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Effect of combining epidermal growth factor receptor
inhibitors and cisplatin on proliferation and apoptosis
of oral squamous cell carcinoma cells
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Abstract. Epidermal growth factor (EGF) is known to be
involved in the proliferation and metastasis of squamous cell
carcinoma (SCC), suggesting that the EGF receptor (EGFR)
must also contribute to SCC development. In combination
with conventional anti-cancer drugs, agents that block EGFR
may represent an efficient means of inhibiting proliferation and
inducing apoptosis in SCC cells. We investigated the effects
of combining an anti-EGFR monoclonal antibody (C225) or
an EGFR-selective tyrosine kinase inhibitor (AG1478) with
the conventional anti-cancer drug cisplatin on the oral SCC
(OSCC) cell lines NA and Ca9-22. We detected constitutive
expression of EGFR on the cell membranes of both cell lines.
OSCC cell proliferation was inhibited by C225, AG1478
and cisplatin in a dose-dependent manner. The combination
of C225 or AG1478 with cisplatin at concentrations <ICj,
synergistically inhibited cell proliferation and induced apoptosis
in these cells. Furthermore, treatment with C225 or AG1478
OSCC reduced phosphorylation of EGFR and Akt, as well as
Bad. EGFR inhibitors down-regulated expression levels of
the anti-apoptotic proteins cellular IAP-1 (cIAP-1), X-linked
IAP (XIAP), Bcl-2 and Bcl-xL, whereas those of the pro-
apoptotic proteins Bax and Bak were up-regulated, and neither
cIAP-2 nor survivin were affected. Therefore, EGFR inhibitors
can provide partial regulation of cisplatin-mediated apoptosis
in OSCC cells by modulating expression of cIAP-1, XIAP,
Bcl-2, Bel-xL, Bax and Bak. These results suggest that EGFR
inhibitors may represent a novel strategy for overcoming
resistance to cisplatin-mediated apoptosis via the phospha-
tidylinositol 3-kinase/Akt pathway.
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Introduction

The survival rate of patients with oral squamous cell carcinoma
(OSCC) remains low despite advances in diagnosis and treat-
ment (1). OSCC usually develops in carcinogen-exposed
areas of the epithelium, likely resulting from an accumulation
of cellular and genetic alterations that leads to aberrant
expression of proteins involved in cell growth regulation (2).
Blockage or functional modification of these proteins may
impede or delay development of cancer.

Chemotherapy is the mainstay of treatment for patients
with recurrent/metastatic OSCC and may be used alone or in
combination with other chemotherapeutic agents or radiation
therapy (3,4). Cisplatin is the most important therapeutic
agent; however, it exhibits hematological, neuro-, nephro-
and oto-toxicity, and thus attempts to deliver high doses or
dose-intensified cisplatin have been largely unsuccessful (5).
Drug resistance represents an additional challenge to cisplatin-
based chemotherapy. Cisplatin interacts with cellular nucleo-
philes, resulting in inter- and intra-strand DNA cross-linking
as well as DNA-protein and RNA cross-links (6). Cisplatin-
induced apoptosis is generally considered to result from its
ability to damage DNA (7); chemotherapeutic agents that use
this strategy are dependent upon activation of the mitochondrial
pathway via intact caspase cascades (8-10). This apoptotic
pathway is regulated by pro- and anti-apoptotic members of
the Bcl-2 family (10); once activated, certain caspases might
also be controlled by proteins belonging to the inhibitor of
apoptosis protein (IAP) family (9). Alterations in abundance
of such apoptosis-regulated proteins may contribute to cellular
resistance to chemotherapeutic agents (9,10).

