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Abstract. The assembly of trans-acting proteins on sequence-
specific DNA cis-elements is crucial in the regulation of
eukaryotic gene expression. Far upstream element binding
proteins (FAB) are proteins that regulate the expression of
the c-myc oncogene by binding to the far upstream element
of the c-myc gene. The present study unambiguously identified
the two human variants of FAB (FAB1, FAB2) in the medullo-
blastoma DAQY cell line and characterized their structure for
the first time by tandem mass spectrometry independent of
antibody availability and specificity. The study also tentatively
assigned the third variant (FAB3) at the level of mass spectro-
metry, although tandem mass spectrometric analysis failed to
corroborate the result. These findings open up an exciting
possibility for discerning the cellular roles of FAB in tumor
biology.

Introduction

In addition to conventional transcription factors bearing
DNA binding and effector domains, several sequence-
specific single-stranded DNA-binding proteins have been
suggested to regulate gene expression (1). Among these, far
upstream element (FUSE)-binding proteins (FBP) comprise
a family of homologous gene regulatory proteins capable of
tethering a powerful activation motif to specific sequences
in single-stranded DNA (2-4). So far, three variants are
known in humans (FBP1, FBP2 and FBP3), which have
three distinct functional domains that display strong primary
sequence and predicted secondary structure homology. The
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N-terminus domain represses transcription in cis and in trans.
By contrast, the C-terminus domain confers transactivation
through multiple repeats of a powerful tyrosine-rich activation
motif. The central domain binds single-stranded nucleic acids
of specific sequences and is composed of four distinct K
homology (KH) motifs, each followed by an amphipathic
helix (3-5).

Medulloblastoma is the most frequent malignant brain
tumor in children and is considered to be of neuroectodermal
origin. The medulloblastoma precursor cells are bipotential,
able to differentiate into neuronal or glial cell types depending
on stimulatory signals from the environment (6). Two main
representative cell lines, DAOY and D283, are widely used
in studies of medulloblastoma, as they show expression of
glial and neuronal elements. In an attempt to identify novel
and known proteins that could serve as candidate markers
and/or therapeutic targets for medulloblastoma, we generated
proteome maps of both cell lines, consisting of a series of
proteins already linked to malignancy (7). In the present study,
we analyzed the DAQY cell line, as it expresses both neuronal
and glial elements, by two dimensional gel electrophoresis
(2-DE) coupled to matrix-assisted laser desorption/ionization
(MALDI) mass spectroscopy (MS) followed by tandem mass
spectroscopy (MS/MS) because the specificity of MS/MS-based
protein identification is much higher than that of MS (8). We
report for the first time expression of all three variants of
human FBPs at the protein level in the DAOY cell line.

Materials and methods

Cell culture and sample preparation. The DAOY cell line
[ATCC: HTB-186; (9)] was cultivated according to specific
ATCC guidelines (http://www.lgcpromochem-atcc.com/
SearchCatalogs/lor). Harvested cells were washed three times
with 10 ml PBS (phosphate-buffered saline) (Gibco BRL,
Gaithersburg, MD, USA) and centrifuged for 10 min at 800 x g
at room temperature. The supernatant was discarded and the
pellet was suspended in 1.0 ml of sample buffer consisting of
40 mM Tris, 7 M urea (Merck, Darmstadt, Germany), 2 M
thiourea (Sigma, St. Louis, MO, USA), 4% CHAPS (3-[(3-
cholamidopropyl)dimethylammonio]-1-propane-sulfonate)
(Sigma), 65 mM 1 4-dithioerythritol (Merck), 1| mM EDTA
(ethylenediaminetetraacetic acid) (Merck), protease inhibitors
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complete® (Roche, Basel, Switzerland) and 1 mM phenyl-
methylsulfonyl fluoride. The suspension was sonicated for
~30 sec. After homogenization, samples were left at room
temperature for 1 h and centrifuged at 14,000 rpm for 1 h.
The supernatant was transferred into Ultrafree-4 centrifugal
filter units (Millipore, Bedford, MA) for desalting and
concentrating proteins. The protein content of the super-
natant was quantified by the Bradford protein assay (10). The
standard curve was generated using bovine serum albumin
and absorbance was measured at 595 nm.

