
Abstract. Decreased expression levels of EPHB6, a member
of the receptor tyrosine kinases (RTKs), are associated with
an increased risk of metastasis development in early stage
non-small cell lung cancer (NSCLC). However, the signaling
properties of the kinase-defective EPHB6 receptor are not
well-understood. Here, we show that expression of EPHB6
in A549 lung adenocarinoma cells led to phosphorylation of
the MAP kinase ERK. Conversely, siRNA based knockdown
of EPHB6 reversed ERK phosphorylation. Intriguingly,
EPHB6-induced phosphorylation of ERK was uncoupled
by activation of the Elk-1 transcriptional factor. These
analyses suggest that kinase defective EPHB6 can lead to
MAPK activation.

Introduction

The ERK1/2 (p44/42) mitogen-activated protein kinases
(MAPKs) are activated in response to a diverse range of
extracellular stimuli including mitogens, growth factors and
cytokines (1-3) and are of potential importance in the diagnosis
and treatment of cancers (4). MEK1 and MEK2 activate
ERK1/p44 and ERK2/p42 by phosphorylating activation loop
residues Thr202/Tyr204 and Thr185/Tyr187, respectively
(5,6). Several downstream targets of ERK1/2 have been
identified, including p90RSK (7) and the transcription factor

Elk-1 (8,9). ERK1/2 are negatively regulated by a family of
dual-specificity (Thr/Tyr) MAPK phosphatases, known as
DUSPs or MKPs, and pharmacologically by MEK inhibitors
such as U0126 and PD98059 (10).

EPH receptors form the largest known subfamily of
receptor tyrosine kinases, and to date, the EPH subfamily
contains 16 members in vertebrates (11,12). The EPH receptors
interact with a family of ligands located on the surfaces of
adjacent cells, named Ephrins including Ephrin-As and
Ephrin-Bs subgroups. The EPH receptors are also grouped
into two classes, EPHA receptors (EPHA1-A10) and EPHB
receptors (EPHB1-B6). These groups roughly correspond to
the receptor-ligand interaction (i.e., Ephrin-As show binding
preference for EPHA receptors, and Ephrin-Bs for EPHB
receptors). EPHB6 is a member of the EPH family, expression
of which is a favorable prognostic marker in neuroblastoma
(13-16), metastatic melanoma (17,18), breast cancer (19),
prostate carcinomas (20) and non-small cell lung cancer
(NSCLC) (21).

EPHB6 is a kinase-dead receptor tyrosine kinase in that its
kinase domain contains several alterations in conserved amino
acids and is catalytically inactive. The rather good prognosis
conferred by EPHB6 expression in several cancers might
therefore depend either on a dominant negative mechanism
or on specific signaling properties independent of intrinsic
kinase activity. Despite the defect of kinase domain, EPHB6
was reported to be phosphorylated by upstream Src family
kinase (22). However, the signaling pathways downstream
of EPHB6 are largely unknown. Here, we analyzed the
phosphorylation status of ERK MAPK to identify possible
signaling roles of EPHB6 in NSCLC. 

Materials and methods

Cell culture. A549 lung adenocarcinoma cells were cultured
in Dulbecco's modified Eagle's medium (DMEM, Invitrogen,
Carlsbad, CA, USA) supplemented with 10% fetal calf serum
(FCS), 2 mM L-glutamine, 100 U/ml penicillin and 100 μg/ml
streptomycin at 37˚C in 5% CO2.

Expression constructs and transfection. The coding region of
the human EPHB6 cDNA (base 833-3853 NCBI accession
no. NM_004445) was cloned into the pcDNA4 To/myc/hisA
expression vector (Invitrogen). Human A549 cells were
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transfected with either EPHB6 expression construct (pcDNA4-
EPHB6) or empty vector (pcDNA4) using Lipofectamine
transfection reagent (Invitrogen). Transfected cells were
selected with 400 μg/ml Zeocin (Invitrogen). The expression
of EPHB6 was verified by quantitative real-time RT-PCR
and Western blotting.

RNA isolation and reverse transcription. Total RNA was
isolated using TRIzol reagent (Invitrogen). A total amount
of 1 μg of RNA from each sample was treated with DNase I,
then reverse-transcribed using random primers and MMLV
reverse transcriptase according to the protocol of the manu-
facturer (Promega, Madison, WI, USA).

