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Abstract. Cancer is considered the most important 
clinical, social and economic issue regarding cause‑specific 
disability‑adjusted life years among all human pathologies. 

Exogenous, endogenous and individual factors, including 
genetic predisposition, participate in cancer triggering. 
Telomeres are specific DNA structures positioned at the end of 
chromosomes and consist of repetitive nucleotide sequences, 
which, together with shelterin proteins, facilitate the main‑
tenance of chromosome stability, while protecting them 
from genomic erosion. Even though the connection between 
telomere status and carcinogenesis has been identified, the 
absence of a universal or even a cancer‑specific trend renders 
consent even more complex. It is indicative that both short 
and long telomere lengths have been associated with a high 
risk of cancer incidence. When evaluating risk associations 
between cancer and telomere length, a disparity appears to 
emerge. Even though shorter telomeres have been adopted as 
a marker of poorer health status and an older biological age, 
longer telomeres due to increased cell growth potential are 
associated with the acquirement of cancer‑initiating somatic 
mutations. Therefore, the present review aimed to comprehen‑
sively present the multifaceted pattern of telomere length and 
cancer incidence association.
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1. Introduction

Epidemiological studies have shown that cancer is the second 
cause of mortality worldwide following ischemic heart 
disease. However, cancer is considered the most important 
clinical, social and economic burden as regards cause‑specific 
disability‑adjusted life years among all human patholo‑
gies (1). Despite the fact that its existence was recognized 
>2,000 years ago by the ancient Greeks, the underlying causes 
leading to the uncontrolled growth of cells became a matter of 
research during the mid‑20th century. Since then, tremendous 
advancements, not only in biology, but also in biochemistry 
and bioengineering, have made it possible to unveil some of 
the mechanisms of carcinogenesis (2). However, given the 
fact that cancer is not a single pathology, but rather a cluster 
of relative pathological entities, it is expected that certain 
mechanisms may have a different impact on different types 
of cancer. This is the case with human telomeres (and telom‑
erase). Even though the connection between the telomere 
status and carcinogenesis has been identified, the absence of a 
universal or a cancer‑specific trend complicates the thorough 
understanding to a great extent. It is indicative that both short 
and long telomere lengths have been associated with a high 
risk of cancer incidence. When evaluating risk associations 
between cancer and telomere length, a disparity appears to 
emerge. Even though shorter telomeres have been adopted as 
a marker of a poor health status and an older biological age, 
longer telomeres due to increased cell growth potential have 
been shown to be associated with cancer‑initiating somatic 
mutations (3). Therefore, the aim of the present review was 
to comprehensively present the most recent information 
regarding the implication of telomeres in different types of 
cancer.

Telomeres are specific DNA structures positioned at the end 
of chromosomes and consist of repetitive nucleotide sequences 
(5'‑TTAGGG‑3') (4). These functional non‑coding sequences, 
with the contribution of shelterin proteins, facilitate the 
maintenance of chromosome stability and protect them from 
degradation and damage (4). Shelterin is a six‑subunit protein 
complex that consists of a telomere repeat‑binding factor 
(TRF)1 and TRF2, a nuclear protein 2 (TIN2), a repressor 
activator protein 1, a tripeptidyl‑peptidase 1 (TPP1) and a 
protection of telomeres 1 (POT1) protein (5). Telomeres and 
shelterins form structures known as T‑loops that prevent DNA 
repair mechanisms from processing telomeres and recognizing 
them as double‑stranded DNA breaks (5). TRF2 depends on 
the DNA damage response (DDR) inhibition via T‑loop struc‑
ture formation. T‑loops are created by the invasion of the long 
3'overhang strand at the telomere end into the double‑stranded 
telomeric DNA (3). Specifically, the 3'overhang is formed 
upon DNA replication and involves the exonucleolytic degra‑
dation of the telomeres' 5' ends. The result of the respective 
processing and the concurrent inability of DNA polymerases 
to replicate the lagging ends of linear DNA molecules leads to 
the shortening of human telomeres by ~50 bp per cell division. 

This telomere is restrained by the action of telomerase reverse 
transcriptase (TERT), which places GGTTAG repeats to the 
chromosomal 3'DNA terminus at the end of the chromosome. 
The TERT gene is situated at chromosome 5p15.33 in humans, 
and is an integral and essential part of the telomerase holo‑
enzyme. The TERT gene is 42 kb in length and consists of 15 
introns and 16 exons, with a 260‑bp promoter core (6). The 
reverse transcriptase domain is encoded by 5‑9 exons. The 
TERT transcript can be spliced into 22 isoforms (7). While the 
transcriptional regulation of TERT has been studied in depth, 
recent research has evaluated the role of alternate splicing of 
mRNA transcripts. TERT can be translated from multiple 
differently spliced transcripts, with only the longest variant 
having reverse transcriptase enzymatic activity (8). Breast 
cancer cell lines with the overexpression of transcripts without 
catalytic function have been shown to exhibit a reduced apop‑
tosis, conferring a survival advantage (9). This suggests novel 
functions of TERT beyond telomere extension TERT promoter 
(TERTp) region contains GC boxes that bind the zinc finger 
transcription factor Sp1, which increases TERT transcription, 
and E‑boxes that bind both transcriptional enhancers and 
repressors. TERTp lacks a TATA box, but it contains binding 
sites for a variety of transcription factors (10). However, DNA 
polymerases cannot fully replicate the lagging strand of telo‑
mere DNA at the chromosome terminus during each mitotic 
cell division (4). As a result, there is an annual rate of telomere 
shortening of ~20‑40 bp, causing cell proliferation arrest and 
cell senescence (4,11,12). 

Telomerase can prevent telomere shortening. The 
activity of this reverse‑transcriptase enzyme, using an RNA 
template, results in the telomeric DNA repeat synthesis (4,13). 
Telomerase consists of the reverse transcriptase (TERT), 
the telomerase RNA component, as well as proteins that are 
necessary for DNA synthesis, such as dyskerin, nucleolar 
protein 10, non‑histone protein 2, GAR1 and telomerase 
Cajal body protein 1 (3) (Fig. 1). For cells not to replicate 
indefinitely, TERT is silenced and cells undergo apoptosis or 
cell senescence.  However, cancer cells manage to overcome 
cell cycle arrest and activate telomerase, resulting in cells 
acquiring proliferative ability and developing mutations 
(Fig. 1). Therefore, telomere length can serve as a marker for 
biological aging (14).

A number of protein kinases participate in the signaling 
regulating DDR‑activated cell cycle checkpoints, thus inhib‑
iting DNA replication until damaged DNA is repaired (15). 
Therefore, protein kinases regulate the association between 
cell fate and telomere length. On the other hand, inhibiting 
protein kinases regulating specific damage checkpoints can 
restore cell cycle progression into the S phase in senescent 
cells. Thus, dysfunctional telomeres induce a DNA damage 
checkpoint response that initiates senescence.

Shorter telomeres and an attenuated telomerase activity 
contribute to the pathobiology of human disease (16). They 
have also been shown to be associated with a numbe rof 
age‑related diseases, such as cancer, coronary heart (cardiovas‑
cular) disease, type 2 diabetes, stroke, arthritis, osteoporosis, 
hypertension, chronic obstructive pulmonary disease and 
dementia (17). Researchers have also presented a link between 
telomere length and stress, drug abuse, Alzheimer's disease and 
mental disorders, including depression and schizophrenia (13). 
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Telomere length is regulated by a myriad of factors, 
including genetic background, as short telomeres can be 
a hereditary trait passed by specific factors in parental 
gametes (4). In addition, there is evident sex dependence, 
as females have been shown to have longer telomeres than 
males, associated with a lower biological age (18). Moreover, 
environmental factors may also affect telomere lengths, such 
as physical activity, body mass index, hormone replacement 
therapy, smoking, chronic inflammation, oxidative stress, 
dietary antioxidants and vitamin intake (19). For instance, 
vitamin B12, C and E deficiency may result in genomic insta‑
bility and telomere shortening (6). On the contrary, in vitro 
experiments have indicated that omega‑3 polyunsaturated fatty 
acids, ascorbic acid and its derivatives, as well as α‑tocopherol, 
can delay telomere shortening and protect telomeres against 
degradation. Thus, more studies must be conducted to better 
understand the correlation between supplement intake and 
telomere protection.