Two-dimensional gel electrophoresis (2-DE). 2-DE was
performed in triplicate as reported elsewhere (11). Protein
(500 pg) was applied on immobilized pH 3.0-10.0 non-linear
gradient strips in sample cups at their basic and acidic ends.
Focusing was started at 200 V and the voltage was gradually
increased to 5000 V at a rate of 3 V/min and then kept
constant for a further 24 h (~180,000 Vh in total). After the
first dimension, strips (18 cm) were equilibrated for 15 min
in the buffer containing 6 M urea, 20% glycerol, 2% SDS
and 2% 1 .,4-dithioerythritol and then for 15 min in the
same buffer containing 2.5% iodoacetamide instead of 1.4-
dithioerythritol. After equilibration, strips were loaded on
9-16% gradient SDS gels for second-dimensional separation.
Gels (180x200x1.5 mm) were then run at 40 mA per gel.
Immediately after the second dimension run, gels were
fixed for 18 h in 50% methanol, containing 10% acetic
acid, the gels were then stained with Colloidal Coomassie
Blue (Novex, San Diego, CA) for 12 h on a rocking shaker.
Molecular masses were determined by running standard
protein markers (Bio-Rad Laboratories, Hercules, CA) covering
the range of 10-250 kDa. pI values were used as given by the
supplier of the immobilized pH gradient strips (Amersham
Bioscience, Uppsala, Sweden). Excess of dye was washed
out from the gels with distilled water and the gels were scanned
with ImageScanner (Amersham Bioscience). Electronic
images of the gels were recorded using Adobe Photoshop and
Microsoft Power Point software.

Matrix-assisted laser desorption/ionization mass spectroscopy/
mass spectroscopy (MALDI/MS/MS). Spots were excised with
a spot picker (Proteineer sp™ , Bruker Daltonics, Germany)
and placed into a 384-well microtiter plate. In-gel digestion
and sample preparation for MALDI analysis were performed
by an automated procedure (Proteineer dp™ , Bruker Daltonics)
(12). Briefly, spots were excised and washed with 10 mM
ammonium bicarbonate and 50% acetonitrile in 10 mM
ammonium bicarbonate. After washing, gel plugs were shrunk
by addition of acetonitrile and dried by blowing out the liquid
through the pierced well bottom. The dried gel pieces were
re-swollen with 40 ng/ul trypsin (Promega, Madison, USA) in
enzyme buffer (consisting of 5 mM octyl 3-D-glucopyranoside
and 10 mM ammonium bicarbonate) and incubated for 4 h
at 30°C. Peptide extraction was performed with 10 ul of 1%
trifluoroacetic acid in 5 mM octyl B-D-glucopyranoside.
Extracted peptides were directly applied onto a target
(AnchorChip™ , Bruker Daltonics) that was loaded with a-
cyano-4-hydroxy-cinnamic acid (Bruker Daltonics) matrix
thinlayer. The mass spectrometer used in this work was an
Ultraflex™ TOF/TOF (Bruker Daltonics) operated in the
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reflector mode for MALDI-TOF peptide mass fingerprint
(PMF) or LIFT mode for MALDI-TOF/TOF with a fully
automated mode using FlexControl™ software. An accel-
erating voltage of 25 kV was used for PMF. Calibration of
the instrument was performed externally with [M+H]* ions of
angiotensin I, angiotensin II, substance P, bombesin, and
adrenocorticotropic hormones (clip 1-17 and clip 18-39).
Each spectrum was produced by accumulating data from 200
consecutive laser shots. Those samples which were analyzed
by PMF from MALDI-TOF were additionally analyzed using
LIFT-TOF/TOF MS/MS from the same target. A maximum
of three precursor ions per sample were chosen for MS/MS
analysis. In the TOF]1 stage, all ions were accelerated to 8 kV
under conditions promoting metastable fragmentation. After
selection of jointly migrating parent and fragment ions in a
timed ion gate, ions were lifted by 19 kV to high potential
energy in the LIFT cell. After further acceleration of the
fragment ions in the second ion source, their masses could be
simultaneously analyzed in the reflector with high sensitivity.
PMF and LIFT spectra were interpreted with Mascot software
(Matrix Science Ltd., London, UK). Database searches,
through Mascot, using combined PMF and MS/MS datasets
were performed via BioTools 2.2 software (Bruker). A mass
tolerance of 25 ppm and 1 missing cleavage site for PMF and
MS/MS tolerance of 0.5 Da were allowed and oxidation of
methionine residues was considered. The probability score
calculated by the software was used as criterion for correct
identification. The algorithm used for the determination of
the probability of a false positive match with a given mass
spectrum is described elsewhere (13).

