-type and mutated EGFR downregulation. Hsp90, heat shock protein 90; EGFR, epidermal growth factor
receptor; CDK4, cyclin-dependent kinase 4; ERBB, human epidermal growth factor receptor; AKT, anaplastic lymphoma kinase; Met, Met gene; Her2, human
epidermal growth factor receptor-2; AXL, receptor tyrosine kinase; ERK, extracellular-signal-regulated kinase; MAPK, mitogen-activated protein kinase;
EGF, epidermal growth factor; STAT3, signal transducer and activator of transcription 3; c-Met, proto-oncogene.

mutations and abnormal copy. Because a great deal of studies  arrest, associating with DNA damage and cell cycle check-
on inhibitors of Hsp90 that fight against lung cancer show that  points, and apoptosis (56). Hsp90 inhibitor 17-AAG arrests
not all lung cancer respond with definite efficacy to inhibitors  cell cycles of lung cancer A549 and H446 cells at the G2/M

of Hsp90. phase and promotes apoptosis via regulating the expression of
apoptosis-related proteins (Bax and Bcl-2) (57), and combina-
5. Biological functions of Hsp90 in lung cancer tion of 17-AAG and carbon ions shows treatment efficacy in

lung cancer, which results in a definite G2 cell cycle delay
From 2000 to now, investigating the relation between Hsp90  (58). Geldanamycin and 17-AAG inhibit the growth of lung
and lung cancer has become a very active field, especially on  cancer cell lines via inducing G2/M arrest concomitant with
the efficacy of Hsp90 inhibitors that fight against lung cancer.It ~ decreased protein levels of Cdc25C and Cdc2 (51). CDBT
seems that different Hsp90 inhibitors affect different signaling  exerts an antitumor activity in P-gp overexpressing drug-
pathways via specific signal molecules in development of lung  resistant NSCLC H460TaxR cells by the destabilization of
cancer. microtubules, degradation of CRAF-1 and ErbB2 and phos-

phorylated AKT (44), leading to cell cycle arrest at the G2/M
Influence of Hsp90 on cell cycle regulation and cell apoptosis ~ phase and reinforcement of apoptosis (59). Hsp90 inhibition
of lung cancer. As shown in Fig. 3, Hsp90 inhibitor FS-108  of IPI-504 results in disruption of EML4-ALK and inhibi-
induces G2/M phase arrest of gefitinib-resistant lung cancer tion of its downstream signaling pathways, which induces
cells by reducing the expression of Cdc2 and Cdc25C, and  growth arrest and apoptosis in cells carrying the EML4-ALK
promotes apoptosis of gefitinib-resistant cells via a caspase-  fusion (60). Hsp90 inhibitor PU-H71 upregulates Grp94,
dependent pathway (55). STA-8666 combines a chemical Grp78, ATF4 and CHOP, inducing apoptosis of lung cancer
moiety targeting active Hsp90 fused via cleavable linker to the  cells by downregulation of Bcl-2, upregulation of Bax, release
active metabolite of irinotecan (SN38), and induces cell cycle  of cytochrome ¢ and activation of caspases (61).
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Hsp90 regulates the growth of lung cancer via EGFR-related
signaling pathways. As shown in Fig. 4, Hsp90 inhibitor,
2'4'-dimethoxychalcone (1b) suppresses the growth of Iressa-
resistant NSCLC H1975 cells by downregulating EGFR, Met,
Her2, AKT, and Cdk4, and upregulating Hsp70 (62). Hsp90
inhibitor AUY922 inhibits the proliferation of lung cancer cells
and induces cell death by downregulation of EGFR, Met, and
AXL, leading to disruption of AKT signal (63). Furthermore,
AUY922 results in obvious exhaustion of EGFR, Met, HER2
and AKT in NSCLC cell lines, giving rise to a reinforcement
of apoptosis (64). Hsp90 inhibitor WK88-1 reduces the cell
survival of lung cancer cells via reducing the expression of
EGFR, ErbB2, ErbB3, Met and Akt (65), and combination
treatment of Hsp90 inhibitor ganetespib and erlotinib stabi-
lizes the expression state of EGFR inactivation and disrupts
ERK and AKT signaling activity (66). Hsp90 inhibitor
17-DMAG inhibits the growth of Ma-1/HGF cells, H1975
cells and PC-9 cells by downregulating EGFR and Met (67)
and exhausting EGFR, AKT, MAPK, Cdk4, and cyclin D1 in
EGFR-mutant cell lines (68). Hsp90 inhibitors SNX-2112 and
SNX-5422 alone and in combination with erlotinib suppresses
EGF activation of pAKT(473) and pSTAT3(705), pERK1/2
and pS6 and decreases EGF cross-talk and activation of the
c-Met receptor (69). Gamabufotalin inhibits the chaperone
function of Hsp90 by reducing expression of Hsp90-dependent
client protein EGFR (45). Hsp90 inhibitor HDN-1 binds to
C-terminus of Hsp90a and degrades multiple oncoproteins,
promoting EGF-induced wild-type and mutated EGFR down-
regulation (70).