A less known mechanism that regulates telomere length 
is known as the alternative lengthening of telomeres (ALT). 
ALT is a telomerase‑independent mechanism and is somewhat 
dependent on homologous recombination. The homologous 
recombination‑mediated copying of one telomere by another 
is the simplest explanation for the spread of a DNA tag from 
one telomere to others. However, other types of elongation 

events may also occur, as it is observed in the telomerase 
null Type II survivors from the budding yeast species 
Saccharomyces cerevisiae and Kluyveromyces lactis (20,21). 
Even though the telomerase‑dependent pathway appears to be 
the predominant mechanism of telomere elongation (85‑90% 
of cases), there is a certain number of cancers, including some 
with particularly poor outcomes, that use the ALT pathway 
(roughly accounting for 10‑15% of cases) (22). Notably, cells of 
mesenchymal origin appear to rely more on ALT for telomere 
elongation than on telomerase (23). In fact, in certain types 
of cancer, including osteosarcomas and cancers of the central 
nervous system, the rates of ALT positivity are approaching 
90%, which escapes from possible mechanistic reasons for 
ALT development (24). The distribution is explained by the fact 
that cells of mesenchymal origin are more likely to have more 
a stringently regulated telomerase expression (25). Cancers 
with ALT difficult to treat, partially due to their distribution, 
the unique mechanism of maintenance and the early resec‑
tion that is precluded, rendering them unaffected by therapies 
that are telomerase‑targeted. ALT‑positive cells have several 
uncommon features, such as extrachromosomal telomeric 
DNA which is separated from chromosome ends and it may be 
linear or circular (22). It appears that the optimal markers for 
ALT are partially single‑stranded circles of telomeric DNA in 
which the C‑rich (AATCCC)n strand is essentially intact and 

Figure 1. Overview of telomere length regulatory mechanisms and cell fate. Telomeres are protected by the shelterin complex and when telomeres need to be 
replicated, the activated telomerase consisting of TERT, the telomerase RNA component and proteins necessary for DNA synthesis (dyskerin, NOP10, NHP2, 
GAR1 and TCAB1), replicates the telomere sequences. As a prevention mechanism for continuous replication, TERT is silenced, allowing cells to undergo 
apoptosis or cell senescence. Cancer cells are able to overcome cell cycle arrest and activate telomerase, resulting in cells acquiring proliferation ability and 
mutations. Protein kinases, being part of the signaling regulating cell cycle checkpoints, can affect the telomere length dependent cell fate, by inhibiting DNA 
replication until damaged DNA is repaired, or by restoring cell‑cycle progression into the S phase in senescent cells, when kinases are inhibited. TERT, telom‑
erase reverse transcriptase; NOP10: nucleolar protein 10; NHP2, non‑histone protein 2; TCAB1, telomerase Cajal body protein 1; TIN2, nuclear protein 2; 
Rap1, repressor activator protein 1; TRF, telomere repeat‑binding factor; POT1, protection of telomeres 1.
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the G‑rich (TTAGGG)n strand is gapped. This ‘C‑circle’ DNA 
is associated with the amount of ALT activity. Promyelocytic 
leukemia (PML) bodies that have telomeric DNA are typical 
of ALT cells and are introduced as ALT‑associated PML 
bodies (APBs). Large APBs have been shown to be associ‑
ated with the senescence of ALT cells and the sequestration of 
extrachromosomal DNA, although it is considered that smaller 
APBs are sites where telomere lengthening can occur (22).

Of note, it is essential to state that telomeres can be 
measured in all nucleated cells. However, relative telomere 
length may vary from one cell population to another, even 
when only one disease is present (25). This is critical because, 
as it will become evident from the following description, there 
is no uniform trend in telomere length even in the same type 
of cancer. Therefore, where possible, adequate information 
regarding the cell population that was studied will be provided 
in the sections below.

2. Cancer burden

Based on the International Agency for Research on Cancer 
(IARC), in 2020, the cancer burden was increased to 19.3 
million cases, while deaths related to cancer are estimated 
at 10 million. However, incidence rates differ depending 
on sex, cancer site and human development index (HDI). 
HDI is a statistical index that has been developed by the 
United Nations for the measurement of social and economic 
development levels in various countries. It consists of four 
parameters: The mean years of schooling, expected years of 
education, life expectancy at birth and gross national income 
per capita. HDI is used to follow changes in developmental 
levels over time and to make comparisons among different 
countries. The IARC provides statistics for the most common 
types of cancer according to sex and HDI, that are presented 
in the tables below. For example, HDI is inversely associated 
with the risk of prostate cancer, suggesting that socioeco‑
nomic parameters related to telomere status significantly 
affect cancer risk (26).

3. Modulation of human TERT in cancer 

Over the past decades, studies have focused on the regulation 
of TERT in humans (hTERT) in cancer. As a result, several 
mechanisms of action for altering hTERT gene expression 
have been described. Of note, a previous study demonstrated 
how the hTERT promoter crucially regulates its transcrip‑
tion (27). The expression of hTERT has been shown to be 
induced by multiple genetic and epigenetic mechanisms, in 
tumors. More specifically, the mechanisms described include 
hTERT amplifications, structural variants, promoter mutations 
and promoter methylation (epigenetic modification) (28).

Amplification of hTERT. In cancer cells, the overexpression 
of amplified genes leads to the gain or loss of genetic mate‑
rial. Telomere dysfunctions, DNA copying errors and the 
presence of chromosomal fragile sites have been described as 
mechanisms that initiate gene amplification (29). In the case of 
hTERT, the proposed modes are telomere dysfunction, in addi‑
tion to breakage at fragile sites and formation of chromosomal 
fusions (30).

Genomic rearrangements of hTERT. The overexpression of 
hTERT in cancer can also result by genomic rearrangements 
modulating the gene locus of hTERT (5p15.33). Genomic 
rearrangements lead to the increased proximity of active 
enhancers and the hTERT gene. The latter results in the inter‑
action between promoter and the newly introduced enhancers, 
enhancing hTERT expression (31).

hTERT promoter mutation. hTERT promoter mutations are a 
common, yet distinct genetic modification that regulates hTERT 
telomerase activation and expression. The hTERT core promoter 
contains 260 base pairs and different transcription factor 
binding sites that modulate gene transcription and telomerase 
initiation (32). Different mutation loci in the promoter generate 
added E‑twenty‑six transcription factor family binding sites, 
therefore generating new possible sites of genetic regulation in 
cancer (33). hTERT promoter mutations mostly exist in low rate 
self‑renewal cancers, such as brain tumors, liver tumors, mela‑
nocytes and also low‑grade cancers, such as bladder cancers, 
proposing a triggering telomerase activation role (34).

hTERT epigenetic modifications: hTERT promoter methyl-
ations. DNA methylations exist genome‑wide at CpG positions, 
located in non‑coding gene sections. Approximately 70% of the 
human gene promoters enclose CpG sites; thus, DNA methylation 
is considered a crucial player in gene expression and regula‑
tion (35). Gene silencing and activation are both associated with 
the methylation of specific hTERT promoter sites, particularly 
upstream of the hTERT core promoter (36). Different mecha‑
nisms of hTERT promoter methylation have been described for 
hTERT stimulation. Castelo‑Branco et al (37) indicated that 
DNA methylation prevents the binding of repressive elements. 
In addition, a more complex mechanism links DNA methylation 
and chromosome structural modifications (38). Finally, DNA 
methylation contributes to alterations in chromatin conforma‑
tion, altering gene expression through differential transcription 
factor binding (39).

Effects of microRNAs (miRs/miRNAs) on hTERT modulation. 
In various types of cancer, several miRNAs have been identi‑
fied as key modulators of hTERT. Such miRNAs have been 
found to negatively regulate hTERT expression, preventing 
carcinogenesis (40). miRNAs can act towards hTERT directly 
or indirectly. Direct binding is presented to the hTERT 
3'untranslated region (3'UTR), that interferes with hTERT 
protein expression in cancer cells (41). In thyroid carcinoma, 
the inhibition of miR‑138 has been found to be associated with 
an increased expression of hTERT and the imposed overex‑
pression of miR‑138 was found to attenuate hTERT expression 
through the association with the hTERT 3'UTR (41). Indirectly, 
miRNAs may modulate transcription factors known to regu‑
late hTERT (33). Examples include miR‑494 and miR‑1294, 
that were found to downregulate c‑Myc, a well‑known tran‑
scriptional activator of hTERT, in pancreatic and esophageal 
squamous cell carcinomas (33)

4. Respiratory system

An altered telomere length has been well‑identified to 
participate in lung cancer formation. Although several studies 
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have reported this abnormality, a consensus has yet to be 
reached (42‑46). Indeed, both short and long telomere lengths 
have been shown to be associated with a high risk of lung 
cancer formation (47).

Various epidemiological factors have been shown to 
affect the association between telomere length and lung 
cancer pathogenesis. A study on patients with small cell lung 
cancer (SCLC) with a history of heavy smoking demonstrated 
an association between a shorter telomere length and higher 
risk of mortality, particularly for those classified as having 
stage III/IV SCLC (42). Moreover, a stronger association for 
women >65 was indicated. Furthermore, Kachuri et al (42) 
determined an association between mortality and shorter telo‑
mere length in no‑smoker cohorts of patients with non‑small 
cell lung cancer (NSCLC) and adenocarcinoma. In a Chinese 
region characterized by high indoor pollution, a shorter telo‑
mere length was detected in the peripheral blood leukocytes of 
patients with lung cancer and chronic obstructive pulmonary 
disease (43). The association was attributed to the high levels 
of oxidative stress and inflammation in the airways and blood 
of patients (43). A recent study by Steiner et al (44) revealed 
that coffee was not associated with telomere length of cancers 
related to coffee intake, such as lung cancer. Age is also a puta‑
tive factor that could affect such associations. Sun et al (45) 
concluded that age may influence the association of telomere 
length with cancer incidence, since younger patients with 
a shorter telomere length and an increased telomere length 
variation across all chromosome ends exhibited a higher risk 
of lung cancer presentation.

Jang et al (46), using peripheral blood lymphocytes, found 
that shorter telomeres indicated a higher risk of developing small 
cell carcinoma than squamous cell carcinoma and lung adeno‑
carcinoma. On the contrary, Sanchez‑Espiridion et al (47), also 
using peripheral blood leukocytes, presented a higher risk of 
lung squamous cell carcinoma for patients with shorter telo‑
meres. In fact, they suggested that longer telomeres attenuated 
the development of squamous cell carcinoma, particularly in 
males. Of note, the same debate applies to telomerase activity 
as well. Jeon et al (48), using peripheral blood mononuclear 
cells, found that low telomerase activity was significantly 
linked to increased risk of lung cancer (adjusted odds 
ratio, 3.05; 95% confidence interval, 1.60‑5.82; P=7x10‑4). 
Dobija‑Kubica et al (49) evaluated telomerase activity in 
47 tissue specimens obtained from patients with NSCLC. 
According to their findings, 66.7% of healthy pulmonary 
parenchyma samples had a high telomerase activity, while a 
variable level of telomerase activity was reported in cancer 
cells. In detail, even though no association was found between 
the level of telomerase activity in NSCLC specimens and the 
2‑year survival rate of patients, there were significantly higher 
levels of telomerase activity in poorly differentiated (high 
grade) NSCLC tumors (grade 3), as compared to moderately 
differentiated (intermediate grade) tumors (grade 2) (49).