An attractive strategy for improving treatment responses
is the combination of standard chemotherapy and specific
molecular-targeted therapy, as the latter offer a means for
directly targeting the tumor without exacerbating the side
effects associated with standard treatment (5). Epidermal
growth factor receptor (EGFR) plays an important role in the
regulation of cell proliferation, differentiation, development
and oncogenesis (11,12). Activation of downstream effectors of
the EGFR signaling pathway can also lead to cell proliferation
and tumor growth, as well as progression of invasion and
metastasis (13). In many types of tumor and in most SCCs (14),
EGEFR is expressed at high levels and it is associated with an
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adverse impact on survival (15,16). Thus, EGFR has been
identified as an important target for cancer therapy and in
recent years there has been a considerable effort to identify
EGFR inhibitors such as monoclonal antibodies (mAbs)
directed against the external ligand binding domain (17,18)
or small molecule tyrosine kinase (TK) inhibitors (19,20).
Both in vitro and in vivo studies on SCCs have found additive/
cooperative effects from combinatorial treatments using anti-
EGFR mAb or EGFR-TK inhibitor with other chemo-
therapeutic agents such as cisplatin, or with radiotherapy
(21-25). However, the molecular mechanisms underlying
tumor remission under these combined therapies remain
largely unknown. In order to identify novel treatment strategies
for the management of SCC patients, we urgently require a
clearer understanding of the mechanisms at play.

In this study, we investigated anti-tumor activation in
OSCC cells in vitro using a combinatorial treatment of EGFR
inhibitors and cisplatin. We also examined whether or not
EGFR inhibitors can regulate pro- and anti-apoptotic proteins
such as the members of the Bcl-2 and IAP families. We
observed that EGFR inhibitors enhance cisplatin-mediated
apoptosis via up-regulation of pro-apoptotic proteins and
down-regulation of anti-apoptotic proteins.

Materials and methods

Reagents. DMEM and FBS were obtained from Gibco BRL
(Gaithersburg, MD). AG1478 and C225 were purchased
from Calbiochem (San Diego, CA) and cisplatin from the
Sigma Chemical Co. (St Louis, MO). The MEBCYTO
apoptosis kit (employing FITC-conjugated annexin V) was
purchased from MBL (Nagoya, Japan). We used antibodies
against the following: Bax, cIAP-1, cIAP-2 and XIAP (R&D
Systems Inc., Minneapolis, MN); Bak (Stressgen Biotechno-
logy, Victoria, Canada); Bcl-2, Bel-xL and survivin (Santa Cruz
Biotechnology, Santa Cruz, CA); and EGFR, phospho-EGFR,
Akt, phospho-Akt, Bad and phospho-Bad (Upstate Bio-
technology, Lake Placid, NY). Control antibodies were obtained
from Pharmingen (San Diego, CA). All other chemicals used
were of analytical grade.

Cell culture. The human OSCC cell lines NA and Ca9-22 were
grown as adherent monolayers. Both cell lines were established
from SCC of the oral cavity. Cells were maintained in DMEM
supplemented with 10% heat-inactivated FBS, 2 mM L-
glutamine and antibiotics (100 U/ml penicillin and 100 pg/ml
streptomycin) at 37°C in a humidified atmosphere of 5% CO,.

Assessment of EGFR receptor expression. We performed
indirect immunofluorescence analyses of cell surface EGFR
expression in OSCC cells (1x10° cells/ml), which were treated
with a saturating concentration of anti-EGFR mAb for 40 min.
After washing twice with PBS cells were incubated for 30 min
at 4°C with anti-mouse IgG-FITC-conjugated secondary
Ab dissolved in PBS containing 0.1% BSA and 0.1% sodium
azide. Cells were washed again with PBS and fixed with 1%
paraformaldehyde in PBS. Simultaneous negative control
staining was performed without primary Ab. Stained cells
were analyzed using a FACScan flow cytometer and CellQuest
software (Becton Dickinson Co., Mountain View, CA).
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Proliferation assay. The cytotoxic effect of treatment with
EGFR inhibitors and cisplatin on OSSC cells was evaluated
using a proliferation assay, in which proliferation was deter-
mined using a Cell Counting Kit-8 (Wako, Tokyo, Japan)
that labeled cellular DNA with a fluorescent reagent (26). In
brief, cells (1x10%well) were seeded into 96-well plates and
cultured for 24 h to allow adherence. The cells were then
incubated for 24 h at 37°C with a range of concentrations of
each of the following agents: C225 (0-16 nM), AG1478
(0-32 uM) and cisplatin (0-20 yM). Alternatively, cells were
treated with cisplatin (5 M) and either C225 (4 nM) or
AG1478 (8 uM). Following incubation, 10 1 WST-8 (induced
by the generation of formazan) was added to each well and
incubated for a further 45 min at 37°C, after which the A5,
was measured in a microplate reader.