Hsp90 regulates the growth of lung cancer via RAS-RAF-
MEK-ERK-MAPK, PI3K/AKT, TGF and VEGF signaling
pathways. As shown in Fig. 5, Hsp90 inhibitor AUY922
inhibits the signals of PI3K-AKT-mTOR and RAF-MEK-ERK
and exerts antitumor activity (71). 17-DMAG reduces the
survival of SCLC cell lines via downregulating proto-
oncogene c-RAF (72) and also reduces XRCCI1 expression via
inactivation of ERK1/2 and AKT enhancing antitumor activity
of gefitinib (73). Defects or polymorphisms of MSH2 corre-
lates with lung cancer, 17-AAG leads to enhanced cytotoxic
effect accompanied by the reduction of MSH2 via downregu-
lation of the MKK?3/6-p38 MAPK signal and inactivation of
p38 MAPK (74). In addition, 17-AAG leads to a decrease
of cellular thymidine phosphorylase via ubiquitin-26S
proteasome pathway with downregulation of phosphorylated
MKK1/2-ERK1/2 and AKT protein levels (75). Hsp90 inhibitor
CUDC-305 leads to the degradation of RTKs, and disrupts the
signaling molecules of the PI3K/AKT and RAF/MEK/ERK
pathways, with concurrent induction of apoptosis (76). Hsp90
inhibitor deguelin reveals an anti-Hsp90 activity and keeps a
lid on the expression of a number of client proteins of Hsp90,
which is involved in the PI3K/AKT pathway (77). Inhibition
of Hsp90 by CS-6 prohibits lung cancer growth by targeting
IKKp/NF-xB, which reduces the expressions of hTERT,
HIF-1a, VEGF, CDK4, HER2, p-Akt, cyclin D1, p110a and
p-p85 (45). Hsp90 inhibitor L8O disrupts the correlation of
HIF-1a and Hsp90 by reducing HIF-1a, VEGF and IGF2 (78).
Hsp90 inhibition by CH5164840 with erlotinib treatment
abolishes phosphorylation of Stat3 in lung cancer cells, which
downregulates ERK signaling (79). Repair protein Rad51
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protects NSCLC cells against chemotherapeutic cytotoxicity,
but Hsp90 inhibitor 17-AAG cuts down the levels of Rad51
and decreases the phosphorylation of MKK1/2-ERK1/2 (80).
Furthermore, Hsp90 inhibition caused by ganetespib shows
an obvious cell killing in lung cancer cells, with concomitant
destabilization of KRAS signaling effectors, and combination
of ganetespib and MEK or PI3K/mTOR inhibitors leads to a
remarkable cytotoxic activity (81).