Results

2-DE coupled to MALDI/MS/MS was used to analyze the
expression of the DAOY medulloblastoma cell line in an
attempt to elucidate marker proteins and identified an
interesting protein family, FBP, that is relevant to tumor
biology. 2-DE analysis of the DAOY medulloblastoma cell
line revealed a total of eight spots, of which two spots
represented FBP1, five spots represented FBP2 and one spot
represented FBP3 (Fig. 1) with theoretical pl range of 7.2-8 .0,
and theoretical molecular weight range of 67-73 kDa (Table I).
For the purpose of simplicity, the two spots of FBP1 are
designated as FBPla and FBPI1b (a, b from left to right in
Fig. 1) and that of FBP2 as FBP2a-¢ (d, c, b, a, e from left to
right). There appeared to be a shift in observed pl as well as
molecular weight from the theoretical values. Whilst a
decreasing trend was noted in observed pl, molecular weight
was increased for all spots of different variants of FBPs
(Table I).

Subjecting the spots to PMF followed by MS/MS analysis
produced significant MS/MS results for the two identified
spots of FBP1. Data obtained from MS analysis are summarized
in Table I. As shown in Table I, whilst PMF analysis of the
spot of FBP1a revealed sequence coverage of 45%, that of
FBP1b showed 43% (Fig. 2a). Following identification by
PMF, the workflow control software automatically selected
two peaks for FBPla (m/z 1336.74 and m/z 1539.81) and
three peaks (m/z 931.56, m/z 1336.72 and m/z 1539.80) for
FBP1b (Fig. 3a and b) from the MS spectrum to generate
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Figure 1. 2-DE gel image of variants of FBPs. Proteins were extracted and separated on an immobilized pH 3.0-10.0 non-linear gradient strip followed by separation on a 9-16% gradient polyacrylamide gel. Gels were stained
with Coomassie blue and spots were analysed by MALDI-MS and MS/MS.
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a. Upper panel for FBP1a and lower panel for FBP1b

MADYSTVPPP SSGSAGGGGG GGGGGGVNDA FKDALQRARQ IAAKIGGDAG
TSLNSNDYGY GGQKRPLEDG DQPDAKKVAP QNDSFGTQLP PMHQQQRSVM
TEEYKVPDGM VGFIIGRGGE QISRIQQESG CKIQIAPDSG GLPERSCMLT
GTPESVQSAK RLLDQIVEKG RPAPGFHHGD GPGNAVQEIM IPASKAGLVI
GKGGETIKQL QERAGVKMVM IQDGPQNTGA DKPLRITGDP YKVQQAKEMV
LELIRDQGGF REVRNEYGSR IGGNEGIDVP IPRFAVGIVI GRNGEMIKKI
QNDAGVRIQF KPDDGTTPER IAQITGPPDR CQHAAENTD LLRSVQAGNP
GGPGPGGRGR GRGQGNWNMG PPGGLQEFNF IVPTGKTGLI IGKGGETIKS
ISQQSGARIE LQRNPPPNAD PNMKLFTIRG TPQQIDYARQ LIEEKIGGPV
NPLGPPVPHG PHGVPGPHGP PGPPGPGTPM GPYNPAPYNP GPPGPAPHGP
PAPYAPQGWG NAYPHWQQQA PPDPAKAGTD PNSAAWAAYY AHYYQQQAQP
PPAAPAGAPT TTQTNGQGDQ QNPAPAGQVD YTKAWEEYYK KMGQAVPAPT
GAPPGGQPDY SAAWAEYYRQ QAAYYAQTSP QGMPQHPPAP QGQ