Genetic factors are implicated in telomere biology 
participation, as shown in a study in which patients with lung 
adenocarcinoma were treated with epidermal growth factor 
receptor (EGFR) tyrosine kinase inhibitors (gefitinib) (50). 
Shorter telomeres were associated with a poor prognosis 
following such a treatment and with a shorter overall survival 
of lung cancer patients. Moreover, a short telomere length 

indicated an elevated risk of resistance regarding EGFR muta‑
tions (48). Therefore, short telomeres could act as a marker 
for this therapeutic response and the development of chromo‑
somal instability (46). Furthermore, shorter telomeres may 
cause damage to immune cell function and promote immune 
senescence.

A longer telomere length has also been shown to be associ‑
ated with a high risk of developing lung cancer, as indicated 
by a systematic review concluding that longer telomere 
length was associated with a higher risk of developing lung 
cancer (51). A previous study conducted in an East Asian 
region also demonstrated that longer telomere length was posi‑
tively associated with the risk of developing lung cancer (52). 
Machiela et al (53) indicated that non‑smoking women in Asia 
with a longer telomere length had an increased risk of devel‑
oping lung cancer. Sanchez‑Espiridion et al (47) suggested 
that patients with a longer telomere length had a higher risk 
of developing lung adenocarcinoma, particularly for women, 
individuals <60 years of age and light smokers. The findings in 
the study by Yuan et al (54) are in agrement with those of the 
study by results of Sanchez‑Espiridion et al (47), where longer 
telomeres were associsated with an elevated risk of developing 
lung adenocarcinoma, but not squamous cell carcinoma. The 
aforementioned association may could be due to different 
mechanisms of tumorigenesis and may be associated with a 
specific type of cancer (47).

Indeed, since longer telomeres bestow an increased rate 
of proliferation to cells (54), the accumulation of somatic 
mutations in carcinogenesis is possible, leading to malignant 
transformations (52). Specifically, cells with longer telomeres 
have an increased telomerase activity and this may result in 
uncontrollable cellular and tumor development (53).

Notably, de‑Torres et al (55) also suggested that long 
telomeres exhibited a high risk of lung cancer development, 
regardless of the presence of chronic obstructive pulmonary 
disease and/or emphysema. These authors suggested the 
existence of a potential mechanism termed the ‘long telomere 
syndrome’ that is associated with mutations in telomerase and 
shelterin genes (55). Consequently, both short and long telo‑
mere lengths may indicate telomere dysfunction (26). Indeed, 
telomere length may be used as a prognostic and therapeutic 
tool for specific cohorts of patients with lung cancer, bestowing 
sensitivity regarding therapeutic approaches and disease 
monitoring (56). Furthermore, the identification of more 
drivers could increase the specificity of these markers (57). 
However, a standing limitation concerning these studies is 
that different methods of measuring telomere length are used, 
which decreases the sensitivity of comparison (58) (Table I). 

5. Laryngeal cancer 

A relatively limited number of studies have examined the 
putative association between laryngeal cancer and telomere 
length. It has been suggested that telomeres are shorter in 
patients with laryngeal squamous cell carcinoma in the tumor 
differentiation grade 3 group than in the grade 1 and grade 2 
groups. The grade 3 subgroup had the worst prognosis, with 
the highest mortality rate (59).

Genetic factors that affect telomere biology in laryn‑
geal cancer pathogenesis have been identified. It has been 
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well‑documented that mutations within the OBFC1 gene result 
in a shorter telomere length in the cancer cells of patients with 
these mutations (60). The OBFC1 gene is associated with the 
replication and capping of telomeres. Therefore, it can be 
concluded that silencing such genes may reduce the risk of 
cancer and may exert a protective effect against tumorigen‑
esis (60). Furthermore, it has been indicated that the hPOT1 
gene is associated with telomere length and that mutations in 
this gene result in telomere dysfunction, telomere shortening, 
apoptosis and laryngeal cancer cell senescence (61). Lastly, it 
has been shown that the anti‑telomerase treatment of laryngeal 
cancer cells is likely to activate the mechanisms of the alter‑
native lengthening of telomeres monitored with the detection 
of ALT‑specific promyelocytic leukemia bodies. Moreover, 
an enhanced exchange between telomeric sister‑chromatids 
is evident, as well as the differential expression of telomere 
biology‑related genes (62). Specifically, such cells exhibit a 
longer telomere length, an attenuated proliferation, and the 
development of a less invasive and tumorigenic phenotype (62). 
These data demonstrate the existence of two mechanisms 
maintaining telomere homeostasis, whose clarification might 
provide therapeutic targets for cancer.

6. Urinary/renal system

Bladder cancer. Epidemiological factors, such as age, sex, 
physiological status, genetic predisposition, or smoking have 
been associated with the development of bladder cancer. 
Notably, associations between epidemiological parameters 
and telomere length have been identified. Thus, smokers with 
shorter telomeres have been shown to have an increased risk 
of developing bladder cancer (63). Furthermore, it has been 
shown that patients who smoked present shorter telomeres 
than non‑smokers (64). In addition, older patients with shorter 
telomeres exhibit a poorer prognosis (65). Notably, female 
patients have been found to have longer telomere lengths 
than males (66). Lin et al (67) demonstrated that depression 
could increase the risk of mortality in patients with a shorter 
telomere length compared to those with a longer telomere 
length, no signs of depression, and shorter cancer‑free survival 
time. Specifically, they concluded that shorter telomeres could 
elevate the risk of mortality in depressed patients since the 
same neuroendocrine and immunological pathways are linked 
with depression and telomere length, and thus result in tumor 
progression and growth (67).

Specifically, genetic factors appear to be closely associated 
with telomere length during the process of tumorigenesis. 
Thus, patients with both short telomeres and GSTM1 homozy‑
gous deletions exhibit an increased risk of developing bladder 
cancer (68). Hosen et al (69) studied tumors with TERT 
promoter and fibroblast growth factor receptor 3 (FGFR3) 
mutations. More specifically, tumors solely with FGFR3 
mutations (mainly in papillary carcinomas) had the shortest 
telomere length, followed by tumors with both mutations, then 
with TERT promoter mutations (found in both muscle‑invasive 
and invasive tumors), and lastly by tumors not harboring the 
specific mutations (69).

The majority of studies concur that this type of cancer 
is associated with shorter telomeres. Indeed, short telomeres 
lead to chromosome instability in bladder cancer tissue (68). 

Moreover, telomere length appears to be associated with 
disease progression. Patients with muscle‑invasive bladder 
cancer have been shown to have a shorter telomere length than 
those with non‑muscle invasive bladder cancer, suggesting that 
telomere length is associated with cancer stage (64,68). In addi‑
tion, shorter telomeres have been shown to be associated with 
a reduced survival rate, possibly due to poorer tolerance and 
higher chemotoxicity of therapy. Therefore, telomere length 
may be used as a marker of an optimal therapeutic strategy in 
bladder cancer (68).

However, some studies have found an association 
between bladder cancer and a longer telomere length. 
Fernandez‑Gomez et al (70), using flow cytometry‑based 
fluorescence in situ hybridization (FISH), observed a longer 
telomere length in more aggressive and aneuploid tumors 
compared to diploid ones. A separate study by Wang et al (71) 
indicated that a longer telomere and a higher telomere length 
variation could increase the risk of developing bladder cancer 
by 14‑fold. Moreover, telomere length variation was increased 
in patients with bladder cancer, indicating severe telomere 
dysfunction (71). Furthermore, in another study, a specific 
genetic locus (rs398652on 14q21) was found to be associ‑
ated with a longer telomere length, as well as a reduced risk 
of bladder cancer (72). This single nucleotide polymorphism 
(SNP) is associated with the PELI2 protein, which partici‑
pates in the inflammatory response and cytokine production, 
protecting cells against chronic inflammation, closely associ‑
ated with the process of cancerogenesis (72).

Even though short telomeres appear to be directly asso‑
ciated with the risk of developing bladder cancer, extreme 
telomere variation, including longer telomeres, has been asso‑
ciated with aggressive tumors.

Renal cancer. Even early reports identified an association 
between telomere length and kidney cancer development. 
Thus, in 1993, Holzmann et al (73) indicated that renal tumors 
were characterized by telomeric shortening, a process that 
could participate in tumor pathogenesis. The most common 
type of kidney cancer is renal cell carcinoma (RCC). Patients 
with RCC exhibit a shorter telomere length (74‑85). However, 
Dahse et al (75) observed that telomere shortening occurred in 
distinct tumor cell populations, thus suggesting the heteroge‑
neity of RCC. High‑grade tumors exhibit shorter telomeres than 
low‑grade tumors, associated with a high proliferation rate (76). 
In addition, shorter telomeres indicate a poorer disease‑specific 
survival, since telomere shortening may facilitate tumor devel‑
opment and acceleration of immune cell senescence (77).

