
Abstract. Trichostatin A (TSA), a hydroxamate-type inhibitor
of mammalian histone deacetylases, is emerging as one of a
potentially new class of anticancer agents. TSA is known to
act by promoting the acetylation of histones, leading to
uncoiling of chromatin and activation of a variety of genes
implicated in the regulation of cell survival, proliferation,
differentiation, and apoptosis. In addition, there is an increasing
appreciation of the fact that TSA may act through mechanisms
other than induction of histone acetylation. Accumulated
experimental data indicate that TSA activates phosphatidyl
inositol-3-kinase (PI3K)/AKT signaling. Using human ovarian
cancer cell line Caov3 cells, we observed that TSA induced
cell death in a time- and dose-dependent manner and also
inhibited cell migration. TSA transiently activated EGFR
tyrosine phosphorylation and AKT activation in a time- and
dose-dependent manner, which had been inhibited by EGFR
inhibitor PD153035 and PI3 kinase inhibitor LY294002. We
also observed that TSA transiently induced survivin expression
that had been inhibited by PD153035 and LY294002,
suggesting that TSA-induced survivin expression is mediated

by EGFR/PI3 kinase pathway. Combination of EGFR inhibitor
153035 or PI3 kinase inhibitor LY294002 with TSA enhanced
TSA-induced cell death and TSA reduction of cell migration.
Collectively, our data demonstrate that TSA transiently
activated EGFR/PI3K/AKT cell survival pathway, leading to
expression of survivin. Inhibition of this pathway enhanced
TSA-induced cell death and inhibited cell migration. Our data
suggest that combination of EGFR/PI3K/AKT cell survival
pathway inhibitors with TSA be a better approach to ovarian
cancer treatment. 

Introduction

Ovarian cancer is the fifth leading cause of cancer deaths
among women in the United States with an incidence of about
23,000 new cases and 14,000 deaths annually (1,2). The vast
majority of these cancers (85%) arise from specialized epi-
thelial cells that cover the surface of the ovary. Most patients
with ovarian cancer respond to first-line chemotherapy, but
many relapse within 18-22 months. The development of
efficacious salvage therapies that increase overall survival
while maintaining quality of life remains a great challenge
for the treatment of this disease (1,3,4).

Histone modification through acetylation and deacetylation
is a key process in transcription, DNA replication, and chromo-
some segregation (5). The opposing actions of histone acetyl-
transferases (HATs) and histone deacetylases (HDACs) allow
gene expression to be exquisitely regulated through chromatin
remodeling. Aberrant transcription due to altered expression
or mutation of genes that encode HATs, HDACs or their
binding partners, is a key event in the onset and progression
of cancer. Histone deacetylase inhibitors (HDAIs) induce
accumulation of highly acetylated histones by inhibiting the
activity of histone deacetylase, and inhibit cell proliferation,
induce differentiation, and promote apoptosis (6,7). Tricho-
statin A (TSA), a hydroxamate-type inhibitor of mammalian
histone deacetylases, is emerging as one of a potentially
important new class of anticancer agents (8,9). TSA acts by
promoting acetylation of histones, leading in turn to uncoiling
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of chromatin and activation of a variety of genes implicated in
the regulation of cell survival, proliferation, differentiation,
and apoptosis. It has been demonstrated that TSA induces
growth arrest and apoptosis and suppresses the invasion of
cancer cells (10,11). In addition, there is an increasing
appreciation of the fact that TSA may act through mechanisms
other than induction of histone acetylation (12). Accumulated
experimental data indicate that TSA activates phosphatidyl
inositol-3-kinase (PI3K)/AKT signaling (13). Inhibition of
protein kinase C abrogates TSA mediated up-regulation of
nuclear factor κ transcriptional activity and p21 expression
that is associated with profound induction of apoptosis in
lung or esophageal cancer cells (14).

Receptor tyrosine kinase of the EGFR family regulates
essential cellular functions, including proliferation, survival,
migration, and differentiation, and appears to play a central
role in the etiology and progression of solid tumors (15,16).
Published data demonstrates that the effects of EGFR signaling
on cell proliferation and survival are mediated by PI3K-AKT
pathways (17,18). Since EGFR is frequently overexpressed in
breast, lung, colon, ovarian, and brain tumors, EGFR signaling
has become an important target in anticancer drug development
due to its ability to suppress apoptosis and to control tumor cell
proliferation and migration (19,20). Recently, we found that the
inhibition of EGFR cell survival pathway enhanced betulinic
acid-induced cell death in human melanoma cells (21). 

