
Abstract. In recent years, RNA interference (RNAi) has
emerged as an effective method to target specific genes for
silencing. Several groups are actively exploring the use of small
interfering RNA (siRNA) for therapeutic applications to treat
cancer. Our previous studies have demonstrated the inhibition
of various proteases, including serine proteases, cysteine
proteases and matrix metalloproteases, via RNA interference
(RNAi) in gliomas. Similar to gliomas, malignant meningiomas
also exhibit elevated protease levels in comparison to normal
brain and benign meningiomas. Here, we used siRNA to
simultaneously target urokinase plasminogen activator (uPA)
and its receptor, uPAR. A human CMV promoter-driven
mammalian expression vector (pU2) was used to produce
hairpin double-stranded RNA (hp RNA) to target uPA and
uPAR. As determined by Western blotting and fibrin zymo-
graphy, pU2 effectively inhibited uPAR protein levels and
uPA enzymatic activity in meningioma cells (IOMM-Lee).
In vitro studies (Matrigel invasion and spheroid migration)

revealed reduced meningioma cell invasion and migration.
Intratumoral injections of the plasmid vector expressing siRNA
for uPA and uPAR resulted in regression of pre-established,
subcutaneous tumors in mice. In addition, in vivo studies
of mice injected with pU2-transfected meningioma cells
revealed inhibition of intracranial tumor formation. These
findings suggest that siRNA can be used as a potent and specific
therapeutic tool for the treatment of malignant meningiomas
in humans.

Introduction

RNA interference (RNAi) is a genetic interference phenomenon
in which double-stranded RNA (dsRNA) are processed to
siRNA using Dicer, a cellular ribonuclease III, which generates
duplexes of approximately 21 nucleotides with 3 overhangs
(1,2). These siRNA are then incorporated into a silencing
complex called RISC. When introduced into cells, dsRNA
lead to the degradation of mRNA, which contain regions
homologous to the triggering dsRNA. RNAi was initially
seen in C. elegans (3,4) and Drosophila (5,6) as a protective
mechanism against invasion of foreign genes. Elbashir et al
(1) first reported that small interfering RNA (siRNA) (19-23
nucleotides) can effectively induce RNAi in mammalian
cells. siRNA cause gene silencing at the post-transcriptional
level in a sequence-specific manner without any apparent cell
toxicity (7). Furthermore, compared to antisense oligonucleo-
tides, very few molecules of siRNA are needed for gene
silencing (8). For all of these reasons, RNAi is a novel, potent
alternative to other gene therapies. 

Meningiomas are primary brain tumors arising from the
meninges (linings of brain) and they constitute approximately
20% of brain tumors. They range from benign, which are
more common, to atypical and anaplastic (malignant) (9,10).
Malignant meningiomas are highly infiltrative and invade
brain, dura-mater and bone. In general, the tumors cannot be
completely excised, even after radiotherapy. Currently, no
effective chemotherapy exists. As a consequence, meningiomas
present a therapeutic challenge.

Typical of many malignant tumor types, proteases play
a major role in the ability of meningioma cells to invade
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other tissues. Tumor cell invasion is a complex phenomenon
involving interactions between tumor cells, normal stromal
cells, and the extracellular matrix (ECM), as well as the
subsequent degradation of the ECM and tumor cell migration
(11). Invasive tumor cells are known to produce ECM-
degrading enzymes, such as the plasminogen activators (PAs),
which belong to the family of serine proteases. Plasminogen
activators convert plasminogen into plasmin and further
regulate a cascade of proteolytic events. The effect of plasmin
appears to be either the direct degradation of ECM com-
ponents (e.g. fibronectin, laminin and proteoglycans) or an
indirect effect via the activation of latent forms of matrix
metalloproteinases (MMPs), which hydrolyze plasmin-
resistant collagenous elements. Our previous studies of human
meningioma samples have established the increased expression
of uPA, MMP-2 and MMP-9 (12).