The examination of telomere length in cells in the blood 
of patients with RCC, however, has yielded somewhat 
contradictory results. Hoffman et al (78) did not find an 
association between pre‑diagnostic leukocyte telomere length 
and the risk of developing RCC. Moreover, another study by 
Hofmann et al (79) did not find any association between blood 
cell telomere length and the risk of developing RCC. However, 
the study by Svenson et al (80) indicated that patients with 
a longer blood cell telomere length had a poorer prognosis 
than patients with a shorter one. In addition, patients with 
longer leukocyte telomeres and without any distant metastasis 
or capsule involvement, and patients with nuclear tumors of 
grade 1 to 3 had more unsatisfactory outcome (80).
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However, Morais et al (81) hypothesized that telomeres 
may play a dual role: During early stages, shorter telomeres 
increase the risk of developing RCC due to the genetic insta‑
bility that occurs during late carcinogenesis, while longer 
telomeres induce tumor progression. Genetically inferred 
telomere length, predictive of leukocyte telomere length, was 
established from the genotypes of nine telomere length‑asso‑
ciated variants performed in six genome‑wide association 
studies of RC (81). This approach suggested that individuals 
with an inherited predisposition exhibit more extended telo‑
mere length and harbor a higher risk of developing RCC (82). 
Notably, histologically different renal cancers exhibit a similar 
positive association with longer genetically inferred telomere 
length (82). On the other hand, it was demonstrated that the 
hTERT gene variantRs2736098 increased telomere length with 
each G allele added. Specifically, this G allele may enhance 
hTERT expression, thus increasing telomerase activity, elon‑
gating telomere length and reducing the risk of developing 

RCC (83).
As with other cancer types, an association between telo‑

mere length and cancer immune response was identified in 
renal cancer. Whole blood cell relative telomere length was 
positively associated with regulatory T‑cells (Tregs), since 
they contribute to tumor angiogenesis and may promote tumor 
progression (84). Moreover, Svenson et al (84) indicated an 
association between cancer cell telomere length and serum 
levels of interleukin (IL)‑7, ‑8 and ‑10 in RCC. These cyto‑
kines are critical immunological parameters.  Specifically, 
IL‑7 is associated with a poor survival, since it is imperative 
for the regulation of T‑ and B‑cell development and T‑cell 
homeostasis; IL‑8 is a chemokine involved in tumor growth 
and development, and IL‑10 induces immune suppression (84). 
Notably, patients with higher Treg levels exhibit longer T‑cell 
telomeres. This association may indicate a suppressed immune 
system with attenuated cell division and subsequent lower telo‑
mere shortening (84).

It is noteworthy that, as previously demonstrated, after 
kidney transplants, pediatric cancer patients exhibited a 
shorter blood cell telomere length compared to the controls, 
but presented with elevated gene expression levels of telomere 
length‑preserving proteins (85). Therefore, also in renal cancer, 
a significant association between the variation of telomere 
length and cancer risk has been established.

7. Hematogenous malignancies

Non‑Hodgkin's lymphoma. Telomere length variations are 
strongly implicated in the pathogenesis of hematogenous 
malignancies. Thus, patients with non‑Hodgkin's lymphoma 
were initially shown to have shorter telomeres length than 
the controls (86,87). Notably, patients with secondary diffuse 
large B‑cell lymphoma were shown to have shorter telomeres 
than those with follicular lymphoma, indicating that telomere 
reduction induces disease progression (86). Furthermore, 
Widmann et al (87) demonstrated that patients had shorter 
telomeres in the myeloid subpopulations than the lymphoid 
ones.

On the other hand, Lan et al (88) were the first to associate 
longer telomere length with an elevated risk of developing 
non‑Hodgkin's lymphoma. Specifically, it is suggested that 

longer telomeres create delayed senescence; thus, the cell 
can accumulate more mutations and increase the risk of 
transformation (88). Machiela et al (89) concurred with the 
aforementioned statement, indicating that longer telomeres 
bestow more significant replicative potential to hematogenous 
cancer cells.

It is essential to mention that patients undergoing chemo‑
therapy have been shown to exhibit shorter telomeres, perhaps 
due to the proliferative stress of the high dose therapy in 
hematopoietic reconstruction (90). Notably, patients that 
relapsed exhibit shorter, longer as well as unaltered telomere 
lengths (91). The variations mentioned above may result from 
the selective loss of cells due to the therapy received or the 
surviving subclones having a specific telomere length constitu‑
tion present in the tumor cell population (91).

Acute lymphocytic leukemia. The majority of studies focusing 
on leukemia progression and telomere biology have revealed 
an association with a shorter telomere length. Thus, patients 
with acute lymphocytic leukemia (ALL) are characterized 
by telomere shortening in their blood cells, a process that 
affects the pathogenesis of the disease (92). In a separate 
study, telomere lengths estimated from bone marrow samples 
were shorter than ones from peripheral blood of patients with 
ALL (93). However, upon chemotherapy, the mean telomere 
length increased, although it was later reduced due to the 
consolidation and maintenance of chemotherapy (93). The 
study by Borssén et al (94) concurred that the telomere 
length in blood cells of patients with ALL at the time of the 
diagnosis of lymphocytic leukemia was shorter than the telo‑
mere length measured at the end of therapy (94). Notably, a 
separate study demonstrated that the shortest telomeres were 
determined in the blood cells of relapsed patients, followed 
by newly diagnosed patients, and then by the complete remis‑
sion group (95). Another study demonstrated that patients 
with late‑stage ALL had a shorter telomere length and higher 
telomerase activity, associated with disease progression 
and more unsatisfactory outcomes; a short telomere length 
increased the risk of developing ALL, but was not associ‑
ated with the TERT gene polymorphism (96). However, a 
separate study indicated that the rs16847897 CG genotype 
increased the risk of developing ALL by 29% compared to 
the CC genotype (97). Longer telomeres in low‑risk B‑cell 
precursor ALL indicated inferior outcomes compared 
with short telomeres (94). Considering these data, one can 
conclude that the effect of telomere variation in leukemia is 
subtype‑dependent.

Acute myelogenous leukemia. An early study by Takauchi 
et al (98) indicated that patients with acute myelogenous 
leukemia (AML) had shorter telomere lengths. Furthermore, 
shorter telomere lengths were shown to be indicative of conver‑
sion from myelodysplastic syndrome to AML. The conversion 
was attributed either to heterogeneity or telomere short‑
ening (99). However, telomere shortening is not an indication 
of cells undergoing a ‘telomere crisis’ (100). This may be due 
to the upregulation of telomerase activity in AML stem cells 
or the extensive replicative potential of normal blood‑forming 
stem cells (100). Moreover, an inverse association between age 
and telomere length in AML has been shown (101).
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Chromosomal aberrations are strongly associated with 
AML pathogenesis. Indeed, patients with AML with the loss 
or gain of chromosome fractions carry critically short telo‑
meres, resulting in telomere dysfunction (102). Furthermore, 
patients with shorter telomeres are prone to jumping translo‑
cations (103), while FMS‑like tyrosine kinase 3 (FLT3) and 
internal tandem duplication (ITD) mutations have also been 
shown to be associated with shorter telomeres (104). On the 
other hand, isocitrate dehydrogenase (IDH)1 and IDH2 muta‑
tions have been shown to be associated with longer telomeres 
and improved outcomes in patients with AML, possibly due to 
higher sensitivity to chemotherapy, the duration of aplasia, or 
other diseases/host factors (104).

A previous study on long‑term granulocyte‑colony‑stim‑
ulating factor treatment demonstrated an elevated risk of 
developing AML due to bone marrow stress from telomere 
shortening. Indeed, Li et al (105) suggested that this process 
may be associated with the early stages of leukemogenesis.

As regards pediatric AML, Aalbers et al indicated that 
these patients exhibited very short telomeres and an increased 
risk of FLT3/ITD molecular aberrations FLT3/ITD. However, 
no association was identified with the number of cytogenetic 
abnormalities, contrary to adult AML (106).

Chronic lymphocytic leukemia (CLL). Short‑length telomeres 
are a prominent characteristic of CLL. Notably, a shorter 
telomere length in CLL has been found to be associated with 
reduced hemoglobin levels and an adverse survival, particu‑
larly in patients with biallelic ATM defects (107). Moreover, 
ATM defects, as well as TP53 defects, have been shown to 
be associated with telomere shortening and the poor survival 
of patients with CLL (108). In addition, short telomeres and 
TP53 mutations increase chromosome instability since, with 
every cell cycle, the ability of telomeres to protect chromo‑
some ends weakens, thus facilitating the creation of complex 
aberrations (109,110). Notably, an elevated risk of disease 
progression has also been found to be associated with TP53 
abnormalities (111).

The association of specific mutations with telomere length 
was highlighted by Jebaraj et al (108), who demonstrated 
that individuals carrying 17p‑ and 11q‑associated with TP53 
and ATM loss had the shortest telomeres even when the 
abnormalities were minor. Furthermore, it was indicated that 
patients with two or more genetic abnormalities had shorter 
telomeres compared with individuals carrying a smaller 
number of congenital anomalies. Therefore, the authors 
suggested that telomere shortening was associated with genetic 
complexity (112).

Some exceptions are evident as patients with normal immu‑
noglobulin variable heavy chain (IGHV) genes have shorter 
telomere lengths than those with mutated ones (113,114). On 
the other hand, Roos et al (115) observed an inverse correlation 
between telomere length and IGHV homology, further adding 
that shorter telomeres create genetic complexity by increasing 
the number and occurrence of unwanted chromosomal abnor‑
malities.

Notably, the study by Lin et al (116) indicated that 
short telomeres were also prone to fusions. The prevalence 
mentioned above may lead to tumorigenic genomic rear‑
rangements, particularly in patients with early‑stage disease. 