Apoptosis assay. Annexin V-FITC binding was used as a
sensitive method for quantifying apoptosis and was performed
as described previously (27,28). OSCC cells (1x10%well)
were seeded into 96-well plates and cultured for 24 h to allow
adherence, then incubated with C225 (4 nM) or AG1478
(8 uM) for 24 h. Alternatively, cells were preincubated with
or without C225 (4 nM) or AG1478 (8 uM) for 2 h, then
exposed to cisplatin (5 #M) for 24 h and harvested. Specific
binding of annexin V-FITC was performed by incubating
the cells for 15 min at room temperature in binding buffer
(10 mM HEPES, 140 mM NaCl, 2.5 mM CaCl,, pH 7.4)
containing a saturating concentration of annexin V-FITC,
according to the manufacturer's protocol. Following incubation,
cells were pelleted and analyzed using a FACScan flow
cytometer and Cell Quest software (Becton Dickinson Co.).

Western blot analysis. Western blot analysis was used to
direct expression of EGFR, p-EGFR, Akt, p-Akt, Bad, p-Bad,
Bax, Bak, Bcl-2, Bel-xL, cIAP-1, cIAP-2, XIAP and survivin.
OSCC cells (1x107 cells/ml) were incubated with or without
C225 (4 nM) or AG1478 (8 uM) for 2 h for the detection of
EGFR, Akt and Bad, and for 12 h for detection of Bax,
Bak, Bcl-2, Bcel-xL, cIAP-1, cIAP-2, XIAP and survivin.
Following treatment, cells (1x107 cells/ml) were sedimented,
then disrupted in lysis buffer containing 50 mM Tris-HCI
(pH 7.4), 300 mM NacCl, 5 mM EDTA, 0.5% Triton X-100,
with 100 mM sodium o-vanadate and complete mini protease
inhibitors (Roche Diagnostics, Mannheim, Germany). Lysates
were clarified by centrifugation (15 min, 14,000 x g at 4°C)
and protein concentration measured using the Bradford
assay. Proteins (20 ug) were separated by SDS-PAGE, then
transferred to Hybond PVDF membranes (Amersham Bio-
sciences Corp., Piscataway, NJ). Membranes were blocked for
90 min in 5% skim-milk blocking buffer at room temperature,
then hybridized to a primary Ab (total anti-EGFR, -phospho-
EGFR, -Akt, -phospho-Akt, -Bad, -phospho-Bad, -Bax, -Bak,
-Bcl-2, -Bcel-xL, -cIAP-1, -c[Ap-2, -XIAP, or -survivin),
followed by an HRP-conjugated secondary Ab. Protein bands
were visualized using the ECL Plus Western blot detection
system (Amersham Biosciences). B-actin was used as a
positive control. Immunoreactive bands were analyzed using
a Fluorolmager 595 and ImageQuant software (Amersham
Biosciences). Background hybridization levels were subtracted
from each sample, and protein abundances were normalized
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Figure 1. EGFR expression on NA and Ca9-22 cells. Expression of EGFR on (A) NA and (B) Ca9-22 cell membranes was determined using flow cytometry.
All experiments were performed four times independently, and representative data are presented. Dark and bright lines represent control and experimental
cells, respectively. Note that in all figures, dark lines are accompanied by black fill.
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Figure 2. Effect of EGFR inhibitors and cisplatin on proliferation of OSCC cells. Proliferation of NA and Ca9-22 cells treated for 24 h with (A) cisplatin
(0-20 uM), (B) C225 (0-16 nM) or (C) AG1478 (0-32 uM). (D) Bar graph comparing proliferation of NA and Ca9-22 cells treated with or without C225
(4 nM) or AG1478 (8 uM) for 2 h, followed by incubation with or without cisplatin (5 yM) for 24 h. Data are expressed as the means + SD of four
independent experiments. “p<0.05, compared with untreated cells.

to those of B-actin for each sample. We normalized the Results

results obtained for experimental proteins to those of the

controls. EGFR expression in OSCC cells. EGFR is expressed in SCC
cells (14) and we examined its expression in OSCC cells using

Statistical analysis. The values are presented as the means a FACScan flow cytometer. Constitutive EGFR expression

+ SD. Data were analyzed using a One-way repeated measure ~ was detected on both the NA and Ca9-22 cell lines (Fig. 1),