MADYSTVPPP SSGSAGGGGG GGGGGGVNDA FKDALQRARQ IAAKIGGDAG
TSLNSNDYGY GGQKRPLEDG DQPDAKKVAP QNDSFGTQLP PMHQQQRSVM
TEEYKVPDGM VGFIIGRGGE QISRIQQESG CKIQIAPDSG GLPERSCMLT
GTPESVQSAK RLLDQIVEKG RPAPGFHHGD GPGNAVQEIM IPASKAGLVI
GKGGETIKQL QERAGVKMVM IQDGPQNTGA DKPLRITGDP YKVQQAKEMV
LELIRDQGGF REVRNEYGSR IGGNEGIDVP IPRFAVGIVI GRNGEMIKKI
QNDAGVRIQF KPDDGTTPER IAQITGPPDR CQHAAEIITD LLRSVQAGNP
GGPGPGGRGR GRGQGNWNMG PPGGLQEFNF IVPTGKTGLI IGKGGETIKS
ISQQSGARIE LQRNPPPNAD PNMKLFTIRG TPQQIDYARQ LIEEKIGGPV
NPLGPPVPHG PHGVPGPHGP PGPPGPGTPM GPYNPAPYNP GPPGPAPHGP
PAPYAPQGWG NAYPHWQQQA PPDPAKAGTD PNSAAWAAYY AHYYQQQAQP
PPAAPAGAPT TTQTNGQGDQ QNPAPAGQVD YTKAWEEYYK KMGQAVPAPT
GAPPGGQPDY SAAWAEYYRQ QAAYYAQTSP QGMPQHPPAP QGQ

b. matched peptides to FBP2a, FBP2b, FBP2c, FBP2d & FBP2e

1 MSDYSTGGPP PGPPPPAGGG GGAGGAGGGP PPGPPGAGDR GGGPCGGGP

51 GGGSAGGPSQ PPGGGGPGIR KDAFADAVQR ARQIAAKIGG DAATTVNNST
101 PDFGFGGQKR QLEDGDQPES KKLASQGDSI SSQLGPIHPP PRTSMTEEYR
151 VPDGMVGLII GRGGEQINKI QQDSGCKVQI SPDSGGLPER SVSLTGAPES
201 VQKAKMMLDD IVSRGRGGPP GQFHDNANGG QNGTVQEIMI PAGKAGLVIG
251 KGGETIKQLQ ERAGVKMILI QDGSQNTNVD KPLRIIGDPY KVQQACEMVM
301 DILRERDQGG FGDRNEYGSR IGGGIDVPVP RHSVGVVIGR SGEMIKKIQN
351 DAGVRIQFKQ DDGTGPEKIA HIMGPPDRCE HAARINDLL QSLRSGPPGP
401 PGGPGMPPGG RGRGRGQGNW GPPGGEMTFS IPTHKCGLVI GRGGENVKAI
451 NQQTGAFVEI SRQLPPNGDP NFKLFIIRGS PQQIDHAKQL IEEKIEGPLC

501 PVGPGPGGPG PAGPMGPFNP GPFNQGPPGA PPHAGGPPPH QYPPQGWGNT

551 YPQWQPPAPH DPSKAAAAAA DPNAAWAAYY SHYYQQPPGP VPGPAPAPAA
601 PPAQGEPPQP PPTGQSDYTK AWEEYYKKIG QQPQQPGAPP QQDYTKAWEE

651 YYKKQAQVAT GGGPGAPPGS QPDYSAAWAE YYRQQAAYYG QTPGPGGPQP

701 PPTQQGQQQAAQ

1 MSDYSTGGPP PGPPPPAGGG GGAGGAGGGP PPGPPGAGDR GGGPCGGGP
51 GGGSAGGPSQ PPGGGGPGIR KDAFADAVQR ARQIAAKIGG DAATTVNNST
101 PDFGFGGQKR QLEDGDQPES KKLASQGDSI SSQLGPIHPP PRTSMTEEYR

151 VPDGMVGLII GRGGEQINKI QQDSGCKVQI SPDSGGLPER SVSLTGAPES

201 VQKAKMMLDD IVSRGRGGPP GQFHDNANGG QNGTVQEIMI PAGKAGLVIG -

251 KGGETIKQLQ ERAGVKMILI QDGSQNTNVD KPLRIIGDPY KVQQACEMVM
301 DILRERDQGG FGDRNEYGSR IGGGIDVPVP RHSVGVVIGR SGEMIKKIQN
351 DAGVRIQFKQ DDGTGPEKIA HIMGPPDRCE HAARIINDLL QSLRSGPPGP