We undertook the present study to investigate whether TSA
transactivates EGFR/AKT pathway and up-regulates survivin
expression in human ovarian cancer cells, and whether the
inhibition of EGFR/AKT pathway could potentiate TSA's
effect on ovarian cancer cell death. The data presented here
demonstrate that TSA transiently activated EGFR/AKT cell
survival pathway, leading to expression of survivin, and the
inhibition of EGFR/AKT pathway sensitizes human ovarian
cancer cells to TSA treatment. This suggests that a com-
bination of EGFR inhibitor and TSA could provide better
clinical treatment of human ovarian cancer.

Materials and methods

Cell culture. The human ovarian epithelial cancer cell line
(Caov3 cells) was from University of Michigan Cancer Center.
Human Caov3 cells were maintained in Dulbecco's modified
Eagle's medium (DMEM) (Sigma) supplemented with 10%
fetal bovine serum (Hyclone), penicillin/streptomycin (1:100,
Sigma) and 4 mM L-glutamine, in a humid atmosphere
incubator with 5% CO2 at 37˚C. Cells were reseeded twice a
week at a density of 0.2x106 cells/ml with fresh complete
culture medium. Unless otherwise indicated, cultures were
grown to 70-80% confluence and then serum-starved overnight
in DMEM medium prior to treatment. When inhibitors were
used, cells were pretreated for 2 h prior to stimulation with
the indicated concentration of inhibitor, which remained in
the medium for the remainder of the experiment. 

Reagents. TSA was from EMD Biosciences, Fibronectin and
anti-ß-actin were from Sigma. Anti-phospho-EGFR (Tyr1068),
phospho-AKT (Ser473), and AKT antibody were from Cell
Signaling Technology (Beverly, MA). Anti-EGFR (1005), goat
anti-rabbit IgG-HRP, and goat anti-mouse IgG-HRP antibody

were from Santa Cruz Biotechnology (Santa Cruz, CA). PD
153035, and LY294002 were from Calbiochem. Polybeads
were from Polyscience. 

Treatment. TSA solution was diluted in DMEM medium
without serum to a final concentration of 100 ng/ml. In the
time-dependent experiments, Caov3 cells were treated with
100 ng/ml of TSA, and harvested at 5, 15, and 30 min, 1, 2,
4, 8, and 24 h after TSA treatment. In the dose-dependent
experiments, Caov3 cells were treated with 10, 100, and
1000 ng/ml of TSA for 0.5, 1, and 4 h, respectively. In
experiments for exploration of cell proliferation and survival,
and cell migration, Caov3 cells were treated with 10, 100,
and 1000 ng/ml of TSA for 24 h, or with 100 ng/ml of TSA
in the presence and absence of EGFR (PD153035, 20 μM)
and PI3K/AKT (LY294002, 50 μM) inhibitors for 24 and
48 h. Cell densities and morphologies were photographed post
treatment.

Western blot analysis. Cells with and without treatment were
washed with cold phosphate-buffered saline (PBS: 50 mM
phosphate, pH 7.4, 100 mM NaCl, and 10 mM KCl) and
harvested by scraping into 0.2 ml of RIPA buffer containing
50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1% NP40, 1 mM
EDTA, 0.25% sodium deoxycholate, 1 mM NaF, 10 μM
Na3VO4, 1 mM phenylmethylsulfonyl fluoride, and protease
inhibitor cocktail (10 μg/ml leupeptin, 10 μg/ml aprotinin,
and 1 μM pepstatin). Cell lysates were incubated on ice for
30 min. After centrifugation at 14,000 rpm for 10 min at 4˚C,
the protein concentration was determined using a Bio-Rad
protein assay (Bio-Rad, Hercules, CA). Proteins (50 μg) were
denatured in 2X SDS-PAGE sample buffer for 5 min at 95˚C.
The proteins were separated by 12%, 10% or 7.5% SDS-PAGE
and electro-transferred to Immobilon-P membrane (Millipore,
Bedford, MA) for 2 h at 4˚C. Non-specific binding was blocked
with 10% dry milk in TBST (20 mM Tris-HCl, pH 7.4,
137 mM NaCl, 0.01% Tween-20) for 1 h at room temperature.
With constant shaking, the membranes were incubated in
primary antibodies in dilution buffer (2% BSA in TBST)
overnight at 4˚C. After washing with TBST three times, the
membranes were incubated in secondary antibodies at room
temperature for 1 h with constant shaking. The expression of
targeted proteins was detected using an ECL kit (Amersham
Biosciences) following the manufacturer's instructions and
visualized by autoradiography with Hyperfilm.