ANOVA. p<0.05 was considered to be statistically significant. ~ suggesting that it plays a role in OSCC cells.
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Figure 3. Effect of EGFR inhibitors on cisplatin-mediated apoptosis. NA
(top panel) and Ca9-22 (lower panel) cells were treated with or without
C225 (4 nM) or AG1478 (8 uM) for 2 h, followed by incubation with or
without cisplatin (5 M) for 24 h. All experiments were performed four times
independently, and representative data are presented. Dark and bright lines
represent untreated control and treated experimental cells, respectively.
(A) EGFR inhibitor treatments. Untreated (left), C225-treated (middle)
and AG1478 (right). (B) C225 and cisplatin treatment. Untreated (left),
C225-treated (middle) and C225 with cisplatin-treated (right). (C) AG1478
and cisplatin treatment. Untreated (left), AG1478-treated (middle) and AG1478
with cisplatin-treated (right). (D) Bar graph comparing percentage apoptosis
for the above treatments. Data are expressed as the means + SD of four
independent experiments. “p<0.05, compared with untreated cells.
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Figure 4. Effect of EGFR inhibitors on phosphorylation of EGFR, Akt and Bad.
NA (left) and Ca9-22 (right) cells were treated with C225 (4 nM) or AG1478
(8 uM) for 1 h, after which they were harvested and protein expression was
determined using Western blot analysis, as described in Materials and methods.
All experiments were performed four times independently. Phosphorylation of
(A) EGFR; (B) Akt; (C) Bad. Lane 1, untreated; lane 2, C225; lane 3, AG1478.
The relative abundances of unphosphorylated to phosphorylated proteins were
normalized to that of B-actin. Untreated controls were set as 1.0.

Effects of EGFR inhibitors on cisplatin-mediated anti-
proliferation. Cisplatin is the most commonly used agent for
treatment of patients with SCC (3,4). To determine whether
or not a combination of EGFR inhibitors and cisplatin can
alter the proliferation of OSCC cells, we treated the NA and
Ca9-22 cell lines with a range of concentrations of cisplatin
(0-20 uM), C225 (0-16 nM) and AG1478 (0-32 uM). Our
results indicate that individually, all three compounds inhibited
cell growth in a dose-dependent manner (Fig. 2A-C). We
then examined the effects of combination treatment using
fixed concentrations of each drug (4 nM C225 or 8§ yuM
AG1478 with 5 uM cisplatin). At these concentrations EGFR
inhibitors and cisplatin alone were not cytotoxic, whereas a
significant inhibition of proliferation was observed under the
combination treatments (Fig. 2D).

Effects of EGFR inhibitors on cisplatin-mediated apoptosis.
Cisplatin induces apoptosis in cancer cells (8-10) and to
determine whether or not there is a change in the susceptibility
of EGFR inhibitor-treated OSCC cells to cisplatin-mediated
apoptosis, we examined annexin-V binding using a FACScan
flow cytometer. As single agents, treatment with either
C225 (4 nM) or AG 1478 (8 uM) effected <10% apoptosis in
OSCC cells (Fig. 3A); and at such low concentrations, these
cells were relatively resistant to apoptosis. However, treatment
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Figure 5. Effect of EGFR inhibitors on apoptosis-regulated protein expression.
NA (left panel) and Ca9-22 (right panel) cells were treated with C225 (4 nM)
or AG1478 (8 uM) for 12 h, after which they were harvested and apoptosis-
regulated protein expression was determined using Western blot analysis.
All experiments were performed four times independently. Expression of
(A) Bcl-2; and (B) IAP family proteins. Lane 1, control; lane 2, C225; lane 3,
AG1478. The relative abundances of Bcl-2 and IAP family proteins were
normalized to that of B-actin. Untreated controls were set as 1.0.

with a combination of an EGFR inhibitor and cisplatin effected
a greater induction of apoptosis than that achieved through
the use of any of these agents alone (Fig. 3B-D).