401 PGGPGMPPGG RGRGRGQGNW GPPGGEMTFS IPTHKCGLVI GRGGENVKAI
451 NQQTGAFVEI SRQLPPNGDP NFKLFIIRGS PQQIDHAKQL IEEKIEGPLC

501 PVGPGPGGPG PAGPMGPFNP GPFNQGPPGA PPHAGGPPPH QYPPQGWGNT

551 YPQWQPPAPH DPSKAAAAAA DPNAAWAAYY SHYYQQPPGP VPGPAPAPAA
601 PPAQGEPPQP PPTGQSDYTK AWEEYYKKIG QQPQQPGAPP QQDYTKAWEE

651 YYKKQAQVAT GGGPGAPPGS QPDYSAAWAE YYRQQAAYYG QTPGPGGPQP

701 PPTQQGQQQA Q
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1 MSDYSTGGPP PGPPPPAGGG GGAGGAGGGP PPGPPGAGDR GGGGPCGGGP

51 GGGSAGGPSQ PPGGGGPGIR KDAFADAVQR ARQIAAKIGG DAATTVNNST
101 PDFGFGGQKR QLEDGDQPES KKLASQGDSI SSQLGPIHPP PRTSMTEEYR
151 VPDGMVGLH GRGGEQINKI QQDSGCKVQI SPDSGGLPER SVSLTGAPES
201 VQKAKMMLDD IVSRGRGGPP GQFHDNANGG QNGTVQEIMI PAGKAGLVIG
251 KGGETIKQLQ ERAGVKMILI QDGSQNTNVD KPLRIIGDPY KVQQACEMVM
301 DILRERDQGG FGDRNEYGSR IGGGIDVPVP RHSVGVVIGR SGEMIKKIQN
351 DAGVRIQFKQ DDGTGPEKIA HIMGPPDRCE HAARIINDLL QSLRSGPPGP
401 PGGPGMPPGG RGRGRGQGNW GPPGGEMTFS IPTHKCGLVI GRGGENVKAI
451 NQQTGAFVEI SRQLPPNGDP NFKLFIIRGS PQQIDHAKQL IEEKIEGPLC
501 PVGPGPGGPG PAGPMGPFNP GPFNQGPPGA PPHAGGPPPH QYPPQGWGNT
551 YPQWQPPAPH DPSKAAAAAA DPNAAWAAYY SHYYQQPPGP VPGPAPAPAA
601 PPAQGEPPQP PPTGQSDYTK AWEEYYKKIG QQPQQPGAPP QQDYTKAWEE
651 YYKKQAQVAT GGGPGAPPGS QPDYSAAWAE YYRQQAAYYG QTPGPGGPQP
701 PPTQQGQQQA Q

1 MSDYSTGGPP PGPPPPAGGG GGAGGAGGGP PPGPPGAGDR GGGGPCGGGP

51 GGGSAGGPSQ PPGGGGPGIR KDAFADAVQR ARQIAAKIGG DAATTVNNST
101 PDFGFGGQKR QLEDGDQPES KKLASQGDSI SSQLGPIHPP PRTSMTEEYR
151 VPDGMVGLII GRGGEQINKI QQDSGCKVQI SPDSGGLPER SVSLTGAPES
201 VQKAKMMLDD IVSRGRGGPP GQFHDNANGG QNGTVQEIMI PAGKAGLVIG
251 KGGETIKQLQ ERAGVKMILI QDGSQNTNVD KPLRIIGDPY KVQQACEMVM
301 DILRERDQGG FGDRNEYGSR IGGGIDVPVP RHSVGVVIGR SGEMIKKIQN
351 DAGVRIQFKQ DDGTGPEKIA HIMGPPDRCE HAARIINDLL QSLRSGPPGP
401 PGGPGMPPGG RGRGRGQGNW GPPGGEMTFS IPTHKCGLVI GRGGENVKAI
451 NQQTGAFVEI SRQLPPNGDP NFKLFIIRGS PQQIDHAKQL IEEKIEGPLC
501 PVGPGPGGPG PAGPMGPFNP GPFNQGPPGA PPHAGGPPPH QYPPQGWGNT
551 YPQWQPPAPH DPSKAAAAAA DPNAAWAAYY SHYYQQPPGP VPGPAPAPAA
601 PPAQGEPPQP PPTGQSDYTK AWEEYYKKIG QQPQQPGAPP QQDYTKAWEE
651 YYKKQAQVAT GGGPGAPPGS QPDYSAAWAE YYRQQAAYYG QTPGPGGPQP