Moreover, it was concluded that shorter telomeres were 
associated with more aggressive disease due to the high 
telomere attrition rate in highly proliferative tumors (117). 
Furthermore, patients with less advanced stages of CLL 
were shown to exhibit longer telomeres (118). However, both 
studies suggested that longer telomeres were associated with 
mutations in TERC, TERT and OBFC1, variants as well as 
with a higher risk of developing CLL (117,118).

Notably, Furtado et al (119) suggested that telomere short‑
ening was an early event regarding leukemogenesis, since 
short telomeres are already present in small abnormal B‑cell 
clones of high‑count monoclonal B‑cell lymphocytosis. This 
disease precedes CLL.

As regards methodology, both monochrome multiplex 
quantitative PCR and single telomere length analysis can 
provide clinically relevant information (111). However, 
Yang et al (120) suggested that telomere length should not be 
estimated from buccal samples, as telomere length in buccal 
and leukemic cells is not associated with patient survival or 
has any prognostic relevance.

In summary, it is suggested that telomere length can 
act as a potential prognostic factor, as it may improve risk 
stratification in patients with CLL for the early initiation of 
therapy (111,121).

Chronic myelogenous leukemia (CML). Early studies 
on CML regarding telomere length demonstrated that 
patients with CML had shorter telomeres than healthy 
individuals (122,123). In continuation, it was indicated that 
more rapid telomere shortening occurs in leukemic rather 
than non‑leukemic hematopoietic stem cells. This acceler‑
ated shortening has been shown to be positively associated 
with the leukemic clone size in the hematopoietic stem 
cell compartment (124). In addition, studies have indicated 
that patients with CML in the accelerated or blast phase 
have shorter telomeres than those in the chronic phase or 
cytogenic remission (123,125,126). Moreover, telomere 
shortening is more prominent in high‑risk patients than in 
low‑risk ones (126). Specifically, such shortening has been 
shown to be associated with disease progression/stage, 
indicating increased genetic instability and a high ability 
to accumulate secondary genetic events that may induce 
disease evolution (127). 

Indeed, it was hypothesized that a high‑risk subgroup of 
patients with CML who lack telomere maintenance mecha‑
nisms enter the accelerated phase of CML early (128). 
On the other hand, it was observed that patients with 
treatment‑free remission (TFR) had shorter telomeres than 
those who relapsed (129). This may be attributed to the fact 
that the longer telomere‑carrying CML cells can escape 
senescence and can divide following hte discontinuation of 
therapy (129).

Notably, Samassekou et al (130), examining telomere 
length at both ends of chromosomes, observed that p‑ends 
carried longer telomeres than q‑ends and that q‑ends presented 
a higher shortening rate than p‑ends). Furthermore, patients 
with CML in the chronic phase harbored specific telomere 
length changes of the longest individual telomeres on chro‑
mosomes 18p and Xp and the shortest individual telomeres on 
chromosomes 21p and 21q (130).
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8. Integumentary system

Melanoma of the skin. Associations between telomere length 
and the presentation of cutaneous melanoma are heteroge‑
neous, with the majority of studies concluding that shorter 
telomere lengths are associated with a decreased risk of 
developing skin melanoma. By contrast, longer telomeres 
exhibit a positive association (131‑139). In the case of mela‑
noma, shorter telomeres exhibit a protective function against 
the malignant transformation of melanocytes, since these 
cells have a limited proliferative ability and capability of 
undergoing apoptosis (132,136). Indeed, melanocytes carrying 
longer telomeres do not go through senescence or apoptosis; 
thus, there is increased melanocyte proliferation, as well as a 
propensity for nevi and melanoma development (138). Indeed, 
Viceconte et al (140) suggested that metastatic cutaneous 
melanoma cells carried longer telomeres, which provides these 
cells with sufficient replicative potential without activating a 
telomere maintenance mechanism, and finally contributing to 
tumor development. On the other hand, shorter telomeres have 
also been associated with an inferior survival, since critically 
short telomeres can trigger events that create genetic instability 
and tumorigenesis (139).

Notably, shorter telomeres have also been found to be asso‑
ciated with a lower number of skin moles (135), while longer 
telomeres are positively associated with a higher number of 
skin moles (133). Indeed, some authors have suggested that 
melanomas may develop from existing moles whose cells 
continue to proliferate because of delayed replicative senes‑
cence (133). Anic et al (133) also identified an association 
between longer telomeres and an elevated risk of developing 
melanoma in females, although no association was indicated 
for males.

However, the association between telomere length and the 
incidence of melanoma appears to differ between sporadic and 
familial melanoma. Thus, Menin et al (141) demonstrated that 
patients with sporadic melanoma exhibited a shorter telomere 
length than patients with familial melanoma. Indeed, even 
though shorter telomeres decreased the risk of developing 
familial melanoma, they tripled the risk of developing single 
sporadic melanoma (141). These data correlate well with the 
characterization of melanoma as a complex disease with a 
multifaceted etiology, and indicate that telomere length may 
affect each type of melanoma in a discrete manner (141). 
Undoubtedly, telomere‑related genes are also related to the 
susceptibility of melanoma (134). However, further extensive 
studies need to be conducted to comprehend the role of telo‑
meres in melanoma.

9. Endocrine system

Thyroid cancer. In 2000, Kammori et al (142) indicated that 
telomere length was reduced in thyroid cancer tissues and 
follicular adenomas, compared to normal tissues. However, 
it was shown that follicular adenomas and papillary carci‑
nomas had elevated mean terminal restriction fragment 
values compared to the controls. Moreover, the mean terminal 
restriction fragment values were significantly shorter in 
telomerase‑positive samples than in telomerase‑negative ones 
in both follicular and papillary carcinomas (143).

Moreover, efforts were made to identify potential differ‑
ences in telomere length among familial and sporadic thyroid 
cancer patients. This distinction may be critical as thyroid cancer 
exhibits the highest genetic predisposition among other cancer 
types (144), even though Jendrzejewski et al (145) did not detect 
any differences between telomere length in blood samples of 
familial papillary thyroid cancer (fPTC) and sporadic papil‑
lary thyroid cancer (sPTC) cases of papillary thyroid cancer. 
Capezzone et al (146) identified shorter telomeres in fPTC than 
in sPTC blood samples, as demonstrated using both quantitative 
PCR and FISH. Notably, a shorter telomere length was detected 
in all tissues of patients with fPTC in contrast to those with 
sPTC, indicating that the differences in telomere length were not 
restricted to tumor sites (147). These authors hypothesized that 
the shorter telomeres may have been inherited from parents (147). 
Indeed, it had been demonstrated that the relative telomere length 
in patients with second‑generation fPTC was similar or even 
shorter to that of parents and unaffected siblings, suggesting that 
telomere length is partly transmitted to offspring (146).

On the other hand, patients with familial non‑medullary 
thyroid cancer had shorter telomeres than the controls (148). 

As regards cancer risk, no association between telomere 
length and the risk of thyroid subsequent malignant neoplasm 
was detected in childhood cancer survivors (149).  Nonetheless, 
Li et al (150) demonstrated that telomere length was associ‑
ated with the risk of papillary thyroid cancer. Specifically, a 
reverse U‑shaped association between telomere length and the 
risk of cancer was identified, particularly in younger subjects, 
indicating that both short and long telomeres can be correlated 
with the risk of cancer development (150).

Therefore, a complex pattern between the risk of developing 
thyroid cancer and telomere length variation is emerging, and 
this warrants further analysis.

10. Reproductive system

Prostate cancer. Prostate cancer is characterized by signifi‑
cant telomere shortening, which results in genomic instability 
and even chromothripsis identified in >50% of prostate cancer 
precursor lesions (151). Indeed, short telomeres have been 
shown to be associated with an increased risk of developing 
prostate cancer, the risk of recurrence, and a worse prognosis 
due to the accelerated senescence of immune cells (152). 
Thus, more aggressive types of prostate cancer presented 
shorter telomeres (152). Tsai et al (153) also concurred with 
these results in a study conducted on African‑American 
males. However, a separate study did not detect an asso‑
ciation between telomere length and recurrence and prostate 
cancer‑specific mortality. However, shorter telomeres detected 
in the stroma and epithelial cells were associated with metas‑
tasis (154). In another study telomere length was assessed in 
a cohort of 15 patients with prostate cancer who underwent 
radiotherapy utilizing telomere FISH (155). Length data were 
implemented in a machine learning model, XGBoost, trained 
on pre‑irradiation (baseline) and in vitro exposed (4 Gy γ‑rays) 
telomere length measurements, to predict post‑irradiation telo‑
meric outcomes. The authors of that study demonstrated that a 
machine learning model with individual telomere length data 
for the prediction of post‑radiotherapy telomeric outcomes can 
provide an improved predictive power and novel insight into 
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individual patient radiosensitivity and the risk of radiation‑late 
toxicity. It could be used regardless of cancer type, radiation 
method, or genetic susceptibilities (155).

Genetic factors also appear to play a role. It was previously 
demonstrated that individuals carrying the RTEL1 rs2297441 
variant AA had shorter telomeres and an increased risk of 
prostate cancer (156). Hurwitz et al (157) did not observe an 
association between leukocyte telomere length and prostate 
cancer in males from hereditary prostate cancer families. Still, 
they hypothesized that shorter telomeres may be associated 
with an elevated risk of developing prostate cancer in a subset 
of genetic diseases (157).