Effects of EGFR inhibitors on phosphorylation of EGFR, Akt
and Bad. To determine whether or not C225 and AG1478
can modulate activation of EGFR in NA and Ca9-22 cells, we
examined EGFR phosphorylation using Western blot analysis.
We observed that EGFR was phosphorylated constitutively
in OSCC cells and became down-regulated in the presence of
C225 (4 nM) and AG1478 (8 uM) (Fig. 4A). Akt is an
important signal transducer for cancer cell growth and can be
regulated through the EGFR signaling pathway (29). We
examined p-Akt/Akt in the presence or absence of EGFR
inhibitors and observed that both C225 and AG1478 effected
a marked reduction in p-Akt levels (Fig. 4B). Bad is a Bcl-2
family member, which binds to Bcl-2 or Bcel-xL and inhibits
their anti-apoptotic activities. When Bad is phosphorylated
by Akt, it does not exhibit pro-apoptotic activity and it is
thought to be a direct target of Akt in promoting cell survival
(28,30). We observed that EGFR inhibitors strongly reduced
the levels of p-Bad in OSCC cells (Fig. 4C). Thus, our results
suggest that EGFR inhibitors can modulate survival in OSCC
cells via reduction of p-Akt and p-Bad levels.
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Effects of EGFR inhibitors on expression of apoptosis-
regulating proteins. To elucidate the molecular mechanisms
underlying the effects of treatment with EGFR inhibitors in
OSCC cells, we examined the abundance of pro- and anti-
apoptotic proteins using Western blot analysis. Members of
the Bcl-2 and TAP families play important roles in modulation
of the intrinsic pathway (9). Treatment with C225 and AG1478
up-regulated levels of the pro-apoptotic proteins Bak and
Bax, and down-regulated levels of the anti-apoptotic proteins
Bcl-2 and Bel-xL (Fig. 5A), as well as cIAP-1 and XIAP
(Fig. 5B). However, no significant change in expression was
observed for cIAP-2 or survivin (Fig. 5B). These results suggest
that in OSCC cells, EGFR inhibitors can modulate cisplatin-
mediated apoptosis via expression of pro- and anti-apoptotic
proteins.

Discussion

EGEFR is expressed at high levels in SCC cells (14) and in
this study we demonstrated that the cell lines NA and Ca9-22
both expressed EGFR (Fig. 1) and showed constitutive
phosphorylation of EGFR and Akt (Fig. 4). The PI 3-K/Akt
pathway is important for promoting survival/death of cells
(29,31); it can be activated by EGFR signaling (29) and
inactivated by EGFR inhibitors (29,32). Constitutively-active
Akt may be involved in cellular resistance to EGFR inhibitors
such as cetuximab, gefinitib and erlotinib, and these inhibitors
have been shown to reduce Akt phosphorylation in SCC cells
(32-34). In the current study, we demonstrated that two EGFR
inhibitors, C225 (anti-EGFR mAb) and AG1478 (EGFR-TK
inhibitor) reduced phosphorylation of EGFR and Akt in
OSCC cells (Fig. 4), suggesting that they can modulate cell
survival via attenuation of EGFR and Akt activity.
Proliferation of OSCC cells was shown to be inhibited in
a dose-dependent manner by cisplatin, C225 or AG1478.
Interestingly, we observed a synergistic inhibition of growth
when cells were treated with combinations of either C225 or
AG1478 and sub-cytotoxic concentrations of cisplatin (Figs. 2
and 3). Moreover, our results indicated that this growth
inhibition resulted primarily from induction of apoptosis.
Previous studies have also shown that EGFR inhibitors can
enhance the anti-tumor activities of cytotoxic agents such as
cisplatin against SCC cells (21-25). However, the molecular
mechanisms underlying the effects of treatment with EGFR
inhibitors and cisplatin, such as inhibition of proliferation
and enhancement of apoptosis, remain unclear. In most
cancer cells, apoptosis is dependent upon the mitochondrial
‘intrinsic’ pathway, in which both caspase activation and
activity are tightly controlled (10,14). This process is regulated
by pro- and anti-apoptotic proteins, such as members of the
Bcl-2 and IAP families (9,10). While members of the Bcl-2
family regulate the mitochondrial pathway prior to caspase
activation, IAP proteins are believed to regulate apoptosis
following activation (35). For examples, caspase-9 activation
is inhibited by anti-apoptotic Bcl-2 family proteins such as
Bcl-2 and Bcel-xL, and facilitated by pro-apoptotic Bcl-2
family proteins such as Bax and Bak (36). In addition, active
forms of caspase-3, -6, -7 and -9 can be inhibited by XIAP
(35). Inhibition of cancer drug-induced apoptosis has been
shown to depend upon the activation of intact caspase cascades
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(37), and caspase-9 is the principal initiator caspase mediating
cisplatin-induced apoptosis in SCCs of the head and neck
(38). In cancer cells, overexpression of Bcl-2 (39), Bel-xL
(40) and XIAP (41) as well as mutations in Bax (42), have
been observed and not only have cisplatin-resistant SCC cells
been shown to overexpress Bcl-xL (37,43) and Bcl-2 (44),
they also fail to exhibit activation of caspase-3.