Some new molecular signals involved in network of Hsp90
in lung cancer. As shown in Fig. 6, Hsp90 inhibitor 17-AAG
downregulates the expression of MSH?2 in human lung cancer
and its combination with tamoxifen reinforces cytotoxicity
and cell growth inhibition synergistically via reducing MSH2
expression (82). As a potent proteasome inhibitor, PS-341
inhibits various types of cancer, interestingly, Hsp90 inhibitor
17-AAG enhances PS-341-induced lung cancer cell death
by degrading upstream regulators of kB, IRAK-1, and IxB
kinases (IKKs) (83). In addition, combination of 17-DMAG
and TNF brings about synergistic killing of lung cancer cells
via downregulation of IKKf (84). Hsp90 inhibitor ganetespib
induces loss of EML4-ALK expression and depletion of
multiple oncogenic signaling proteins in ALK-driven NSCLC
cells (85). Inhibition of Hsp90 by NVP-AUY922 suppresses
the growth of NSCLC cells, which involves a wide range of
cellular functions via consistently decreasing the levels of dihy-
drofolate reductase (86). Cellular FLICE-inhibitory protein
(long form, c-FLIPL) is a critical negative regulator of death
receptor-mediated apoptosis, however, depletion of Hsp90a/3
decreases c-FLIPL level, and combination of 17-AAG and
celecoxib reinforces this results by caspase activation (87).
Ganetespib blocks Hsp90 to bind to biotinylated geldanamycin
and disintegrates the relation of Hsp90 with its co-chaperone,
p23, which inhibits the growth of lung cancer (88). Hsp90
inhibitor deguelin binds to the ATP-binding pocket of Hsp90
and disrupts Hsp90 function by ubiquitin-mediated degrada-
tion of HIF-1a (89). Moreover, combination of 17-AAG and
TNF induces apoptosis-related cell death of lung cancer cells
by degrading RIP and IKKJ that, in turn, blocks TNF-induced
NF-«xB activation (90).

6. Hsp90-dependent radiosensitization in treatment of
lung cancer

The combined treatment of Hsp90 inhibitors and conven-
tional photon radiation has shown more effective tumor
growth inhibition than radiation alone, and a number of
Hsp90 inhibitors are also known to sensitize cancer cells to
radiation. Hsp90 inhibitor ganetespib sensitizes NSCLC cells
to radiation (91) via potentiating the effect of radiotherapy
and eliminating radioresistant residual cells (49). A purine-
scaffold Hsp90 inhibitor, PU-H71, promotes the sensitivity
of the lung cancer cells to radiation by inhibiting the repair
of DSBs (92). 17-AAG and 17DMAG (Hsp90 inhibitors)
have been reported to be potent radio-sensitisers, achieving
radiation enhancement ratios ranging from 2.3 to 2.7 (93).
Co-treatment of 17-DMAG with radiation has a synergistic
antitumor activity in NSCLC cells, which involves in
inhibition of DNA repair and correlates with the BER and
ATM-regulated pathways (94). Combination of irradiation
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Figure 5. Hsp90 regulates the growth of lung cancer via RAS-RAF-MEK-ERK-MAPK, PI3K/AKT, TGF and VEGF signaling pathways. Hsp90 inhibition
inhibits the signals of PI3K-AKT-mTOR and RAF-MEK-ERK and thus impedes the growth and proliferation of NSCLC cells. Inhibition of Hsp90 reduces the
survival ability of SCLC cells via downregulating expression of proto-oncogene c-RAF and inactivation of ERK1/2 and AKT as well as the reduction of XRCCI.
Hsp90 inhibition leads to cytotoxic effect to NSCLC cells and accompanies with the reduction of MSH2 via downregulation of the MKK3/6-p38 MAPK signal
and inactivation of p38 MAPK and leads to downregulation of cellular TP via a ubiquitin-26S proteasome pathway, which is accompanied by a downregulation
of phosphorylated MKK1/2-ERK1/2 and AKT protein levels. Hsp90 inhibition give rise to degradation of RTKs, and disrupts the signaling molecules of the
PIBK/AKT and RAF/MEK/ERK pathways. Inhibition of Hsp90 targets IKK(/NF-«B to prohibit lung cancer growth, and reduces the expressions of hTERT,
HIF-1a, VEGF, CDK4, HER2, p-Akt, cyclin DI, pl10a and p-p85. Disruption of Hsp90 function leads to the disruption of correlation between HIF-1a and
Hsp90 by reducing HIF-1a, VEGF and IGF2. Hsp90 inhibition abolishes phosphorylation of Stat3 and give rise to downregulation of ERK signaling. Hsp90
inhibition cuts down the levels of Rad51, phosphorylated MKK1/2-ERK1/2 and damages the correlation of Hsp90 and Rad51 and leads to a remarkable cytotoxic
activity via destabilization of KRAS signaling. Hsp90, heat shock protein 90; PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; AKT, anaplastic lymphoma
kinase; mTOR, mammalian target of rapamycin; RAF, rapidly accelerated fibrosarcoma gene; MEK, mitogen-activated protein kinase; ERK, extracellular-
signal-regulated kinase; c-RAF, threonine protein kinase; XRCC1, X-ray repair cross-complement group 1 protein; MKK3, a dual-specificity protein kinase of
the STE7 family; MAPK, mitogen-activated protein kinase; TP, thymidine phosphorylase; RTKs, receptor tyrosine kinases; IKKf, inhibitor of nuclear factor kB
kinase; NF-«xB, nuclear factor kB; hTERT, human telomerase reverse transcriptase; HIF-1a, hypoxia-inducible factor-1; VEGF, vascular endothelial growth
factor; HER2, human epidermal growth factor receptor-2; p110a., enhanced phosphoinositide 3-kinase; IGF2, insulin-like growth factor 2; Rad51, DNA double
strand break repair gene.