Phagokinetic track motility assay. The 12-well plates were
placed by coating medium (20 μg/ml of fibronectin in PBS),
and stored for at least 2 h at 37˚C. After removing the coating
medium by gentle suction with a Pasteur pipette, the wells were
washed once with PBS and 2.4 ml of microsphere suspension
(86 μl of stock microbeads in 30 ml PBS) was added per well.
Then the plates were centrifuged at 1200 rpm at 4˚C for 20 min
and carefully transferred to an incubator for at least 1 h at
37˚C. The medium (1.8 ml) was removed from each well and
1500 freshly trypsinized cells in 2 ml assay-medium (DMEM
supplemented with a 0.05% fetal bovine serum) were seeded
per well. Cells with or without treatments were cultured,
and cell migration was photographed at 24 h and 48 h post
treatment.
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Results

Inhibition of cell proliferation and survival in human Caov3
cells by TSA. It has been shown that HDACIs inhibit pro-
liferation, stimulate apoptosis, and induce cell cycle arrest
in malignant cells (6,7,22). To verify whether TSA inhibits
cell proliferation and survival in human ovarian cancer, we
treated Caov3 cells with TSA. Cells were cultured in 12-well
plates, and treated with TSA for various times and with various
concentrations. Microscopic data indicated that TSA inhibited
Caov3 cell proliferation and survival in a time-dependent
manner. At the concentration of 100 ng/ml, only 60% of cells
had survived 24 h after treatment and 45% of cells had survived
48 h after treatment (Fig. 1A). The effect of TSA on cell death
was dose dependent (Fig. 1B).

Inhibition of cell migration in human Caov3 cells by TSA.
HDACIs are known to exert anti-metastatic activity in vitro

and in vivo (23-25). To investigate whether TSA inhibits cell
migration in human ovarian cells in culture, we used phago-
kinetic motility assay as previously reported (21,26). Cells
were placed on fibronectin and microbeads-coated plates
and treated with TSA for various times and with various
concentrations. Cell migration was monitored by microscope.
The results showed that TSA inhibited Caov3 cell migration
in a time and dose-dependent manner (Fig. 2).

Transactivation of EGFR in human Caov3 cells by TSA.
Chemotherapeutic regimens are ultimately unsuccessful due
to intrinsic or acquired drug resistance in ovarian cancer (27).
Since overexpression and/or activation of EGFR has been
correlated with tumor resistance to cytotoxic agents (28),
EGFR might be a novel target for enhancing the efficacy of
HDACIs in cancer therapy. To investigate whether TSA trans-
activates EGFR in human ovarian cancer cells, Caov3 cells
were deprived of serum overnight and exposed to 100 ng/ml
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Figure 1. TSA inhibited cell proliferation and survival in human Caov3 cells. Cells were seeded in 12-well plates and treated with 100 ng/ml of TSA. Cell
densities and morphologies were photographed at 24 and 48 h post treatment (A). Cells were treated with 10, 100, and 1000 ng/ml of TSA. Cell densities and
morphologies were photographed at 24 h post treatment (B). The quantitative results are shown as a histogram. Each bar is the mean ± SD from six
independent microscopic fields of a representative experiment.
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of TSA and harvested at 5, 15, 30, 60, and 120 min post
treatment. Western blot analysis using antibody recognizing
phospho-EGFR indicated that TSA induced EGFR phos-
phorylation in a time-dependent manner. The phosphorylation
of EGFR induced by TSA treatment started at 5 min post
treatment, and the activity peaked at 30 min and then returned
to basal level within 2 h (Fig. 3A). As shown (Fig. 3B), the
phosphorylation of EGFR was maximum at a concentration
of 100 ng/ml at 30 min after TSA treatment. Furthermore,
pretreatment of Caov3 cells with EGFR inhibitor PD 153035
(20 μM) significantly inhibited TSA-induced EGFR expression
(Fig. 3C).