Urokinase plasminogen activator (uPA) is a 55-kDa serine
protease implicated in tumor cell invasion, angiogenesis and
progression (13). uPA is secreted as an inactive precursor
and can be activated into its active, single chain enzyme form
by a variety of proteases, including plasmin, cathepsins B & L,
and trypsin-like enzymes (14). Active uPA binds to its high
affinity receptor, uPAR (CD-87), a 45- to 55-kDa cysteine-
rich glycoprotein, which is covalently attached to the plasma
membrane via glycosyl phosphatidylinositol (15). uPA, when
bound to its specific cell surface receptor uPAR, efficiently
converts plasminogen to the active serine protease plasmin
(16), which then initiates the destruction of various ECM
proteins. Through interactions between uPAR and integrins,
as well as ECM components such as vitronectin, uPA aids in
cell migration and adhesion (17,18). Thus, with or without
involving the proteolytic activity of uPA, the uPA-uPAR
system plays an important role in a variety of physiological
and pathophysiological processes requiring cell movement,
including wound healing, angiogenesis and tumor metastasis
(13,19,20). Previous findings suggest the involvement of the
uPA-uPAR system in chemotaxis (21,22) and in the activation
of intracellular signaling pathways leading to enhanced cell
proliferation, adhesion and migration (23-25). Thus, the
uPA-uPAR system participates in the regulation of a wide
range of cellular activities (26,27).

It is well documented that high levels of uPA and uPAR
are associated with poor prognosis in many cancers, and that
mice deficient in uPA have smaller, less hemorrhagic tumors
(28). Considerable evidence of the elevated levels of uPA
and uPAR in tumor tissue demonstrates their fundamental role
in tumor invasion and metastasis and provides a rationale for
novel therapeutic strategies. Several technical methods affecting
tumor growth and metastasis, such as antisense oligodeoxy-
nucleotides, adenoviral vectors, monoclonal antibodies, toxins,
natural and synthetic inhibitors, linear and cyclic uPA-derived
peptides etc. targeting the uPA-uPAR system in cancer patients
at the gene and protein level, have been explored (29). 

We have previously reported elevated levels of uPA in
human meningioma tissue samples (12). We have also shown
that antisense uPA stable clones (30) and adenovirus-mediated
transduction (Ad-uPAR) of the uPAR antisense gene construct
(31) resulted in less invasion and no tumor formation in nude
mice. Similarly, intracranial injection of glioma cells with the
Ad-uPAR-uPA antisense bicistronic construct inhibited

invasiveness and tumorigenicity (32). RNAi for MMP-9 and
cathepsin B (33) and RNAi for cathepsin-B and uPAR (34)
reduced glioma cell invasion and angiogenesis both in vitro
and in vivo. We report here that RNAi for uPA and uPAR
reduced meningioma cell invasion and caused tumor regression
in nude mice. Hence, siRNA may have therapeutic importance
in the treatment of human meningiomas.

Materials and methods

Construction of hpRNA expressing plasmid. A pcDNA 3
plasmid with a human cytomegalovirus (CMV) promoter was
used to construct the hpRNA-expressing vector. The following
sequences were used: for uPA, agcttGagagccctgctggcgcgccat
atataatggcgcgccagcagggctctca from 346 to 367 bases, and for
uPAR, tccTacagcagtggagagcgattatatataataatcgctctccactgctg
tag from 77 to 98 bases. Inverted repeat sequences were
synthesized for both uPA and uPAR (HindIII sites at the 5'
and 3' ends).

Cell culture and transfection conditions. An established human
meningioma cell line, IOMM-Lee (kindly provided by Dr Ian
McCutcheon, U.T. M.D. Anderson Cancer Center, Houston,
TX), was used in the current study. The cells were maintained
in Dulbecco's modified Eagle's medium (Mediatech, Herndon,
VA) supplemented with 10% fetal bovine serum, 100 μg/ml
streptomycin and 100 U/ml penicillin (Invitrogen, Carlsbad,
CA) in a humidified atmosphere containing 5% CO2 at 37˚C.
IOMM cells were transfected with EV, SV, pU, pUR or pU2
using the Lipofectamine reagent (Invitrogen, Grand Island,
NY) as per the manufacturer's instructions. After transfection,
cells were incubated in serum-containing medium for 48 h.