and 17-AAG displays an additive effect on cell growth
inhibition by downregulating the expressions of Cdc25C
and Cdc2 (51). Hsp90 inhibitor NVP-AUY922 results in
radiosensitization, which is accompanied by DNA repair
effect, cell cycle progression and abrogation of homologous
recombination (95). Co-treatment of NVP-AUY922 and
17-AAG leads to upregulation of HIF-1a and thus shows

a promotion of radiosensitivity (96). Especially, celastrol
disrupts the ATP-binding activity of Hsp90, and thus rein-
forces the radiation-induced cell killing by decreasing levels
of EGFR, ErbB2 and survivin and increasing p53 expres-
sion (97). Hsp90 inhibitor deguelin suppresses radioresistant
lung cancer cells and combined treatment of radiation with
deguelin cuts down the viability and vascularization of



INTERNATIONAL JOURNAL OF ONCOLOGY 52: 321-336, 2018

329

Hsp90 inhibitors Mechanism Results
000 H‘ MSH2 | | |
‘ Cytotoxicity [ Growth inhibition ‘
\—{ Tamoxifen | ’|\
Enhancing J PS-341 || B, IRAK-1,and IKks | | s/ Growth inhibition |
I = IKKB | | ’| Tumor cell death |
‘ Ganetespib ‘ﬁ/‘ EML4-ALK | ]|

Disintegrating

p23 | l

| Growth inhibition |

}*Caspase activation——— | Growth inhibition |

Growth inhibition |

| NvP-AUYS22 | | Dinydrofolate reductase | |

| 17AAG — -FLIPL }

l Deguelin l Ubiquitin-mediated degradation @
| 17AAG ! Degrading | RIPand Ikkp |

'[ Apoptosis 1

Blocking ‘

NF-kB activation |

[ Growth inhibition ‘
| T

Figure 6. New signaling pathways of inhibition of Hsp90 for regulating the growth of lung cancer. Hsp90 inhibition downregulates the expression of MSH2 and
tamoxifen combined with Hsp90 inhibition give rise to cytotoxicity and cell growth inhibition synergistically in NSCLC cells via reducing MSH2 expression.
Hsp90 inhibition enhances PS-341-induced lung cancer cell death by degrading IxB, IRAK-1 and IKKs. Combination treatments of Hsp90 inhibition and TNF
brings about synergistic killing of lung cancer cells via downregulation of IKKf. Hsp90 inhibition induces loss of EML4-ALK expression and depletion of
multiple oncogenic signaling proteins in ALK-driven NSCLC cells. Hsp90 inhibition disintegrates the relation of Hsp90 with p23 and depletion of Hsp90a/
decreases c-FLIPL level and combination of Hsp90 inhibition and celecoxib reinforces this effect by caspase activation, and leads to ubiquitin-mediated
degradation of HIF-1a. Combination of Hsp90 inhibition and TNF induces apoptosis-related cell death of lung cancer cells by degradation of RIP and IKKf
and blocking of TNF-induced NF-«B activation. Hsp90, heat shock protein 90; MSH2, human MutS homolog 2; PS-341, a potent proteasome inhibitor;
IkB, IkB kinase; IRAK-1, IL-1R-associated kinase-1; IKKs, IxB kinases; IKKf, inhibitor kB kinase §; EML4-ALK, echinoderm microtubule associated
protein like 4-anaplastic lymphoma kinase; ALK, anaplastic lymphoma kinase; c-FLIPL, cellular FLICE-inhibitory protein; p23, important co-chaperone for
the Hsp90; HIF-1a, hypoxia-inducible factor-1; RIP, receptor-interaction proteins.

radioresistant cells by blocking the HIF-1a/Hsp90 interac-
tion and HIF-1a expression (98).