701 PPTQQGQQQA Q

1 MSDYSTGGPP PGPPPPAGGG GGAGGAGGGPPPGPPGAGDRGGGGPCGGGP

51 GGGSAGGPSQ PPGGGGPGIR KDAFADAVQR ARQIAAKIGG DAATTVNNST
101 PDFGFGGQKR QLEDGDQPES KKLASQGDSI SSQLGPIHPP PRTSMTEEYR
151 VPDGMVGLII GRGGEQINKI QQDSGCKVQI SPDSGGLPER SVSLTGAPES
201 VQKAKMMLDD IVSRGRGGPP GQFHDNANGG QNGTVQEIMI PAGKAGLVIG
251 KGGETIKQLQ ERAGVKMILI QDGSQNTNVD KPLRIIGDPY KVQQACEMVM
301 DILRERDQGG FGDRNEYGSR IGGGIDVPVP RHSVGVVIGR SGEMIKKIQN
351 DAGVRIQFKQ DDGTGPEKIA HIMGPPDRCE HAARIINDLL QSLRSGPPGP
401 PGGPGMPPGG RGRGRGQGNW GPPGGEMTFS IPTHKCGLVI GRGGENVKAI
451 NQQTGAFVEI SRQLPPNGDP NFKLFIIRGS PQQIDHAKQL IEEKIEGPLC
501 PVGPGPGGPG PAGPMGPFNP GPFNQGPPGA PPHAGGPPPHQYPPQGWGNT
551 YPQWQPPAPH DPSKAAAAAA DPNAAWAAYY SHYYQQPPGP VPGPAPAPAA
601 PPAQGEPPQP PPTGQSDYTK AWEEYYKKIG QQPQQPGAPP QQDYTKAWEE
651 YYKKQAQVAT GGGPGAPPGS QPDYSAAWAE YYRQQAAYYG QTPGPGGPQP
701 PPTQQGQQQA Q

¢ Matched peptides to FBP3

1 MAELVQGQSA PVGMKAEGFV DALHRVRQIA AKIDSIPHLN NSTPLVDPSV
51 YGYGVQKRPL DDGVGNQLGA LVHQRTVITE EFKVPDKMVG FIIGRGGEQI
101  SRIQAESGCK IQIASESSGI PERPCVLTGT PESIEQAKRL LGQIVDRCRN
151 GPGFHNDIDS NSTIQEILIP ASKVGLVIGR GGETIKQLQE RTGVKMVMIQ
201 DGPLPTGADK PLRITGDAFK VQQAREMVLE IIREKDQADF RGVRGDFNSR
251 MGGGSIEVSV PRFAVGIVIG RNGEMIKKIQ NDAGVRIQFK PDDGISPERA
301 AQVMGPPDRC QHAAHIISEL ILTAQERDGF GGLAAARGRG RGRGDWSVGA
351 PGGVQEITYT VPADKCGLVI GKGGENIKSI NQQSGAHVEL QRNPPPNSDP
401 NLRRFTIRGV PQQIEVARQL IDEKVGGTNL GAPGAFGQSP FSQPPAPPHQ
451 NTFPPRSSGC FPNMAAKVNG NPHSTPVSGP PAFLTQGWGS TYQAWQQPTQ
501 QVPSQQSQPQ SSQPNYSKAW EDYYKKQSHA ASAAPQASSP PDYTMAWAEY
551 YRQQVAFYGQ TLGQAQAHSQ EQ

Figure 2. Protein sequence of FBP with peptides matched (bold letters) demonstrating sequence coverage.

an MS/MS spectrum, as MS/MS analysis of one or more  spectra of m/z 1336.74 and m/z 1539.81 were significantly
available peptides can provide unambiguous identification of — matched to peptide IGGNEGIDVPIPR and peptide CQHAA
a protein in question. Indeed, the generated LIFT-TOF/TOF  EIITDLLR, respectively (Fig. 3a). Likewise, the generated
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Intens. fa.u.]

b. MS- and MS/MS-spectra of FBP1b
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d. MS- and MS/MS-spectra of FBP2b
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Table 1. Mass spectrometrical identification of FBPs in medulloblastoma cell line (DAOY).

