
Abstract. Neuroblastoma is a pediatric solid tumor that
exhibits striking clinical bipolarity. Despite extensive efforts
to treat unfavorable neuroblastoma, survival rate of children
with the disease is among the lowest. Previous studies suggest
that EPHA2, a member of the EPH family receptor kinases,
can either promote or suppress cancer cell growth depending on
cellular contexts. In this study, we investigated the biological
significance of EPHA2 in neuroblastoma. It was found that
tumorigenic N-type neuroblastoma cell lines expressed
low levels of EPHA2, whereas hypo-tumorigenic S-type
neuroblastoma cell lines expressed high levels of EPHA2
(p<0.005). Notably, inhibitors of DNA methylation and
histone deacetylase enhanced EPHA2 expression in N-type
cells, suggesting that EPHA2 is epigenetically silenced in
unfavorable neuroblastoma cells. Furthermore, ectopic
high-level expression of EPHA2 in N-type neuroblastoma
cell lines resulted in significant growth suppression. However,
Kaplan-Meier survival analysis showed that high EPHA2
expression was not associated with a good disease outcome
of neuroblastoma, indicating that EPHA2 is not a favorable
neuroblastoma gene, but a growth suppressive gene for
neuroblastoma. Accordingly, EPHA2 expression was markedly
augmented in vitro in neuroblastoma cells treated with
doxorubicin, which is commonly used for treating unfavorable
neuroblastoma. Taken together, EPHA2 is one of the effectors
of chemotherapeutic agents (e.g., gene silencing inhibitors

and DNA damaging agents). EPHA2 expression may thus
serve as a biomarker of drug responsiveness for neuroblastoma
during the course of chemotherapy. In addition, pharmaceutical
enhancement of EPHA2 by non-cytotoxic agents may offer
an effective therapeutic approach in the treatment of children
with unfavorable neuroblastoma. 

Introduction

Neuroblastoma is a neural crest-derived tumor and is the
most common extracranial pediatric malignancy. The tumor
accounts for 7-10% of all childhood cancers and is the cause
for ~15% of fatalities in children with cancer. Neuroblastoma
is unique because of its propensity to exhibit either a favorable
or an unfavorable phenotype. Favorable neuroblastomas
undergo spontaneous regression or maturation or are curable
by surgical removal with or without adjuvant chemotherapy.
In contrast, unfavorable neuroblastomas exhibit unrestrained
growth despite the most intensive treatment (1). 

EPHA2 is a member of the EPH (erythropoietin-producing
hepatoma amplified sequence) family receptor tyrosine
kinases. Like most EPH family receptor tyrosine kinases,
EPHA2 is expressed during early development (2), but its
expression is also detected in adult epithelial cells (3).
Although specific cellular functions of EPHA2 in normal
epithelia are not well understood, several studies suggest
potential roles for EPHA2 in the control of cell growth,
survival, migrations, and angiogenesis (4-8). EPHA2 is
overexpressed and functionally altered in a variety of solid
tumors, including colon cancer, glioma/glioblastoma,
mammary cancer, melanoma and prostate cancer (5,9-17).
EPHA2 expression is thus linked to the regulation of cellular
behavior that confer a metastatic phenotype. In contrast,
EPHA2 promotes apoptosis and suppresses growth of lung
cancer, breast cancer, and melanoma cells (18-20). EPHA2
also acts as a tumor suppressor in a chemically-induced skin
cancer model in mouse (21). In addition, EPHA2 transcription
is regulated by p53 (18,19). These observations suggest that
EPHA2 can exhibit opposite biological effects: promotion
or suppression of cell growth on cancer cells depending
upon their cellular context. In this study, we investigated
the biological significance of EPHA2 in neuroblastoma.
Our results show that EPHA2 is a neuroblastoma growth-
suppressive gene and that EPHA2 expression has potential
therapeutic and clinical applications in neuroblastoma. 
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Materials and methods