Inhibition of AKT activation induced by TSA in human Caov3
cells. Previous data indicated that TSA activates phosphatidyl
inositol-3-kinase (PI3K)/AKT signaling in tumor cells (13). To

investigate whether TSA induces AKT activation in human
Caov3 cells, we treated cells with TSA at various concen-
trations and at various time-points. Western blot analysis
indicated that 100 ng/ml of TSA transiently induced AKT
activation, starting at 5 min post treatment and peaking at
approximately 1 h (Fig. 4A). As shown in Fig. 4B, the activ-
ation of AKT was maximized at a concentration of 1000 ng/ml
at 1 h after TSA treatment. EGFR signaling operates via
activation of the PI3K-AKT pathways (29). In order to explore
whether TSA-induced AKT signaling is mediated by EGFR
activation, we used EGFR inhibitor PD153035 and PI3K/AKT
pathway inhibitor LY294002. Human Caov3 cells were
pretreated with PD153035 (20 μM) or LY294002 (50 μM) for
2 h, and then treated with 100 ng/ml of TSA for 1 h. Western
blot analysis indicated that both PD153035 and LY294002
significantly inhibited TSA-induced AKT activation (Fig. 4C).
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Figure 2. TSA inhibited cell migration in human Caov3 cells. Cells were seeded in 12-well plates and treated with 100 ng/ml of TSA. Phagokinetic motility
assay results were photographed at 24 and 48 h post treatment (A). Cells were treated with 10, 100, and 1000 ng/ml of TSA. Phagokinetic motility assay
results were photographed 24 h post treatment (B). The quantitative results are shown as a histogram. Each bar is the mean ± SD from six independent
microscopic fields of a representative experiment.
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Inhibition of TSA-induced survivin expression in human
Caov3 cells by EGFR and AKT pathway inhibitors. Survivin
is unique for its expression in human malignancies but not in
normal adult cells. It has been implicated in sensitization to
chemotherapy and as a prognostic marker in several common
cancers (30). Next, we examined whether TSA induces survivin
expression in human Caov3 cells. Caov3 cells were treated

with 100 ng/ml of TSA and harvested at 4, 8, and 24 h post
treatment. Western blot analysis indicated that TSA induced-
survivin expression peaked at 4 h (Fig. 5A). As shown in
Fig. 5B, the expression of survivin was maximized at a con-
centration of 1000 ng/ml at 4 h after TSA treatment. To further
examine whether TSA-induced survivin expression is mediated
by EGFR/AKT signaling, we pretreated human Caov3 cells
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Figure 3. TSA transactivated EGFR in human Caov3 cells. Cells were deprived of serum overnight and exposed to 100 ng/ml of TSA and harvested at 5, 15,
30, 60, and 120 min post treatment (A). Cells were treated with 10, 100, and 1000 ng/ml of TSA, and harvested at 30 min post treatment (B). Cells were
pretreated with PD153035 (20 μM) for 2 h, then treated with 100 ng/ml of TSA, and harvested at 30 min post treatment (C). EGFR phosphorylation was
analyzed by Western blotting.

Figure 4. EGFR inhibitor inhibited AKT activation induced by TSA in human Caov3 cells. Cells were deprived of serum overnight and exposed to 100 ng/ml
of TSA, and harvested at 5, 15, 30, 60, and 120 min post treatment (A). Cells were treated with 10, 100, and 1000 ng/ml of TSA, and harvested at 1 h post
treatment (B). Cells were pretreated with PD153035 (20 μM) or LY294002 (50 μM) for 2 h, then treated with 100 ng/ml of TSA, and harvested at 1 h post
treatment (C). AKT phosphorylation was analyzed by Western blotting.
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with PD153035 (20 μM) or LY294002 (50 μM) for 2 h, and
then treated cells with 100 ng/ml of TSA for 4 h. Western
blot analysis indicated that both PD153035 and LY294002
significantly blocked TSA-induced survivin expression
(Fig. 5C).

Enhancement of TSA-induced histone H4 acetylation in
human Caov3 cells by inhibition of EGFR signaling. As
widely believed, treating cells with TSA results in histone H4
hyperacetylation (31). To verify this result in ovarian cells in

culture, we treated Caov3 cells with TSA at various time-points
and concentrations. The results showed that TSA induced
histone H4 acetylation in a time and dose-dependent manner
(Fig. 6A and B). To further investigate whether inhibition of
EGFR signaling modulates TSA-induced histone H4 acetylation
in human Caov3 cells, cells were pretreated with PD153035
(20 μM) or LY294002 (50 μM) for 2 h, and then treated with
100 ng/ml of TSA for 4 h. Western blot analysis indicated that
both PD153035 and LY294002 significantly enhanced TSA-
induced histone H4 acetylation (Fig. 6C).
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Figure 5. Inhibition of EGFR signaling blocked TSA-induced survivin expression in human Caov3 cells. Cells were deprived of serum overnight, exposed to
100 ng/ml of TSA, and harvested at 4, 8, and 24 h post treatment (A). Cells were treated with 10, 100, and 1000 ng/ml of TSA, and harvested at 4 h post
treatment (B). Cells were treated with TSA (100 ng/ml) alone or in combination with PD153035 (20 μM) or LY294002 (50 μM), and harvested at 4 h post
treatment (C). Survivin expression was analyzed by Western blotting.