Mascot-search results

MS/MS results

(combined MS and MS/MS)

Acc.no. Protein No.of TMW? TIP® OIP* OMW! Score No.of Sequence Expectation Score Significant Peptide sequence
name identified matched coverage matched
spots peptides (%) peptides
Q96AE4 Far 2 67473 72 6.8 67603 282 35 45 6.6e-024 118 2 peptides IGGNEGIDVPIPR
upstream CQHAAEIITDLLR
element 69 67603 341 35 43 8.3e-030 174 3 peptides FAVGIVIGR
binding IGGNEGIDVPIPR
protein 1 CQHAAEIITDLLR
Q92945 Far 5 72709 8.0 6.8 73458 424 22 32 4.2e-038 321 2 peptides IINDLLQSLR
upstream AINQQTGAFVEISR
element 6.8 73063 411 36 48 8.3e-037 196 2 peptides IINDLLQSLR
binding AINQQTGAFVEISR
protein 2 6.7 73458 349 29 44 1.3e-030 178 2 peptides IINDLLQSLR
AINQQTGAFVEISR
6.6 73063 259 27 44 1.3e-021 88 1 peptide AINQQTGAFVEISR
69 73458 119 13 25 1.3e-007 43 1peptide AINQQTGAFVEISR
Q96124 Far 1 67473 72 83 61944 139 18 48 2.9e-009 -
upstream
element
binding
protein 3

Peptide sequences in bold show fragment of peptide sequence responsible for generating MS/MS-spectra. *Theoretical molecular weight. *Theoretical

isoelectric point. “Observed isoelectric point. ‘Observed molecular weight.

MS/MS spectra of m/z 931.56 m/z 1336.72 and m/z 1539.80
were significantly matched to peptide sequences of ‘FAV
GIVIGR’, ‘IGGNEGIDVPIPR’ and ‘CQHAAEIITDLLR’,
respectively (Fig. 3b). Collectively, the data confirm un-
ambiguous assignment of the two spots to FBP1 (accession
no. Q96AE4).

Not unlike FBP1, all of the five spots of FBP2 that were
identified by mass spectrometry had shown significant
matching following MS/MS. PMF analysis showed a sequence
coverage of 32, 48, 44, 44 and 25% for spot FBP2a-e,
respectively (Table I, Fig. 2b). The computer then picked up
a list of peptides for fragmentation and for a series of tandem
spectrometry. Two peaks for spot FBP2a (m/z 1184.73 and
m/z 1533.83) (Fig. 3c), spot FBP2b (m/z 1184.70 and m/z
1533.81) (Fig. 3d) and spot FBP2c (m/z 1184.70 and m/z
1533.81m) (Fig. 3e), and one for FBP2d (m/z 1533.82 )
(Fig. 3f) and FBP2e (m/z 1533.82) (Fig. 3g) were picked
from the generated MS spectrum and found to significantly
match with the peptide sequences given in Table I following
MS/MS analysis (Fig. 3c-g), pointing to the unequivocal
assignment of the spots to FBP2 (accession no. Q92945).

The single spot identified as FBP3 (accession no. Q96124)
by MS had a sequence coverage of 48% (Fig. 2c). Although

the spectra obtained following MS analysis assigned the spot
to FBP3 (Fig. 3h), the effort made to confirm by MS/MS was
not successful due to several reasons.

Discussion

FBP1 was originally identified as a factor binding to FUSE,
a positive cis-element of the human c-myc gene (3,14,15).
In addition to their transcriptional role, FBPs have been
reported to bind RNA and participate in various processes of
RNA processing, transport and catabolism (16). Members of
the myc family of oncogenes, including N-myc, c-myc, and
L-myc have been implicated in the development of many
human tumors. Myc forms a heterodimer with Max and binds
to E-box elements in promoter and/or enhancer regions of
target genes to modulate transcription (17).

The c-myc gene encodes an important member of the
helix-loop-helix leucine zipper family of transcription factors
and is involved in cell growth, proliferation, differentiation
and apoptosis (1,3,14,15), thus its deregulation contributes to
formation of a variety of tumors. Indeed, overexpression of
c-myc was one of the first acquired genomic alterations found
in medulloblastoma (18) and the expression of c-myc mRNA
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by the tumor correlates with poor survival, suggesting that
high c-myc expression produces a more aggressive tumor
phenotype (19). Although this deregulation largely results
from genomic amplification of c-myc, mechanisms independent
of genomic amplification have also been suggested to lead
to activation of c-myc in medulloblastoma cell lines (20).
Regulation of the abundance or activity of proteins binding to
the c-myc gene may thus provide an essential non-genomic
mechanism for controlling c-myc expression. In this regard,
although there are some techniques, including immuno-
chemistry that can be of use, a robust and reliable analytical tool
is lacking. In the present study, we systematically elaborated
the protein profile of the DAOY medulloblastoma cell line
by a high-throughput proteomic analysis and unambiguously
identified FBPs, which opens up an exciting possibility to
better understanding of tumor biology.