Immunoblot analysis. After transfection of IOMM-Lee cells
with mock, EV, SV, pU, pUR or pU2 for 48 h, cells were
collected and total cell lysates were prepared by incubating
the cells in RIPA buffer (150 mM NaCl, 1% Triton X-100,
1% sodium deoxycholate, 0.1% SDS, 20 mM EDTA and
50 mM Tris, pH 7.4) for 1 h at 41˚C. In total, 30 mg of protein
from each sample was subjected to 12% SDS-Tris-glycine
gel electrophoresis and transferred onto a nitrocellulose
membrane (Bio-Rad Labs, CA). The membrane was blocked
with 5% non-fat dry milk, 0.1% Tween-20 in PBS for 1 h.
The primary antibodies employed were directed against
uPAR (R&D Systems, Minneapolis, MN) and uPA (Biomeda,
Foster City, CA) followed by secondary antibodies (HRP-
conjugated goat anti-mouse IgG+IgM, Biomeda). The
membranes were developed according to the manufacturer's
protocol (Amersham, Arlington Heights, IL). For loading
control, the membranes were stripped and probed with mono-
clonal antibodies for ß-actin.

Zymography. IOMM-Lee cells were transfected with mock,
EV, SV, pU, pUR and pU2. Conditioned media were collected
and zymography performed as described previously (30,35).
The samples were subjected to SDS-PAGE with 10% gels
that contained fibrinogen and plasminogen. The gels were
then washed twice with 2.5% Triton X-100 for 30 min each,
incubated with 0.1 M glycine buffer (pH 7.5) at 37˚C
overnight, stained with amido black and then destained.
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Matrigel invasion assay. In vitro invasion of meningioma
cells was measured by the invasion of cells through Matrigel-
coated (Collaborative Research Inc., Boston, MA) transwell
inserts (Costar, Cambridge, MA) according to a previously
described procedure (36). Briefly, 12-well transwell inserts
with an 8-mm pore size were coated with a final concentration
of 1 mg/ml of Matrigel in cold serum-free DMEM. Cells
were trypsinized and 200 ml of cell suspension (1x106 cells/
ml) from each treatment were added to triplicate wells. After
a 24-h incubation period, the cells that passed through the
filter into the lower wells were quantitated by counting random
fields and expressed as a percentage of the sum of the cells in
the upper and lower wells (37).

Spheroid migration. A suspension of 5x104 cells in 100 μl of
Dulbecco's modified Eagle's medium was seeded on 96-well
ultra low attachment culture plates (Costar) and continuously
shaken at 40-60 r.p.m for 5 days until spheroids formed.
Spheroids were then transfected with mock, EV, SV, pU,
pUR or pU2 and cultured for 48 h. Seveny-two hours after
transfection, spheroids were placed in each well of vitronectin-
coated (50 mg/ml) 8-well chamber slides (Lab-Tek) and
cultured with 200 ml of serum-free medium. Spheroids were
incubated at 37˚C for 24 h, after which the spheroids were
fixed and stained with Hema 3 and photographed. Migration
of cells from spheroids to monolayers was measured using a
microscope calibrated with a stage and ocular micrometer
and used as an index of cell migration.

Three-dimensional spheroid invasion model. Multicellular
spheroids were cultured in 96-well low attachment plates
(Costar) prepared in DMEM. Briefly, 5x104 cells were
suspended in 100 ml of medium, seeded onto 96-well ultra
low attachment plates and continuously shaken at 40-60 rpm
for 5 days. The spheroids were then transfected and stained

with the fluorescent dye, Dil. Similarly, 18-day-old fetal rat
brain cells were seeded and cultured for 21 days and stained
with the fluorescent dye, DiO. The tumor spheroids and fetal
rat brain aggregates were then co-cultured and, at various
intervals, serial 1-mm optical sections were obtained with the
aid of a confocal laser-scanning microscope. DiI and DiO
fluorescence (Molecular Probes Inc., Eugene, OR) were
detected by an argon laser at 488 nm with a band pass filter
at 520-560 nm (DiI) and a helium/neon laser at 543 nm with
a long pass filter at 590 nm (DiO). As described previously,
the remaining volumes of rat brain aggregates and tumor
spheroids were quantitated at 24, 48 and 72 h (36). 