Figure 6. Inhibition of EGFR signaling enhanced TSA-induced histone H4 acetylation in human Caov3 cells. Cells were deprived of serum overnight,
exposed to 100 ng/ml of TSA, and harvested at 4, 8, and 24 h post treatment (A). Cells were treated with 10, 100, and 1000 ng/ml of TSA, and harvested at 4 h
post treatment (B). Cells were treated with TSA (100 ng/ml) alone or in combination with PD153035 (20 μM) or LY294002 (50 μM), and harvested at 4 h
post treatment (C). Survivin expression was analyzed by Western blotting.
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Promotion of TSA-induced cell death in human Caov3 cells
by inhibition of EGFR signaling. The above data indicate that
inhibition of EGFR signaling not only blocked TSA-induced
survivin expression but also enhanced TSA-induced histone
H4 acetylation. To directly examine whether inhibition of
EGFR signaling enhances TSA-induced cell death, cells were
cultured in 12-well cell culture plates, TSA (100 ng/ml) alone or
in combination with PD153035 (20 μM) or LY294002 (50 μM)
was added to human Caov3 cells for 24 h. Microscopic data

indicated that the reduction of cell viability induced by TSA
treatment in combination with PD153035 or LY294002 was
significantly increased in human Caov3 cells as compared
with that caused by TSA alone (Fig. 7).

Enhancement of TSA-inhibited cell migration in human Caov3
cells by inhibition of EGFR signaling. To directly examine
whether inhibition of EGFR signaling enhances TSA-induced
down-regulation of cell migration in human Caov3 cells, cells
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Figure 7. Inhibition of EGFR signaling promoted TSA-induced cell death in human Caov3 cells. Cells were seeded in 12-well plates and treated with 100 ng/ml
of TSA alone or in combination with PD153035 (20 μM) or LY294002 (50 μM). Cell densities and morphologies were photographed at 24 h post treatment.
The quantitative results are shown as a histogram. Each bar is the mean ± SD from six independent microscopic fields of a representative experiment.

Figure 8. Inhibition of EGFR signaling enhanced TSA-induced down-regulation of cell migration in human Caov3 cells. Cells were seeded in 12-well plates and
treated with 100 ng/ml of TSA alone or in combination with PD153035 (20 μM) or LY294002 (50 μM). Phagokinetic motility assay results were photographed 24 h
post treatment. The quantitative results are shown as a histogram. Each bar is the mean ± SD from six independent microscopic fields of a representative experiment.
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were cultured in 12-well cell culture plates and TSA (100 ng/
ml) alone or in combination with PD153035 (20 μM) or
LY294002 (50 μM) was added for 24 h. Phagokinetic motility
assay results indicated that the cell migration caused by the
combination of inhibitors with TSA was significantly reduced
as compared with that caused by TSA alone (Fig. 8).

Discussion

As shown in studies of the biological activities of TSA, TSA
induces growth arrest and apoptosis and suppresses migration
in a number of cancer cells, including breast, colon, lung, and
leukemic cancer cells. Treatment with TSA, which is followed
by increased histone acetylation in the promoters, induces the
expression of many genes that are suppressors of invasion
and metastasis, including tissue inhibitors of metalloproteinase
and nm23H1/H2, in addition to negative cell cycle regulators
and apoptosis-related molecules (32-36). The present study
provides evidence that alterations in histone acetylation have
a dramatic effect on the proliferation and migration of ovarian
cancer cells. Within 24 h of TSA exposure, Caov3 cell survival
and proliferation (Fig. 1) and cell migration (Fig. 2) were
dramatically inhibited. 