On the other hand, longer telomeres have also been shown 
to be associated with the risk of developing prostate cancer. 
The study by Julin et al (158) revealed a moderate association 
between longer telomeres and an increased risk of developing 
prostate cancer, particularly in males with a family history of 
the disease. In addition, longer telomeres increased overall 
mortality due to a suppressed immune system (158). In another 
study, longer telomeres were associated with a worse prostate 
cancer‑specific and metastasis‑free survival compared to 
shorter ones (160). Of note, Wulaningsih et al (161) first indi‑
cated that increased levels of total prostate‑specific antigen 
were associated with longer telomeres. 

In a separate study, the telomere lengths of prostatic 
small cell neuroendocrine carcinoma (SCNC) and prostatic 
adenocarcinoma (AdCa) were compared (162). Both cell types 
exhibited relatively similar telomere lengths, indicating their 
common origin, although longer telomeres were more common 
in SCNC (162). Furthermore, longer telomeres in AdCa were 
associated with more aggressive tumors of aggressive patho‑
logical and molecular characteristics (162).

Smoking has also been found to be associated with the 
development of prostate cancer. Notably, Mirabello et al (163) 
indicated that, particularly in the case of heavy smokers of 
the male sex without a family history of the disease, shorter 
telomeres were associated with a reduced risk of developing 
prostate cancer. However, another study did not detect any 
difference concerning telomere length, smoking and prostate 
cancer. Indeed, it was shown that recent smokers had an 
elevated variability in telomere length in prostate stromal 
and cancer cells than long‑term smokers (164). Moreover, it 
was indicated that males of African origin with higher‑grade 
disease had a higher variability in telomere length than 
Caucasian males with the same disease classification (165).

Breast cancer. Numerous studies have focused on the asso‑
ciation between breast cancer risk and telomere length. Thus, 
longer, as well as shorter telomeres have been found to be 
associated with an increased risk of developing breast cancer. 
Indeed, it has been well‑established that longer telomeres 
are associated with an enhanced telomerase activity and 
may facilitate the incidence of genetic mutations (166). In a 
previous study, longer telomeres were detected in patients with 
breast cancer compared with the controls (167). That study 
was performed on blood cells collected from 611 patients with 
breast cancer and 154 healthy women in Prague between 2002 
and 2010 (167). A similar association on blood cell telomere 
length was determined in a Chinese female population (168), 
as well as in Indigenous American women (169).

However, shorter telomeres have also been shown to 
be associated with an increased risk of developing breast 
cancer, initially in older, premenopausal or postmenopausal 
women (170,171). Indeed, estrogen levels have been previ‑
ously linked with telomere length; thus, the menopausal status 
could influence telomere length and its connection to insulin 
resistance and inflammation (171). However, no association 
between telomere length and the risk of hereditary breast 
cancer has been observed (172).

Varying results were also obtained when the putative 
association of telomere length with breast cancer progression 
was examined. For example, measuring peripheral leukocyte 
telomere length at baseline and 30 months post‑diagnosis in 
a cohort of breast cancer survivors did not detect an associa‑
tion with either all‑cause or breast cancer‑specific mortality. 
However, participants whose telomeres exhibited shortening 
between baseline and 30 months exhibited a higher risk of 
breast cancer‑specific and all‑cause mortality (173). These 
authors hypothesized that longer telomeres may protect cells 
from entering into breakage‑fusion‑bridge cycles, especially 
those that induce cell senescence (173). 

When telomere length and telomerase activity were 
examined in breast cancer cell lines with various levels of 
invasiveness, a paradoxical concurrence of enhanced telom‑
erase activity and short telomeres was detected in the most 
aggressive cell lines. Furthermore, the intracellular localiza‑
tion of hTERT intracellular localization was associated with 
its activity levels (174).  Indeed, it was suggest that telomere 
length and telomerase activity may be utilized as biomarkers 
for assessing the aggressiveness of breast cancer cells (174). 

A clinical study examining a total of 44 breast cancer 
tissues, including 15 papillotubular, 17 scirrhous and 12 
solid‑tubular carcinomas, determined that telomeres measured 
using quantitative FISH were shorter in cancer cells compared 
to normal epithelial cells (175). In another clinical study, blood 
leukocyte telomere length was measured in 52 cancer patients 
and matching control subjects utilizing quantitative PCR. This 
approach demonstrated that the average telomere length of 
patients with advanced‑stage disease was shorter compared to 
those with early‑stage disease. Notably, patients with human 
epidermal growth factor receptor 2 (HER2)+ breast cancer 
had significantly longer telomeres than HER2‑ patients (176). 
HER2 is a biological marker for disease prognosis and disease 
aggressiveness, and its association with telomere length may 
provide insight into disease progression and malignancy (177). 
These data indicate the complexity of the roles of telomeres 
in breast cancer pathogenesis. Indeed, the association of telo‑
meres with breast cancer progression appears to depend on 
disease stage, patient age and hormone receptor status. 

A number of studies have confirmed the complex pattern 
of putative associations where genetic factors play a role. For 
example, it was previously demonstrated that patients homozy‑
gous for the variant allele (CC) of hTERC rs16847897 presented 
longer telomeres (167), while patients with the AA allele of 
rs2853677 had longer telomeres than those with AG (170). 
Other examples are BRCA1 and BRCA2 gene mutations 
concerning telomere length and breast cancer susceptibility 
in women with a high hereditary risk of developing breast 
cancer. Thus, Eyüboǧlu et al (177) indicated that patients with 
BRCA1 and/or BRCA2 mutations had a 12% telomere attrition 
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compared with women with no BRCA1 and/or BRCA2 muta‑
tions. Notably, BRCA2 mutations have been shown to be 
associated with the maintenance of telomere length (178). 

Thorvaldsdottir et al (179) also concurred with the latter 
result and indicated that patients with breast cancer had 
shorter telomeres compared with healthy women in the case 
of both BRCA2 mutation carriers and noncarriers. Moreover, 
BRCA2 mutation carriers with shorter telomeres exhibited an 
increased risk of developing increased breast cancer, which 
was not evidenced in non‑carriers. Other factors, however, 
affect the connection to telomere biology. Shorter telomeres in 
patients with breast cancer have also been shown to be asso‑
ciated with low levels of physical activity (180,181). Indeed, 
physical activity may hinder cellular aging and protect indi‑
viduals from age‑related diseases (181). 

Moreover, telomere length is associated with psychoneu‑
rological symptoms (PNS) in breast cancer survivors (182). 
Specifically, increased levels of pain and lower scores in the 
visual memory domain have been shown to be associated with 
shorter telomeres (182). Chemotherapy perhaps induces telo‑
mere breakage and chromosome instability, triggering immune 
surveillance pathways and causing inflammation (182). This 
may compromise tissue homeostasis and create genetic 
alteration, leading to the acquisition or persistence of PNS. 
To summarize, further studies are required in order to better 
understand the mechanistic aspects of telomere involvement 
in breast cancer development and progression and enhance 
telomere biology application in disease evaluation (Table II).

Ovarian cancer. Ovarian cancer is another hormone‑respon‑
sive cancer whose pathogenesis is closely associated with 
fluctuations in sex hormones and discrete receptor expression. 
Initially, it was shown that the peripheral blood leukocytes of 
patients with ovarian cancer have shorter telomeres compared 
to those of age‑matched healthy women (183). Moreover, 
it was determined that the strength of the association was 
inversely related to the telomere length of more aggressive 
types of tumors (183). That study was in agreement with the 
findings of the study by Kuhn et al (184), demonstrating that 
telomere length changes depending on the ovarian tumor 
histological type. Specifically, shorter telomeres were detected 
in high‑ and low‑grade serous carcinomas and low‑grade 
endometrioid carcinomas of the ovaries than clear cell ovarian 
carcinoma (184). However, these authors did not find an asso‑
ciation between overall mortality and telomere length in these 
main ovarian cancer types (185). The exception was clear cell 
carcinoma of the ovaries, where the death hazard ratio among 
females with a telomere index >1 was higher when compared 
with those with a telomere index ≤1. The telomere index was 
defined as the mean telomere length of cancer cells relative 
that of to stromal cells (184). 

Martinez‑Delgado et al (186) demonstrated that sporadic, 
as well as familial cases of ovarian cancer had shorter telo‑
meres than the controls when age‑adjusted. Furthermore, these 
authors suggested that shorter telomeres were associated with 
an increased risk of developing ovarian cancer, particularly 
in younger females, with the risk progressively decreasing 
with age (186). In separate studies, shorter telomeres were 
associated with worse outcomes, as well as unplanned hospital 
admissions (187), while longer telomeres were associated with 

a reduced risk of non‑severe and rapidly fatal cases (188). On 
the other hand, it was shown that the minor allele at the peak 
2 SNP rs7705526 was associated with longer telomeres and an 
increased risk of developing low‑malignant‑potential ovarian 
cancer (the change in relative telomere length being 1.020‑fold 
per allele) (189).

However, Terry et al (190) did not observe any difference 
between the telomere length of ovarian cancer cases and the 
controls, although they suggested that a genetic variation 
in the TERT gene could affect the risk for this malignancy. 
In addition, the study by Kotsopoulos et al (191) did not 
find any association between telomere length and ovarian 
cancer‑specific mortality, suggesting that telomere length 
cannot predict outcome following diagnosis.

Several associations between telomere length and treat‑
ment strategies have been identified for patients with ovarian 
cancer. As regards therapies against ovarian carcinoma, some 
women are treated with glucose restriction combined with 
chemotherapy (192). Notably, telomerase is overexpressed in 
>80% of human cancers (193). It was previously shown that 
the administration of platinum‑taxane chemotherapy, under 
fasting glucose conditions, significantly decreased telomerase 
expression, resulting in a 30% decrease in telomere length and 
in the attenuation of ovarian cancer cell immortalization (192). 
Notably, ovarian tissue cryopreservation is a process through 
which patients with ovarian cancer manage to preserve 
fertility (194). However, the mean telomere length is reduced 
following cryopreservation, inducing cellular senescence and 
DNA damage (194).