Subcutaneous tumors. IOMM-Lee cells (5x106) were
trypsinized and resuspended in 100 μl of serum-free DMEM
and injected into the right flank of an athymic female nude
mouse. When the tumors reached a size of 4-5 mm (usually
in 7-10 days), mock-, EV-, SV-, pU-, pUR- or pU2-transfected
cells were injected intratumorally at a dose of 60 μg/mouse
on alternate days for a total of five doses. The mice were
observed for 4 weeks, after which the tumors were excised
and photographed. Tumor volumes were quantified and
graphically represented.

Intracerebral injection. To examine the in vivo effects of RNAi
in meningiomas, we transfected IOMM-Lee cells with mock,
EV/SV, pU, pUR or pU2. Cells (0.5x106) were trypsinized,
resuspended in serum-free medium, and injected into the brains
of athymic female nude mice. Thirty mice were used with five
per treatment group. The mice were anesthetized with an i.p.
injection consisting of 50 mg/kg ketamine and 25 mg/kg
xylazine and injected intracerebrally with a 10-ml aliquot
(0.5x106) of the specified cell type with the aid of a stereotactic
frame as described previously (36). After 4 weeks, the mice
were sacrificed via intracardiac perfusion, first with PBS
and then with formaldehyde. The brains were removed and
embedded in paraffin as per standard protocol. Sections were
prepared and stained with H&E. Serial sections of the paraffin
blocks were taken and approximate tumor volume measured
as a product of the tumor area and the depth of the tumor.

Results

pU2 transfection downregulates uPAR protein levels and
decreases uPA activity in IOMM-Lee cells. Tumor cell invasion
is a characteristic feature of most malignant tumors. uPA and
uPAR are serine proteases which play important roles in
ECM degradation and, as such, aid in tumor cell invasion.
We targeted these genes using a bicistronic vector expressing
siRNA for uPAR (77-98 bases of human uPAR mRNA) and
uPA (346-367 bases of human uPA mRNA) under the
control of a human cytomegalovirus (CMV) promoter. As
determined by Western blotting, transfection of IOMM-Lee
cells with pUR and pU2 inhibited uPAR protein levels as
compared to mock- and empty/scrambled vector-transfected
controls (Fig. 1A). Immunoblotting with conditioned medium
from pU- and pU2-transfected IOMM-Lee cells revealed a
decrease in uPA protein levels (Fig. 1A). ß-actin levels
determined that equal quantities of protein were loaded in
each lane. Fibrin zymography results revealed a reduction in
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Figure 1. RNA interference decreased uPAR and uPA levels in IOMM-Lee
cells. Total cell lysates and conditioned media collected from cells were
transfected with mock, EV/SV, pUR, pU or pU2. Protein (10 μg) was
separated on 12% SDS-PAGE and immunoblotted with anti-uPAR anti-
body (A). Conditioned media (50 μg) was separated on 12% SDS-PAGE
and immunoblotted with anti-uPA antibody (A). ß-actin antibody was
simultaneously immunoprobed for loading control. Fibrin zymography was
performed as described in Materials and methods with 1 μg of conditioned
media to detect uPA activity (B).
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uPA activity in pU- and pU2-transfected cells as compared to
mock-, EV/SV- and pUR-transfected cells (Fig. 1B). The
decreases in uPAR expression and uPA activity are more
pronounced in pU2-transfected cells, indicating that the
bicistronic construct is more effective than either of the single
constructs.

pU2 transfection decreases invasion of IOMM-Lee cells.
To study the effect of siRNA on the invasion capacity of
meningiomas, 1x106 IOMM-Lee cells transfected with mock,
EV/SV, pU, pUR or pU2 were seeded in the upper chambers
of Matrigel-coated transwells. Twenty-four hours later, the
cells which had migrated to the lower chambers were stained.
Invasion of pU-, pUR- and pU2-transfected cells was low
compared to mock- and EV/SV-transfected cells (Fig. 2A).
Quantitative determination of invasion showed that only
0.3% of pU2-transfected cells invaded to the lower side of
the membrane, 23% of pU-transfected, and 69% of pUR-
transfected cells (Fig. 2B). As determined by the Matrigel
invasion assay, inhibition of meningioma cell invasion was
much higher in cells transfected with the bicistronic construct
than either of the single constructs.