Overexpression and/or activation of EGFR results in
increased proliferation and migration of solid tumors including
ovarian cancer (15,16,19,37). Moreover, it correlates with
tumor resistance to cytotoxic agents (28). Activation of EGFR
results in the activation of the lipid kinase, PI3K, generating
the second messenger phosphatidylinositol 3,4,5-trisphosphate,
which in turn activates AKT (38-40). It was reported that
TSA activates phosphatidyl inositol-3-kinase (PI3K)/AKT
signaling (13). Our results also showed that TSA rapidly
activated AKT signaling in human Caov3 cells (Fig. 4A and B).
Since ovarian cancer remains resistant to traditional and novel
chemotherapeutic agents, relating, in part, to the activation of
EGFR signaling, we further aimed to detect whether TSA
could activate EGFR signaling. To our surprise, we found for
the first time that TSA transiently activated EGFR phosphoryl-
ation in a time and dose-dependent manner (Fig. 3A and B).
In addition, EGFR inhibitor PD153035 remarkably inhibited
TSA-induced AKT activation, which suggested that TSA-
induced AKT activation is mediated by EGFR signaling
(Fig. 4C). 

We present evidence that TSA induced survivin expression
in Caov3 cells in a time and dose-dependent manner (Fig. 5A
and B). Survivin is a novel anti-apoptotic protein that is highly
expressed in cancer but is undetectable in most normal tissue.
Survivin overexpression plays a pivotal role in the progression
of ovarian tumors and provides an important prognostic
implication for epithelial ovarian carcinomas (41). A novel
antisense oligonucleotide targeting survivin expression induces
apoptosis and sensitizes lung cancer cells to chemotherapy
(42). It was reported that paclitaxel-mediated mitotic arrest
of cancer cells is associated with survivin induction, which
preserves a survival pathway and results in resistance to
paclitaxel. Induction of survivin by paclitaxel is an early event
(43). Our present study suggested that TSA-induced survivin
expression might contribute to reduced sensitivity of human
ovarian cancer cells to TSA. Furthermore, we found that EGFR
inhibitor PD153035 and PI3K/AKT inhibitor LY294002

inhibited TSA-induced survivin expression (Fig. 5C). These
results demonstrated that TSA-induced survivin expression
is mediated by EGFR/AKT signaling, and inhibition of
EGFR/AKT signaling might increase the sensitivity of human
Caov3 cells to TSA.

Acetylation of nuclear histones, which is regulated by
acetyltransferase and deacetylase (44-47), has been supposed to
play a crucial role in gene expression because transcriptionally
activated genes have been found to be associated with highly
acetylated loci whereas transcriptionally inactive genes have
been found to be associated with hypoacetylation (48-50).
Furthermore, recent molecular and genetic approaches iden-
tified HATs and HDACs as transcriptional coactivators and
transcriptional corepressors, respectively. These observations
provide a molecular basis for regulation of transcription through
acetylation of histones (51,52). Previous studies found that
the acetylation levels of histone H4 inversely correlated to
the depth of cancer invasion and pathological stage, and
patients with higher levels of histone H4 acetylation had a
better prognosis (53). As widely believed, treating cells with
TSA results in histone H4 hyperacetylation and cell cycle
arrest (31). In the present study, we demonstrated that TSA
induced histone H4 acetylation in human Caov3 cells (Fig. 6A
and B). Moreover, we found EGFR inhibitor PD153035 and
PI3K/AKT inhibitor LY294002 significantly enhanced TSA-
induced histone H4 acetylation (Fig. 6C). Therefore, we
provided the first evidence that inhibition of EGFR/AKT
signaling up-regulates the expression of histone H4 acetylation
induced by TSA in human Caov3 cells.

It is conceivable that the ultimate role of HDACIs in cancer
therapy will be as modulators of apoptosis induced by other
cytotoxic agents. One particularly promising strategy involves
attempts to combine HDACIs with other novel agents to
promote tumor cell differentiation or apoptosis. In the current
study, we showed that both the reduction of cell viability and
the down-regulation of cell migration caused by TSA treatment
in combination with EGFR inhibitor PD153035 or PI3K/Akt
inhibitor LY294002 were significantly enhanced in human
Caov3 cells as compared with that caused by TSA alone
(Fig. 7). It appears that EGFR/AKT signaling might be a
novel target for enhancing the efficacy of TSA in ovarian
cancer therapy.

In conclusion, we present here that TSA transiently
induced activation of EGFR/AKT signaling, leading to the
expression of survivin and contributing to the reduced
sensitivity of human ovarian cancer cells to TSA. Inhibition
of EGFR/AKT signaling transiently activated by TSA not only
blocked TSA-induced survivin expression but also enhanced
TSA-induced histone H4 acetylation, which promoted cell
death and inhibited cell migration in human Caov3 cells. Our
data suggest that combination of EGFR inhibitor or PI3k/Akt
inhibitor with TSA may provide a new approach to the design
of chemotherapy strategies and the development of anticancer
drugs.
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