Therefore, these collective data indicate that the associa‑
tion between telomere length and ovarian cancer pathogenesis 
is influenced by the patients' age and the ovarian tumor histo‑
logical type. These factors need to be taken into considerations 
before consensus can be reached.

Cervical cancer. The pattern of discrete associations between 
cancer incidence and telomere length is repeated in cervical 
cancer. Zhang et al (195) initially observed both the short‑
ening and elongation of telomeres in patients with cervical 
cancer. However, in another study, telomere FISH assays 
revealed that early‑stage cervical intraepithelial neoplasias 
(CINs), particularly CIN2, exhibited shorter telomeres 
compared to neighboring normal squamous epithelia. This 
was strongly associated with increased rates of chromosomal 
arm loss/gain (196). Moreover, cervical cancer tissue presented 
more significant heterogeneity as regards telomere length, 
suggesting that the progressive shortening of telomeres may 
facilitate the transformation of CIN to cervical cancer. On the 
other hand, no significant differences in the telomere length 
of the normal endometrium and endometrial hyperplasia and 
cancer were detected (196).

High‑risk human papillomavirus (HR‑HPV) can cause 
cervical cancer; however, a shortened telomere length in 
cervical exfoliated cells has been shown to be associated 
with a lower risk of developing cervical cancer among 
HR‑HPV‑positive women. Thus, it has been suggest that 
shorter telomeres may decrease the risk of developing cervical 
cancer in HR‑HPV‑positive patients (197). Indeed, in this 
case, the shorter telomeres may act as a suppressor and hinder 
proliferation (197).
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It is noteworthy that telomeres are transcribed into 
heterogeneous long non‑coding RNA, known as telomeric 
repeat‑containing RNA (TERRA) (198). Of note, TERRA, 
which usually have a short half‑life, tend to accumulate in 
rapidly‑growing cancer cells, with the result that high TERRA 
levels are detected in various human cancer types (199). Thus, 
even though TERRA abundance was not found to be associ‑
ated with telomere length in six cervical cancer cell lines, its 
abundance was found to be associated with RNA stability, and 
possibly, telomeres (200). Another example of genetic influence 
is the participation of homeobox containing 1 (HMBOX1) on 
telomere length. HMBOX1 was initially attributed to the prop‑
erties of binding to double‑stranded DNA (201). Moreover, 
this protein was identified as a positive regulator of telomere 
length (202). Furthermore, it was indicated that HMBOX1 
knockdown induced radiosensitivity in cervical cancer cells 
and led to shorter telomeres, enhanced DNA damage response, 
and increased levels of apoptosis (203).

In summary, shorter telomeres appear to be associated with 
CIN transformation to cervical cancer, but not in HPV‑positive 
patients, whereas the asscoiation with genetic factors may play 
a significant role (Table III).

11. Digestive system

Esophageal cancer. A complex pattern emerges when analyzing 
data on the association between telomere length and esopha‑
geal cancer. Both short and long telomeres are implicated with 
a U‑shaped association. As with the other types of cancer, the 
findings of research studies vary considerably, depending on 
the clinical outcomes and the parameters under investigation. 
To begin with, multiple studies using esophageal squamous cell 
carcinoma (ESCC) cells have proven that these cells possess 
shorter telomeres than the controls (204‑206). Moreover, it has 
also been shown that telomere alterations not only affect the 
esophageal epithelium, but also stromal cells. This is crucial, 
as, in this case, stromal cells of cancer lesions have been 
identified to have longer telomeres resulting in chromosome 
4q, 13q and 15q instability (207). Notably, Xing et al (205) 
indicated that shorter telomeres were detected, particularly on 
chromosomes 17p and 12q, but not 11q and 2p of ESCC cells. 
This may occur since p53 and other tumor suppressor genes 
are located on 17p (205). On the other hand, Du et al (204) 
observed a U‑shaped association between telomere length and 
ESCC risk, indicating that both extremely short and long telo‑
meres may affect tumor progression. However, Lin et al (207) 
did not find any association between telomere length and 

ESCC precursor lesions. Furthermore, genotyping studies have 
identified several SNPs related to telomere length that are asso‑
ciated with the susceptibility to ESCC (208‑211). Specifically, 
CXCR4 rs6430612, TERT rs13172201 and OBFC1 rs4387287 
in short telomeres were found to increase the risk of developing 
ESCC (208). At the same time, the A allele of telomere‑related 
SNP rs2736108 was associated with longer telomeres, as well 
as a more prolonged survival (209) suggesting an underlying 
protective mechanism against ESCC (210). It was shown that 
the rs621559 AA genotype decreased the risk of developing 
ESCC, compared to the GG genotype, while the 14q21 
rs398652 G allele exhibited an increased cancer risk (210). 
These associations were sex‑dependent, with stronger associa‑
tions detected in males (210). Lastly, Hao et al (211) indicated 
that patients with p53 somatic mutations had shorter telo‑
meres, inducing increased proliferation and susceptibility to 
tumor development. Moreover, the rs12951053 CC genotype 
and the rs1042522 GG genotype were shown to be associated 
with shorter telomeres (211).  Yu et al (212) demonstrated that 
short telomeres in combination with Arg/Pro or Arg/Arg geno‑
types and HPV‑16 seropositivity increased the risk of ESCC 
12.08‑fold. On the other hand, in another study, no association 
between leukocyte telomere length and disease was detected 
in esophageal adenocarcinoma (213). Of note, Pan et al (214) 
demonstrated that when short telomeres were combined 
with epidemiological factors, such as smoking and excessive 
alcohol intake, there was a 16.82‑fold increase in the risk of 
developing ESCC.

Gastric cancer. Even though gastric cancer is a rather complex 
entity where genetic, environmental and microbial parameters 
appear to be involved (215). Tahara et al (215) demonstrated 
that patients with gastric cancer exhibited shorter leukocyte 
telomeres than the healthy controls, this observation is in agree‑
ment with the results from previous and later studies (216,217). 
When an analysis of telomere length in patients with gastric 
cancer and age‑ and sex‑matched controls was performed, 
an association with aging, a history of smoking, a decreased 
fruit intake and Helicobacter pylori positivity with short 
telomeres was established (216). Shorter leukocyte telomeres 
were also shown to be associated with a worse overall survival 
and progression‑free survival in patients with advanced‑stage 
disease (215). An association between peripheral blood 
leukocyte telomere length and the risk of gastric cancer was 
prospectively assessed in a cohort of 26,540 middle‑aged or 
older Chinese patients. This strategy identified a significantly 
higher risk of developing gastric cancer with the lowest or the 

Table III. Telomere length and HPV infection.

Sample type Measurement method Association/significance Authors/(Refs.)

Tissue sample PCR‑based TRAP assay No correlation between HPV infection/telomere length Zhang et al (233)
Cervical exfoliated PCR Shorter telomere length/lower risk of cancer in Chen et al (197)
cells  HPV‑positive women; telomere length may function as a 
  biomarker to detect high‑risk individuals during screening 

TRAP, telomerase repeat amplification protocol; HPV, human papillomavirus.
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highest quintile of telomere length, most apparent in males and 
younger individuals (218). On the other hand, a prospective 
study encompassing a cohort of 40,000 European participants 
did not identify an association between the risk of gastric 
cancer and telomere length (219). These data collectively 
suggest that the effect of telomere length may differ depending 
on the disease stage, sex, or even racial origin.

Furthermore, a reduced immune response and a 
higher percentage of CD4+ T‑cells and CD19+ IL‑10+ Breg 
percentage in B‑cells and plasma IL‑10 concentration were 
shown to be associated with shorter telomeres in cancer 
patients (217). Shorter telomeres were also linked associated 
with Helicobacter pylori‑positive patients, smokers with a 
low fruit/vegetable intake, moderate or severe gastritis and 
intestinal metaplasia (215,216). In separate studies, smoking 
was also found to be associated with the risk of developing 
gastric cancer and a shorter telomere length (220). Moreover, 
leukocyte telomere length was found to strongly contribute 
to the predisposition to gastric cardia carcinoma in a cohort 
of the Chinese Han population. Notably, the combination of 
shorter telomere length and smoking enhanced the develop‑
ment of this cancer type (221). Thus, Hou et al (216) concluded 
that shorter telomeres increased the risk of developing gastric 
cancer, perhaps through the impairment of cellular functions, 
creating chromosome instability.

The known association between Helicobacter pylori 
and gastric cancer has also been linked to telomere 
length. Thus, patients infected with Helicobacter pylori 
infection have shorter telomeres, perhaps due to related 
inflammatory cytokine release (222). Furthermore, the phos‑
phatidylinositol‑4,5‑bisphosphate 3‑kinase catalytic subunit 
alpha (PIK3CA) amplification could possibly be an integral 
part of carcinogenesis (222,223). Therefore, Tahara et al (222) 
suggested that Helicobacter pylori eradication could signifi‑
cantly decrease the risk and mortality from gastric cancer.

Genotypic factors associated with telomere length, such as 
different TERT variants, can increase the risk of developing 
gastric cancer (224). For instance, TERT variants such as 
rs10069690, rs2242652 and rs2853676, and TN1P1 vari‑
ants such as rs7708392 and rs10036748 have been shown to 
be associated with an increased risk of gastric cancer (224). 
In addition, Du et al (225) indicated that the G allele of 
rs2736100 in TERT at 5p15.33 was associated with longer 
telomeres; Choi et al (226) indicated that in the same variant, 
the CC genotype had longer telomeres than the AA. Notably, 
Du et al (225) also identified a U‑shaped association between 
telomere length and the risk of developing gastric cancer.