pU2 transfection of IOMM-Lee spheroids decreases migration.
Active cellular migration is essential for tumor invasion and
metastasis. A number of factors, such as growth factors and
cytokines, modulate migration. We performed a spheroid
migration assay to study whether siRNA-mediated inhibition
of uPA and uPAR can influence migration of meningioma

cells. Multicellular meningioma spheroids grown in 96-well
low attachment plates (100-200 μm in size) were transfected
with mock, EV/SV, pU, pUR, or pU2. Seventy-two hours
later, spheroids were transferred to vitronectin-coated 8-well
chamber slides and allowed to migrate for 48 h. The migrating
capacity of the mock- and EV/SV-transfected spheroids was
significantly higher than the spheroids transfected with
pU, pUR and pU2 (Fig. 3A). Quantitative analysis (Fig 3B)
showed that the control mock- and EV/SV-transfected
spheroids migrated 2872±30 μM and 3200±25 μM. pUR-
transfected spheroids migrated more than pU-transfected
spheroids (872±20 μM and 780±35 μM, respectively), and
pU2-transfected spheroids migrated the least (20±5 μM).

pU2 transfection of IOMM-Lee spheroids decreases invasion.
To study the siRNA effect of uPA and uPAR on IOMM-Lee
cell invasion in a three dimensional system, meningioma
spheroids stained with fluorescent dye DiI and fetal rat brain
aggregates stained with fluorescent dye DiO were co-cultured.
Staining of the cells with these dyes allows better visualization
and characterization of the invasive pattern than other in vitro
invasion assays. The advantage of this model is that tumor
cells grown in three-dimensional culture closely resemble
those of in vivo tumors. Tumor spheroids transfected with
mock, EV/SV and pU2 were confronted with rat fetal brain
aggregates in a 96-well agar-coated plate and observed at 24-,
48- and 72-h intervals. Co-culture assays revealed that tumor
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Figure 2. Matrigel invasion of IOMM-Lee cells transfected with mock,
EV/SV, pU, pUR and pU2. 1x106 transfected cells were seeded on Matrigel-
coated 12-well transwell inserts (8-μm pores) and allowed to invade. After
24 h, cells that had passed through the filter into the lower wells were fixed
and stained with Hema 3 and photographed (A). Percentage of invasion was
quantitated as described in Materials and methods (B).

Figure 3. Spheroid migration by IOMM-Lee cells transfected with mock,
EV/SV, pU, pUR and pU2. Spheroids of 100-200 microns were prepared by
seeding 5x104 cells on 96-well low attachment plates by continuous shaking
at 60 rpm. The spheroids were transfected with mock, EV/SV, pU, pUR or
pU2. Seventy-two hours later, the spheroids were placed on vitronectin-coated
8-well chamber slides and allowed to migrate. After 48 h, the spheroids
were then fixed and stained by Hema 3 (A). Spheroid migration was quantified
and graphically represented (B).
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spheroids treated with mock and EV/SV progressively invaded
rat brain aggregates, causing almost complete invasion. In
contrast, siRNA-transfected spheroids failed to invade rat
brain aggregates (Fig. 4A). Quantative determination of the
percent of FRBA remaining was determined at 24, 48 and
72 h after confrontation (Fig. 4B).

pU2 treatment causes regression of subcutaneous tumors. To
study whether pU2 can inhibit tumor growth, we examined

the ability of siRNA to inhibit pre-established tumors in nude
mice. Subcutaneous tumors were developed by injecting
5x106 IOMM-Lee cells into the right flank of female nude
mice. When the tumor reached 4-5 mm in size, the tumors
were injected every second day with pU, pUR or pU2 for a
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Figure 4. Spheroid invasion in IOMM-Lee cells transfected with mock, EV/SV,
pU, pUR and pU2. Spheroids of 100-200 microns prepared as described in
Materials and methods were transfected with mock, EV/SV, pU, pUR and pU2
and stained with DiL (red fluorescence). These spheroids were then co-cultured
with rat brain aggregates stained with DiO (green fluorescence) obtained from
18-day-old fetal rat brains. Co-cultures were scanned with a laser-scanning
microscope at 24, 48 and 72 h (A). Percentage of FRBA remaining after 24, 48
and 72 h was quantified and graphically represented (B).