A variety of IAP antagonists significantly suppress the
growth of numerous types of human solid tumors in vivo, and
thus, represent novel prototypic anti-cancer drugs (45,46).
The results of this study suggest that pre-treatment of OSCC
cells with EGFR inhibitors can modulate expression of Bcl-2
and TAP family proteins, leading to enhancement of cisplatin-
mediated apoptosis.

In the current study, C225 and AG1478 regulated the
abundance of Bcl-2 family proteins in OSCC cells, reducing
the levels of Bcl-2 and Bcel-xL and increasing those of Bax
and Bak. This agrees with the findings of a previous study
that demonstrated a concomitant increase in Bax expression
and decrease in Bcl-2 expression following exposure of SCC
cells to C225 (17). In various cancer cells, AG 1478 and
gefitinib have been shown to induce expression of pro-apoptotic
members of the Bcl-2 family such as Bak, Bax and Bim and
to inhibit anti-apoptotic members such as Bcl-2 and Bcl-xL
(47). This is the first report that EGFR TK inhibitors regulate
expression of Bcl-2 family proteins in SCC cells. However, a
study has indicated that EGFR inhibitors do not affect the
levels of Bcl-2 family proteins (48). There are scant data
concerning the effects of EGFR inhibitors on the regulation
of IAP family proteins in cancer cells. We have shown that
although the levels of cIAP-1 and XIAP were down-regulated
by EGFR inhibitors, those of cIAP-2 and survivin were
not. EGFR antagonists (gefitinib, erlotinib) reduce cIAP-2
expression in intestinal epithelial cells (49). Although EGFR
activation did not affect XIAP levels in breast cancer cells
(50), recent studies have shown that activation results in up-
regulation of survivin (51,52). Therefore, further investigation
is required to determine whether or not whether EGFR
inhibitors can regulate the levels of IAP family proteins in
different types of cancer cells.

Gefitinib prevents phosphorylation of Bad (53) and in this
study we demonstrated that EGFR inhibitors (C225 and
AG1478) could also reduce its phosphorylation levels in OSCC
cells. Inactivated Bad binds to mitochondrial Bcl-2 and Bcl-xL,
preventing cytochrome c release and caspase-9 activation, and
thus, inhibiting their anti-apoptotic activities (54). A number
of studies have shown that the PI 3-K/Akt pathway also
regulates the levels of Bcl-2 and TAP family proteins (55,56),
and we have demonstrated that EGFR inhibitors reduce Akt
phosphorylation levels. In a previous study, we showed that the
PI 3-K inhibitors wortmannin and LY294002 also inhibited
Bad phosphorylation in OSCC cells (28). In SCCs, inhibition
of Akt phosphorylation is coupled with a significant decrease
in levels of the anti-apoptotic proteins Bcl-2 and Bel-xL (57).
The PI 3-K/Akt pathway can also inhibit the mitochondrial
pathway (58,59). Moreover, antisense molecules have been
shown to reduce Bcl-2 (60) and XIAP (61) levels, sensitizing
cancer cells to cisplatin-induced apoptosis.

In conclusion our studies demonstrate that in OSCC cells,
EGFR inhibitors (anti-EGFR mAb and EGFR TK inhibitor)
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regulate expression of pro- and anti-apoptotic proteins,
including members of the Bcl-2 and IAP families. We
observed that cisplatin-mediated apoptosis was enhanced
by co-treatment with EGFR inhibitors, and suggest that a
combination therapy may provide novel therapeutic options
for OSCC treatment. In general, EGFR inhibitors are well
tolerated in clinical trials (21-25), whereas cisplatin induces
a variety of severe toxic side effects. As the combinatorial
treatment can achieve clinical efficacy using a low dose of
cisplatin, it may overcome the challenges of cisplatin-related
toxicity (5). In addition, these combinatorial regimens may
be useful against patients that exhibit cisplatin resistance.
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