Western blot analyses. For preparation of whole-cell lysates,
cells were washed with ice-cold PBS and lysed for 30 min on
ice in RIPA buffer with 150 mM NaCl as described (23). Cell
lysates were cleared at 20,000 g for 10 min. After adjustment
of protein concentrations, the lysates were heated in SDS
sample loading buffer at 72˚C for 10 min and separated by
SDS-polyacrylamide gel electrophoresis (PAGE, 4-12%,
Invitrogen). Gels were blotted on a polyvinylidene difluoride
(PVDF) membrane (Immobilon P, Millipore, Bedford, MA,
USA) and stained with the indicated first antibody [anti-human
EPHB6 (1 μg/ml, From Santa Cruz Inc., Santa Cruz, CA,
USA or ABGENT, San Diego, CA, USA), anti-human
phosphorylated or total ERK (1:1000 dilution, from Cell
Signaling Technology, Inc., Danvers, MA, USA), and anti-
human ß-actin (40 ng/ml, Santa Cruz Inc.). Antibody binding
was detected with horseradish peroxidase (HRP)-coupled
secondary antibody followed by chemiluminescence detection
(ECL Plus; Amersham Pharmacia, Uppsala, Sweden).

PathDetect Trans-Reporter Assay for the activity of Elk-1.
The Elk-1-mediated transcriptional activity was assayed
using a PathDetect kit (Stratagene, La Jolla, CA, USA). Cells
stably expressing pcDNA4 or EPHB6 were seeded in 24-well
plates and maintained as described above. The cells were
transfected with 1 μg of pFR-Luc, 50 ng of pFA2-Elk1 and
0.1 μg of pRL-SV40 Vector (Renilla luciferase control vector)
as an internal control. 

To identify the effects of transient expression of EPHB6,
1 μg of pcDNA4-EPHB6 or empty vector pcDNA4 was co-
transfected into A549 cells with 1 μg of pFR-Luc, 50 ng of
pFA2-Elk1 and 0.1 μg of pRL-SV40 Vector. 

Twenty-four hours after transfection, cells were lysed and
the Dual luciferase assay was performed with the Luciferase
Reporter Assay Kit (Promega). Data were normalized by the
activity of Renilla luciferase reporter vector.

Gene knock-down by siRNA. siRNA for human EPHB6 and
scrambled negative control siRNA were both designed,
synthesized and labeled with Alexa 555 by Qiagen (Hilden,
Germany). Transfection was performed with Lipofectamine
2000 reagent (Invitrogen) and efficiency was tested by
fluorescence-activated cell sorting (FACS). The mRNA levels
of EPHB6 were detected by quantitative real-time RT-PCR
24 h after transfection, and protein levels were detected by
Western blotting 30 h after transfection.

Statistical analyses. Quantitative data are presented as mean
± standard deviation. Statistical analyses were performed
using SPSS, version 10.0 (SPSS Science, Chicago, IL, USA).
Statistical differences between two independent groups were
analyzed by the Student's t-test. P-values with <0.05 were
considered as significant.

Results and Discussion

ERK MAPK was potentially activated by EPHB6 in A549
NSCLC cells. To examine the signaling transduction properties
of EPHB6 in NSCLC, we established A549 cell lines stably
expressing EPHB6 (A549-EPHB6) or the empty vector control
(A549-pCDNA4). All experiments were performed with bulk
culture cells to preclude clone specific effects. EPHB6 expres-
sion was verified by quantitative real-time RT-PCR at the
mRNA level (Fig. 1A) and by Western blotting at the protein
level (Fig. 1B). The results indicated that EPHB6 expression
occurred in a range comparable with normal lung tissue. 

In A549-EPHB6 cells, we analyzed STAT5, ERK and AKT
by Western blotting for phosphorylation. As a result, STAT5
and AKT were both unaffected (data not shown), whereas ERK
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Figure 1. Generation of lung adenocarcinoma cells with EPHB6 re-expression. The expression of the transfected EPHB6 in bulk cultures transfected with
either EPHB6 or the empty control vector was shown. (A) Quantitative real-time RT-PCR at mRNA level; and (B) Western blotting at protein level with
ß-actin used as loading control. *P<0.05 versus control.
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was strongly activated (Fig. 2A), which could be suppressed
by PD98059 (Fig. 2B), a specific ERK pathway inhibitor.
Furthermore, ERK phosphorylation was induced in a ligand-
independent manner. EPHB6 expression in the absence of
Ephrin-B2 ligand still conferred constitutive activation of
ERK (Fig. 2C). 

To further confirm the association between EPHB6 and
ERK, we performed additional siRNA experiments. Since
all established lung cancer cell lines expressed low levels of
EPHB6 (data not shown), we used siRNA to suppress EPHB6
in A549-EPHB6 cells. EPHB6-siRNA repressed EPHB6
mRNA levels by ~40% (Fig. 3A), and protein expression was
repressed as well (Fig. 3B). The siRNA mediated suppression
of EPHB6 resulted in a marked reduction of ERK activation
indicating that ERK phosphorylation was initiated by the
expression of EPHB6 (Fig. 3C). 