Figure 5. Regression of subcutaneous tumors by RNAi. 5x106 IOMM-Lee cells were injected subcutaneously into the right flanks of nude mice. When the
tumors reached 4-5 mm in size, pU, pUR or pU2 was injected intratumorally on alternate days (A). A total of five injections were given. Tumors were excised
after 4 weeks and photographed (B) and tumor volume was determined (C).

Figure 6. Suppression of intracranial tumor growth by RNAi. 0.5x106

IOMM-Lee parental cells or cells transfected with EV/SV, pU, pUR or pU2
were injected intracranially into nude mice. After 4 weeks, the mice were
sacrificed, the brains removed and fixed in formaldehyde, paraffin-embedded
and sectioned followed by H&E staining (A). The stained sections were
viewed under a microscope and the tumor area determined in serial sections
to approximately determine the intracranial tumor volume (B).
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total of five doses (150 μg of plasmid per dose in 100 μl of
sterile PBS). Mice were observed for 4 weeks, after which
the tumors were excised. Fig. 5A and B shows regression
of subcutaneous tumors injected with siRNA as compared
to mock- and EV/SV-treated tumors. These results also
demonstrate that inhibition of established tumor growth was
much higher in mice treated with the bicistronic construct as
compared to either of the single constructs. Tumor volume
quantification (Fig. 5C) indicated a regression of tumor size
in pU2-injected tumors.

Intracranial injections of pU2-transfected IOMM-Lee cells
suppress tumor growth in mice. To confirm in vitro studies,
we used an intracranial tumor model to assess the potential
effects of siRNA-mediated suppression of invasiveness in
nude mice. Half a million IOMM-Lee cells transfected with
pU, pUR, pU2, and mock and EV/SV were injected intra-
cranially into female athymic nude mice. Mice were sacrificed
after 4 weeks. The brain sections of mice analyzed using H&E
showed large spread tumor growth in mice injected with
mock and EV/SV. In contrast, mice injected with siRNA-
transfected cells showed minimal or no tumor growth, thus
proving the effectiveness of RNAi in inhibiting meningioma
invasion (Fig. 6A). Semi-quantification of serial tumor sections
was performed and shows the regression of intra-cranial
tumors in pU2-treated mice (Fig. 6B).

Discussion

RNAi has opened doors not only as a tool for gene therapy,
but also for understanding the basic mechanisms underlying
cellular function. RNAi is currently being exploited for its
therapeutic potential in cancer, genetic diseases and viral
diseases (38,39). Studies have demonstrated that dsRNA
shorter than 30 nucleotides can be used for triggering
RNAi without activating the mammalian interferon system
(40). However, difficulties involving the efficient delivery
of RNAi into mammalian cells (41) and the off-target effects
(42) persist. Nonetheless, due to the great success of synthetic
siRNA in mammalian cell cultures and its function in vivo
(43), several laboratories are currently utilizing RNAi to target
cancer cells and tumor growth (44,45).

Although meningiomas are some of the most common
CNS tumors, they remain understudied in comparison to
gliomas. Most meningiomas are resectable with the exception
of meningiomas, which are malignant (3-5%) and atypical
(9,10). For these recurring tumors, radiotherapy is not
completely effective and no effective chemo-, hormonal or
immunological therapies exist. For these reasons, we targeted
these tumors with RNAi in this study. As the results demon-
strate, we were able to effectively downregulate uPA and
uPAR, and thus inhibit tumor growth, invasion and migration.

The characteristic features of any malignant tumor are
tumor cell invasion and migration. Cell invasion is due to
degradation of the ECM by proteases. These proteases are
involved in tumor growth and invasion at both primary and
metastatic sites (46), particularly at the invading foci (47).
Our previous studies have demonstrated the roles of uPA
and uPAR in malignant tumors whose interaction is crucial
to invasion. Studies have also shown that using SNB19

antisense clones for uPA (30), uPAR (35,36), Ad-uPAR (31),
and Ad-uPA-uPAR (32) as well as RNAi for cathepsin B and
uPAR (34) decreased tumor growth and invasion in gliomas.