FBP mRNA has been shown to be expressed broadly, but
to varying levels, in different tissues and cell lines (3,14).
FBP1 protein is also detected in the HeLa cell line by immuno-
blotting and/or immunostaining (16,21). In our earlier study
(7), FBP1 protein was detected only in D283, FBP2 in both
D283 and DAOY cell lines, and FBP3 in none of the cell
lines. Vindigni et al (22) purified DNA helicase V by affinity
chromatography from a HeLa cell line and reported that
this helicase is identical to FBP1. They showed that helicase
V/FBP1 unwinds DNA with a 3' to 5' polarity in a strictly
ATP-dependent fashion, although an accumulated body of
evidence indicates that FBP1 binds to single-stranded or
torsionally strained DNA and is devoid of inherent unwinding
activity (1,23).

Here, we also detected several spots representing FBP1
and FBP2, probably indicating the existence of different
splice variants, isoforms or a post-translationally modified
form of the same variant. Indeed, two splice variants of FBP1
have been entered in the Swiss-Prot database (Q96AE4-1
and Q96AE4-2), although no experimental confirmation is
available.

Though all the spots representing FBP1 and FBP2 produced
significant MS and MS/MS results, this could not be replicated
at the stage of tandem mass spectroscopy when it came to
FBP3. It is well known that there are numerous sources of
error associated with the collection and processing of tandem
mass spectra including, but not limited to, errors attributed to
the number of ion counting events (i.e., counting statistics),
the inherently random nature of the fragmentation process,
and errors attributed to centroiding (24). All of these sources
might have contributed to the relative failure to characterize
FBP3. The possibility that failure of identification by MS/MS
could be attributed to low abundance of the protein cannot be
totally excluded. A growing body of evidence indicates that
post-translational modifications such as phosphorylation,
acetylation and fatty acid modification can shift the pl to lower
values and increase the molecular weight to higher values (25).
It is thus plausible that such modifications could explain the
shift in pI and molecular weight in all FBPs. Indeed, database
search predicting possible post-translational modifications
revealed that phosphorylation (http://www .cbs.dtu.dk/services/
NetPhos/) is the likely modification to occur with FBP.

The transcription of the human c-myc gene is affected by
multiple cis-elements that are present both upstream and
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downstream of the promoter sites and a multitude of signals
can affect a cell's decision to proliferate by acting through
these cis-acting elements. Single-strand DNA in these cis-
elements is induced by torsion and flexural strain exerted
on the DNA during the course of transcription (5) and the
recognition of single stranded cis-elements by transcriptional
regulators provides a mechanism for the re-establishment of
transcription after mitosis (26) and the tight control of onco-
genes (23,27). FUSE, one of the cis-elements, is most active
in undifferentiated cells and becomes inactive as differentiation
is induced and transcription initiation is shut off (2,14). FBP1
is also shown to be highly expressed in dividing cells with a
temporal and regulatory profile paralleling c-myc. However,
no growth-regulated or differentiation-specific expression
of FBP2 and FBP3 has been observed, implicating FBP1 as
a candidate for regulating cell growth and differentiation
(4). The lingering expression of FBP2 and FBP3 during
differentiation while that of FBP1 is shut off suggests that
FBPs may have other cellular activities apart from growth
regulation, such as regulation of other molecules with short
half-life where small changes in expression modify cellular
activity (23). Thus, a protein analytical tool that allows
expression of all the FBP proteins to be detected offers a
fertile ground for discerning other cellular roles of the proteins.

Proteomics is a particularly rich source of biological
information because proteins are involved in almost all
biological activities and they also have diverse properties,
which collectively contribute greatly to our understanding
of biological systems (28). The high precision of mass
spectrometric measurements can distinguish closely related
species, and tandem mass spectrometry or MS/MS can
provide structural information on molecular ions that can be
isolated and fragmented within the instrument. Detection of
the variants of FBP in the DAOY cell line using MS/MS
indeed confirms the robustness of this method compared to
PMF and presents an opportunity, without a need for antibody
availability and specificity, for unambiguous assigning of
identity to proteins as well as for manipulating the protein to
further our understanding of tumor biology.
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