The aforementioned results suggested that ERK MAPK
was a downstream signaling molecule of EPHB6. Our finding
that EPHB6 enhances phosphorylation of ERK MAPK is
different from a previous report that EphB6 does not activate
the MAPK pathway in Jurkat T cells (24). One possible
reason for this discrepancy is tissue specificity of EPHB6.

EPHB6-induced phosphorylation of ERK MAPK was
uncoupled with the activation of Elk-1. Elk-1 is a direct
nuclear target of ERK MAPK. As a transcription factor,
Elk-1 is a component of the ternary complex that binds the
serum response element and mediates gene activity in response
to serum and growth factors (8,9,25). Elk-1 appears to be a
direct substrate for activated ERK MAPK and the kinetics
of Elk-1 phosphorylation and activation correlate with the
activity of ERK. Also, interfering mutants of ERK blocked
Elk-1 activation in vivo (26,27). 

To determine whether EPHB6 affects the activation of
Elk-1 in A549 cells, we used the PathDetect trans-reporting
system, which allows analysis of the pathway with high
sensitivity and specificity. In this system, the fusion protein
consisting of the activation domain of transcription activator
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Figure 2. EPHB6 expression leads to ERK MAPK phosphorylation. The phosphorylation of ERK is detected by Western blotting in A549-pcDNA4 or
A549-EPHB6 cells. (A) In A549-EPHB6 cells ERK is highly phosphorylated, which could be suppressed by ERK pathway inhibitor 50 μM PD98059 (B). (C)
Ephrin-B2-Fc or naked Fc (R&D Systems) as control was preclustered by anti-human IgG (Jackson ImmunoResearch Laboratories) at a ratio of 1:2 were
applied to the cultured A549-EPHB6 cells. After 30 min, in the concentration from 0 to 4 μg/ml, neither Ephrin-B2-Fc nor Fc altered the constitutive
activation of ERK. 

Figure 3. Suppression of EPHB6 by siRNA decreases ERK phosphorylation.
(A) A549-EPHB6 cells were transfected with siRNA against EPHB6 or
scrambled siRNA as control. EPHB6 mRNA levels were analyzed by
quantitative real-time RT-PCR. Data from three independent experiments
were analyzed indicating a decrease of 40% by EPHB6 specific siRNA
(*P<0.05 versus scrambled control). (B) EPHB6 was also knocked-down by
its specific siRNA at protein levels. (C) The phosphorylation status of ERK
was determined in EPHB6 siRNA or scrambled siRNA-transfeced cells.
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and the yeast GAL4 DNA binding domain is analyzed.
Luciferase expression is activated when the transcription
activation domain of the fusion protein is phosphorylated
and the fusion protein binds to the promoter of the luciferase
reporter gene containing GAL4 binding sites. 

The phosphorylation of ERK due to EPHB6 expression
suggested that Elk-1 as a downstream effector would be
activated as well. On the contrary, stable expression of EPHB6
significantly attenuated the Elk-1 reporter activity as compared
to controls transfected with the empty plasmid (Fig. 4A).
Also, the transiently EPHB6-transfected A549 cells elicited a
reduction in Elk-1 reporter activity to ~50% as compared to
that obtained with the same dose of the control plasmid
(Fig. 4B). Thus, enhanced phosphorylation of ERK by
EPHB6 overexpression was not coupled with augmented
phosphorylation/activation of Elk-1. 

We have recently identified human RTKs whose expression
is associated with metastasis development in early stage
NSCLC. Expression of several RTKs was associated with an
increased frequency of metastasis development. Importantly,
EPHB6 was one out of two RTKs associated with a reduced
risk of metastasis (21). It is tempting to speculate that the
EPHB6 associated uncoupling of signals between ERK and
Elk-1 might be related to the favorable role of EPHB6 in
NSCLC.

Uncoupling between ERK and Elk-1 activation has been
reported, for example, after expression of the kinase suppressor
of Ras (KSR) (28), Grb2 associated binder 1 (Gab2) (29) and
candidate tumor suppressor Disabled-2 (30). Our finding is
also in accordance with a previous report that enhanced
NGF-induced phosphorylation of ERK was uncoupled with
the activation of Elk-1 in Ndrg4-C2-overexpressed PC12 cell
lines (31). The uncoupling of ERK and Elk-1 is acting not
unique for EPHB6, but can be induced by several signaling
molecules. 

Taken together, our current study provides evidence for
activation of the ERK MAPK by EPHB6. This activation is
not coupled with effective downstream signaling towards Elk-1

transcription factor activity. To the best of our knowledge,
EPHB6 is now merely looked upon as a biomarker in certain
kinds of tumors (13-21), whereas its functional roles in the
tumorigenesis and metastatic process have not been reported
systematically. Our findings suggest a role for EPHB6 in
cellular signal transduction. 
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