In this study, as assessed by Western blotting and fibrin
zymography, transient transfection of IOMM-Lee cells with
pU2 decreased endogenous uPAR levels and uPA activity. In
addition, the results of our migration studies showed little or
no migration of cells from spheroids transfected with pU2.
However, the migration observed in pU- and pUR-transfected
spheroids suggests that both uPA and uPAR are required for
tumor cells to migrate.

Previous studies indicate that uPA participates in signal
transduction pathways involved in adhesion and motility,
independent of its proteolytic activity (29). uPAR is a glycosyl
phosphatidylinositol-linked protein involved in multiple
protein-protein interactions (48). uPA mediates cell migration
and adhesion through interactions between uPAR and
integrins as well as vitronectin (17,18). uPA has been shown
to promote physical association between uPAR and ·vß5
integrins, which is required for uPAR-directed cell migration
in breast carcinoma cell lines. uPA has also been shown to
promote cytoskeletal rearrangements as mediated by ·vß5
integrins (49). Planus et al (50) reported that uPA and uPAR
are involved in cellular migration. Our findings confirm that
downregulation of uPA and uPAR decreases cell migration,
possibly by cytoskeletal alterations.

The acquisition of invasiveness by tumor cells is important
for tumor progression. There are several reports indicating the
involvement of uPA and uPAR in tumor invasion. Disruption
of interactions between these two at the cell surface results
in blockage of activation of plasminogen and urokinase,
inhibiting the proteolytic cascade required for invasion (51).
uPA antibodies and inhibitors have been shown to inhibit
tumor cell invasion into the ECM, amniotic and chick chorio-
allantoic membranes (52-55). uPA antibodies also blocked
metastasis in Hep3 human carcinoma cells in chick embryos
and inhibited local invasiveness of subcutaneous tumors in
nude mice (56). Previous studies in mice lacking the uPA
gene showed retarded tumor development in a uPA-deficient
environment (57). Our previous studies showed that antisense
stable clones of uPA and uPAR were less invasive in in vitro
models (30,35,36), as were clones that stably expressed an
amino terminal fragment of uPA (ATF-uPA) (58).

In the present study, transfection with pU2 inhibited the
invasiveness of IOMM-Lee cells and spheroids in Matrigel
invasion and co-culture assays. In particular, downregulation
of uPA and uPAR by RNAi significantly inhibited invasion
of meningioma cells into surrounding ECM in Matrigel-
coated transwells and into fetal rat brain tissue. This lack of
invasion might be due to the inability of cells to anchor to the
ECM. Hence, our studies confirm the significance of uPA
and uPAR in the invasive behavior of meningioma cells.

Several studies have demonstrated that uPA antagonist
peptides inhibit primary tumor growth in syngeneic mice
(55). Kook et al (59) reported that antisense oligonucleotides
decreased tumor growth, invasion and metastasis by reducing
uPAR levels. Also, the downregulation of uPAR expression
using an antisense strategy produced a protracted period of
dormancy in human epidermoid cancer cells (60). The use of
selective inhibitors of uPA and small, synthetic, cyclic,
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competitive uPA antagonists derived from the binding site
of uPAR resulted in reduction of tumor burden (61-63).
Adenovirus-mediated downregulation of uPA and uPAR
has also been shown to inhibit intracranial tumor growth in
gliomas (32).

Our present study demonstrates regression of pre-
established subcutaneous tumors and suppression of intra-
cranial tumor growth in nude mice by pU2 when compared to
mock and EV/SV vectors. These findings correlate with results
from in vitro invasion studies and with studies demonstrating
complete suppression of pre-established intracranial tumors
by siRNA bicistronic constructs for cathepsin B & MMP-9
(33) and cathepsin B & uPAR (34) in gliomas.

In conclusion, the simultaneous downregulation of uPA
and uPAR using RNAi successfully reduced meningioma cell
invasion and migration in vitro and suppressed intracranial
growth in vivo. The high tumor regression ability of the bi-
cistronic construct compared to either of the single constructs
suggests that RNAi of the uPA-uPAR system is required for
effective therapy. These results indicate great potential for the
siRNA-mediated downregulation of uPA and uPAR in thera-
peutic applications for treatment of malignant meningiomas.
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