Pancreatic cancer. Multiple studies have suggested that short 
telomeres increase the risk of developing pancreatic cancer. 
Telomere shortening is one of the earliest events in tumorigen‑
esis; thus, shorter telomeres may increase the risk of developing 
pancreatic cancer and also with its progression (227,228). On 
the other hand, some studies have demonstrated that longer 
telomeres increase the risk of developing pancreatic cancer, as 
they bestow an elevated ability to proliferate to transformed 
cells (229,230). According to Mormile (231), long telomeres 
result from high telomerase activity, set off by surviving 
overexpression through transcriptional activation of hTERT. 
However, the results of extensive epidemiological research 

are inconclusive regarding the association between the risk 
of pancreatic ductal adenocarcinoma (PDAC) and telomere 
length. This is attributed to various reasons, including the study 
design and method of telomere measurement, as discussed by 
Duell (228).

Other studies, however, have indicated that both extremely 
long and short telomeres increase the risk of developing this 
type of cancer. Skinner et al (232) demonstrated a skewed 
U‑shape association between telomere length and pancreatic 
cancer risk, whereas Zhang et al (233) concurred with these 
results for an Asian population cohort.

In a previous study, polymorphisms previously associated 
with variations in telomere length were genotyped to assess 
the association of genetically predicted short telomere length 
with the risk of developing PDAC in light of the conflicting 
findings. This approach revealed that genetically predicted 
short telomere length was not associated with the risk of devel‑
oping PDAC (234). Indeed, since genetically predicted short 
telomere length is not associated with the risk of developing 
PDAC, it is suggested that telomere length may be a marker 
of long‑term exposure to various risk factors, such as obesity, 
smoking and diabetes (233).

In continuation, it was determined that treatment‑naïve 
short leukocyte short telomere length was associated with 
a higher risk of developing PDAC. The association was not 
affected by the germline variation of the genotyped SNPs (235). 
Furthermore, treatment‑naïve short leukocyte short telomere 
length was associated with the poorer overall survival of 
patients with PDAC (235). The association may partially be 
attributed to the fact that shorter telomeres create chromo‑
some instability and can enhance the progression rapidly from 
precursor lesions to invasive ductal carcinoma (236). Notably, 
the minor TERT allele rs401681 was also found to be asso‑
ciated with short telomeres, resulting in an increased risk of 
developing pancreatic cancer (237).

The study by Posch et al (238) indicated that patients with 
sporadic pancreatic neuroendocrine neoplasms with promoter 
mutations had longer telomeres than those with wild‑type 
ones. By contrast, another study demonstrated that IL‑6 
cytokine production was reduced in individuals with longer 
telomeres (239). It was hypothesized that shorter telomeres 
were a consequence and not a result, since they may indicate 
a model of pancreatic tumorigenesis with increased levels of 
IL‑6 accounting for the strong STAT3 (major pro‑tumorigenic 
IL‑6 effector and can influence KRAS‑induced pancreatic 
tumorigenesis) activation implicated in KRAS‑driven pancre‑
atic cancer (239). Both epidemiological and environmental 
factors appear to affect the association of telomere length with 
the risk of developing pancreatic cancer.

Colorectal cancer. The latest advances regarding colorectal 
cancer suggest that telomere length in tumor tissues is shorter 
than in the adjacent mucosa (240,241). Furthermore, tumors 
with a higher number of somatic mutations present shorter 
telomeres (241). Moreover, an association between tumor stage 
and telomere length was previously identified, as lower‑stage 
tumor tissues exhibited shorter telomeres than advanced‑stage 
and metastatic tumors (240). These studies characterize 
colorectal cancer tissue with both chromosomal or microsat‑
ellite instability (240,241). Moreover, Piñol‑Felis et al (242) 
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concluded that telomere length could be used as a reliable 
prognostic factor, since telomere shortening was, in their 
study, associated with an early stage of tumorigenesis.

However, some studies have identified an association 
between the risk of developing colorectal cancer and longer 
telomeres (240,243). The two different associations detected 
in patients with colon cancer are suggested to reflect alter‑
native mechanisms of tumorigenesis and specific disease 
stages (240,243). Likewise, the studies by Luu et al (244) 
and Peacock et al (245) demonstrated an association between 
longer telomeres and an increased risk of colorectal cancer. 
Specifically, longer telomeres exhibited an elevated risk of 
accumulating mutations that could lead to transformation and 
cancer progression (244,245). However, a meta‑analysis study 
indicated no association between telomere length and the risk 
of colorectal cancer (246).

Furthermore, in another study, the analysis of telo‑
mere‑related protein expression in colorectal cancer tissues 
revealed differences relative to the adjacent mucosa. A positive 
association between hTERT expression and patient age in a 
Saudi Arabian cohort was identified and was associated with 
the patients' clinicopathological characteristics (247). 

Genetic factors affect the association between the 
risk of developing colorectal cancer and telomere length. 
Park et al (248) identified that telomere shortening in cases of 
tubular adenomas was mainly caused by the PIK3CA ampli‑
fication. Bu contrast, telomere shortening in serrated polyps 
was attributed to BRAF mutations (248). Furthermore, these 
authors suggested that tumor genotyping may be a helpful tool 
to monitor tumor progression (248). Moreover, a rare P507L 
variant in TPP1 may increase the risk of developing colorectal 
cancer by interrupting the TPP1‑TIN2 interaction, thus 
impairing telomerase activity and decreasing telomeres (249). 

Epidemiological factors appear to be involved, as a study 
detected shorter telomeres in depressed individuals and identi‑
fied education and social support as factors towards alterations 
in telomere length (250). However, a separate study failed 
to detect an association between religiosity and telomere 
length (251).

A complex pattern on the association between colon cancer 
risk and telomere length is emerging, which warrants further 
validation through studies performed with a larger number of 
patients (Table IV).

Liver cancer. The association between the incidence of hepa‑
tocellular cancer (HCC) and telomere length is dependent 
on cancer stage. Patients with HCC have shorter telomeres 
compared to healthy controls, although longer telomere 
lengths have been detected in patients with advanced‑stage 
disease (252‑255). Furthermore, shorter telomeres have been 
shown to be associated with a decreased survival, increased 
recurrence and numerous TERT promoter mutations (253,255). 
On the other hand, longer telomeres have been found to be 
associated with more aggressive types of tumors and a poor 
prognosis (252,254). In addition, it is suggested that longer 
telomeres may prevent telomere attrition by suppressing reac‑
tive oxygen species or phosphorylated AKT levels (252).

Notably, longer telomeres, in combination with hepa‑
titis B virus (HBV) or hepatitis C virus (HCV) infections, 
increased the risk of developing HCC (256,257). However, 
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Cheng et al (257) detected a U‑shaped association between 
telomere length and the risk of developing HCC. At the same 
time, Zeng et al (256) indicated that 5 years prior to diagnosis, 
shorter telomeres were associated with an increased risk of the 
disease. On the contrary, longer telomere length detected 10 
years prior to diagnosis contributed to the risk of developing 
HCC (256). Finally, Feng et al (258) indicated that peripheral 
blood samples could be used to measure telomere length in 
HBV or HCV‑infected patients, but not in non‑infected ones. 
The viral genome may affect telomerase activity, thus affecting 
disease development and persistence (258).

12. Conclusions and future perspectives

Telomeres, chromosome‑end DNA‑protein structures, are 
known to progressively shorten over time in the majority of 
somatic cells.  These genome‑protecting structures are markers 
of aging. Notably, short telomeres have been associated with an 
older age and chronic diseases. An association between cancer 
and telomere length has been suggested with related uncertain‑
ties due to objective difficulties in designing studies of sufficient 
robustness. A disparity appears to emerge when evaluating risk 
associations between cancer and telomere length. Even though 
shorter telomeres have been adopted as a marker of a poorer 
health status and an older biological age, longer telomeres due 
to increased growth potential are associated with acquiring 
cancer‑initiating somatic mutations (56). Indeed, the majority 
of retrospective studies report an increased risk of cancer in 
individuals carrying shorter telomeres (27,134,145,163,209) 
whereas prospective observational studies have detected a 
weak positive association between longer leukocyte telomeres 
with the risk of cancer (51,88,123,136,245,256). This asso‑
ciation pattern may be partly accounted for by the varying 
ability of somatic cells to grow; thus, telomere length could 
exert discrete potential effects. Moreover, a U‑shaped curve 
of telomere length effects has been detected in various types 
of cancer (150,156,216,237,256). This suggests that the asso‑
ciation with cancer risk would vary among telomere length 
distribution and would not be linear. The pivotal clinical 
relevance of this knowledge stands on the fact that oncologists 
who treat these malignancies may seek for another tool in their 
effort to tackle cancer. Moreover, pathologists may use telo‑
meres, telomerase, hTERT or any of the implicated proteins 
as potential biomarkers for cancer prognosis (259,260). 
Furthermore, the cancer‑type‑specific association is influ‑
enced by co‑factors, e.g., virus load, inflammatory status, or 
SNP‑disease association. Moreover, the effect of telomere 
length may differ, depending on the disease stage, sex, or 
even racial belonging. This is critical, particularly for treat‑
ment strategies targeting telomerase, since tumors that present 
long telomeres may be affected, but others that exhibit short 
telomeres may not have the same response (261). Therefore, 
telomere length data may provide valuable input on cancer 
development and progression for certain types of cancers; 
however, further studies are required for more generalized 
conclusions. 
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