7. Hsp90 and drug resistance of lung cancer

Hsp90 and drug resistance of traditional chemotherapy. As
shown in Table II, upregulated Hsp90 has been investigated in
connection with the chemoresistance to cisplatin in LAC cells
(50), however, inhibition of Hsp90 increases the sensitivity of
cells to cisplatin by inducing AMH and AMHR?2 expression
(99). Hsp90 inhibitor 17-AAG increases the cisplatin-induced
cell-killing via suppressing TP expression and activation of
ERK1/2 and AKT (75). Hsp90 inhibitor L80 suppresses the
proliferation, survival, and migration of lung cancer cells
acquired resistance to paclitaxel (78). Hsp90 inhibitor gane-
tespib facilitates the cell-killing activity of paclitaxel and
docetaxel in NSCLC models (100) and 17-AAG reinforces the
cytotoxic effect of etoposide by inhibiting the expression of
ERCCI1 (101). Also, Hsp90 inhibitor STA-8666 combines a
chemical moiety targeting active Hsp90 fused via cleavable
linker to active metabolite of irinotecan SN38, thus strongly
promotes the antitumor activity of carboplatin (56).

Hsp90 and drug resistance of molecular targeted therapy.
As shown in Table II, some Hsp90 inhibitors show activity of
reversing molecular targeting drug resistance and synergism.
FS-108 circumvents gefitinib resistance in EGFR mutant
NSCLC cells through inducing G2/M phase arrest and apop-
tosis (55). AUY922 inhibits growth of EGFR-TKI resistant cell
lines by inducing cell programmed death (63) and also displays
activity against the gefitinib-resistant sublines with T790M
mutation and Met amplification (102). WK88-1 reverses gefi-
tinib resistance by interfering the EGFR or c-Met stability and
functions (65). 17-A AG represents a better efficacy for treating
NSCLC with acquired resistance to EGFR TKIs (103) and
the combination of gefitinib and 17-AAG increases NSCLC
cell growth inhibition (73). SH-1242 targets those cells that
are chemoresistant or harbor KRAS mutations (104) and
exerts cytotoxicity to lung cancer cells. Pyruvate kinase M2
(PKM?2) interacts with mutant EGFR and Hsp90 contributing
to EGFR-dependent tumorigenesis and facilitates to overcome
drug resistance to EGFR TKIs (105). 2'4'-dimethoxychal-
cone (1b) restrains the proliferation of iressa-resistant NSCLC
cells by circumventing the drug-resistance acquired by Met
amplification and EGFR mutations (62). Ganetespib shows a
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remarkable ability to defeat multiple forms of crizotinib resis-
tance, including secondary ALK mutations (85). 17-DMAG
can circumvent both primary and acquired crizotinib resis-
tance (106). Ganetespib promotes the antitumor activity of
erlotinib in erlotinib-resistant NCI-H1975 xenografts and
also increases efficacy of afatinib (66). CH5164840 can
increase the anticancer activity of erlotinib against NCI-H292
EGFR-overexpressing xenograft models (79). CUDC-305
induces apoptosis and inhibits cancer growth of erlotinib-
resistant NSCLC cells (76). CDBT has been discovered to have
a potent activity against P-gp overexpressing drug-resistant
NSCLC H460TaxR cells (59). Hsp90 inhibitors also overcome
ligand-triggered resistance to new generation ALK inhibitors
and may bring improved benefit for NSCLC patients with
EMLA4-ALK (107,108).

8. Clinical research on Hsp90 inhibitors for treating lung
cancer

The potential anticancer activity of some Hsp90 inhibitors
for treating lung cancer has been proven in preclinical in
vitro and in vivo models. For instance, recently a clinical trial
evaluated the activity and safety of Hsp90 inhibitor gane-
tespib in combination with docetaxel in advanced NSCLC,
which showed that combination of ganetespib significantly
prolongs the PFS and OS and the combination treatment of
ganetespib and docetaxel does not have obvious additional
side effects (109). NSCLC patients in a previous study were
divided into three groups: cohort A (EGFR mutants), B
(KRAS mutants), or C (with out mutations of both). Patients
of the three groups were all administered ganetespib of
200 mg/m? via intravenous infusion (1/week; rest for a week
after 3 weeks), until disease progression. The results showed
that ganetespib monotherapy presents a manageable side
effect profile as well as clinical activity in heavily pretreated
patients with advanced NSCLCs, particularly in patients with
tumors harboring ALK gene rearrangement (110). Another
prospective, non-randomized, multicenter, phase II study
of IPI-504 monotherapy has shown that IPI-504 has certain
clinical activity in patients with NSCLC, particularly among
patients with ALK rearrangements (111). However, the clinical
research on the Hsp90 inhibitor for treating lung cancer is only
at the beginning, it seems that these studies did not produce
an impressive breakthrough as we expected. Because Hsp90
conduces to the maturation and stability many mutated or
overexpressed oncogenic proteins, targeting Hsp90 has been
considered as an effective anticancer therapy. Although the
WCLC2016, GALAXY-2 study showed that the addition of
ganetespib as a rescue treatment on the basis of docetaxel did
not improve efficacy. The combination application of Hsp90
inhibitors and other traditional chemotherapy is still greatly
worthy of further exploration. However, the clinical research
of Hsp90-dependent molecular targeted therapy (Hsp90
inhibitors) is an area where we have really fallen far behind.
We must acknowledge that the main reason of leading to the
embarrassing situation correlates with medical ethics and strict
approval system of new drugs in all countries; after all, we are
faced with humans. However, clinical research and application
is the only way and the ultimate goal. Only this way, can we
bring benefits to lung cancer patients from Hsp90 inhibitors.
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9. Perspective and limitation

The clinical benefit of current anticancer regimens for lung
cancer therapy is still limited due to moderate efficacy, drug
resistance, and early recurrence. Therefore, the development
of effective new anticancer drugs for first-line therapy and
for optimal second-line treatment is necessary. Study on the
molecular mechanism of Hsp90 in lung cancer has made
some progress as well as greatly promoting the development
of Hsp90-dependent molecular targeted drugs. However,
there are some shortcomings in current research. So far, no
large sample numbers and multiple centers on the expres-
sion of Hsp90 in lung cancer are reported, including in lung
tissues, blood, bronchoalveolar lavage fluid and malignant
pleural effussion. In addition, no studies keep a watchful eye
on gene mutations and copy abnormality of Hsp90, which
may be correlated with the efficacy of Hsp90 inhibitors such
as EGFR mutations. Importantly, although clinical studies to
evaluate the activity and safety of Hsp90 inhibitors in treating
lung cancer patients has been reported occasionally, it seems
that quality and scale of these studies could not support
the evidence of clinical application of Hsp90 inhibitors. To
assess whether Hsp90 inhibitor proves to be a successful
therapeutic strategy in treating lung cancer patients, we still
need to do further research, such as construction of drug
delivery vehicles, design of clinical research and evaluation
of side effects. Future research should focus on assessing the
activity and safety of Hsp90 inhibitors in clinical lung cancer
patients and establish the most effective Hsp90 inhibitors for
treating lung cancer.

10. Conclusion

Research shows that Hsp90 is highly expressed in lung cancer
and that upregulation of Hsp90 potentially facilitates prolif-
eration and metastasis of lung cancer. However, anti-Hsp90
(Hsp90 inhibitors) studies have demonstrated that downregula-
tion and function disruption of Hsp90 inhibits cell proliferation,
motility and metastasis, and induces apoptosis of lung cancer
cells. However, there is an urgent need for a comprehensive
assessment of Hsp90 protein expression and gene abnormality
in large cohorts of lung cancer. In addition, high quality clinical
research on Hsp90 inhibitors are also needed for evaluating the
efficacy and safety in clinical recommendation. Actually, we
still know relatively little as to how the Hsp90 regulates tumori-
genesis of lung cancer at the molecular level, thus improved
understanding of the molecular mechanisms and signaling
pathways correlated with Hsp90 present an interesting chal-
lenge, and a future important direction.
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p85; PS-341, proteasome inhibitor; pS6, phosphorylated ribo-
some protein S6; pSTAT3, phosphorylated signal transducer
and activator of transcription 3; PTACH, HDAC inhibitor;
PU-H71, Hsp90 inhibitor; Rad51, DNA double strand break
repair gene; Raf, rapidly accelerated fibrosarcoma gene; RAS,
Ras gene; RTKs, receptor tyrosine kinases; RIP, receptor-
interaction proteins; SCC, squamous cell carcinoma; SH-1242,
analogue of deguelin; SN38, an antineoplastic drug and is the
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