Neuroblastoma cell lines. All neuroblastoma cell lines were
grown in RPMI-1640 supplemented with 5% fetal bovine
serum and 1% OPI (Gibco, Grand Island, NY). These cell
lines were tested negative for mycoplasma, and their identity
was validated by the original source or by microsatellite
analysis. NBL-S was obtained from Dr Susan L. Cohn
(University of Chicago). OAN, SKNAS, LHN, KAN, SAN,
LAN5, KPN, LA1-55N, LA1-5S, KCN, and KCNR were
from Dr C. Patrick Reynolds (Children's Hospital Los
Angeles, CA). Nb69, IMR5 (a clone of IMR32), and
CHP134 were from Dr Roger H. Kennett (Department of
Biology, Wheaton College, Wheaton, IL; a former faculty
member of Department of Human Genetics, The University
of Pennsylvania School of Medicine). SY5Y and SHEP were
from Dr Robert Ross (Fordham University, Bronx, NY).
NGP, NMB, and NLF were from Dr Garrett M. Brodeur
(The Children's Hospital of Philadelphia). CHP902 was
established by Dr Hiro Kuroda (The Children's Hospital of
Philadelphia). CHP901 and CHP902R were established by
Dr Naohiko Ikegaki.

Primary neuroblastoma tumor samples. Fifty neuroblastoma
tumor specimens were obtained from the Tumor Bank of
the former Pediatric Oncology Group, the Tumor Bank of
the Children's Hospital of Philadelphia, and Memorial Sloan-
Kettering Cancer Center. The neuroblastoma cohort included
10 of stage 1, 8 of stage 2, 5 of stage 4S, 12 of stage 3, and
15 of stage 4. Among these, 9 are MYCN-amplified (18%).
Of 50 neuroblastoma specimens, 49 had survival data. The
neuroblastoma cohort was verified by the results of Kaplan-
Meier analyses, which demonstrated that the established
prognostic markers of neuroblastoma (age, stage, MYCN
amplification, EPHB6) predict disease outcome in this
cohort. The clinical correlative studies were performed at the
Children's Hospital of Philadelphia, and the use of human
tumor samples for this study was reviewed and approved by
its institutional review board. 

Quantitative reverse transcription-PCR (RT-PCR). RNAs were
isolated from neuroblastoma cell lines or primary neuro-
blastoma tumors using the Qiagen RNeasy kit. Experimental
procedures for the quantitative RT-PCR were previously
described elsewhere (22,23). Primer sequences for EPHA2
are 5'-TGCAGCAGTATACGGAGCAC-3', and 5'-TTCACC
TGGTCCTTGAGTCC-3'.

Preparation of 5AdC, 4PB, and doxorubicin. 5-Aza-2'-
deoxycytidine or 5AdC (Fluka) and sodium 4-phenylbutyrate
or 4PB (Aldrich) were prepared as previously described (23).
Doxorubicin (Sigma) was prepared by dissolving in acidic
H2O at the concentration of 2.5 mg/ml as a stock. 

Western blot analysis. Western blot was performed according
to the method previously described (24) except SuperSignal
West Dura Extended Duration Substrate (Pierce) was used.
Light emission signals were captured by either a Versadoc
5000 (Bio-Rad) or a LAS-3000 (Fuji) digital image analyzer.
Cell extracts were made in the 2D gel sample buffer (9 M

urea, 2% Nonidet-P40, 2% 2-mercaptoethanol, and 0.32%
pH 3-10 2D Pharmalyte) and the protein content of the
samples was determined by the Bio-Rad protein assay kit
using bovine serum albumin as a standard and the sample
buffer as the blank. The anti-EPHA2 mouse monoclonal
antibody D7 was purchased from Upstate USA, Inc. The
monoclonal antibody specific for p53, PAB1801, was
purchased from Santa Cruz Biotechnology. The monoclonal
antibody specific for p21waf1, EA10, was purchased from
Calbiochem. 

Transient transfection of neuroblastoma cells with EPHA2.
A cDNA clone of human EPHA2 (3) was subcloned into
pCI-neo mammalian expression vector (Promega). Neuro-
blastoma cell lines were transfected with pCI-neo or pCI/
EPHA2 by electroporation using a Gene Pulser Xcell electro-
porator (Bio-Rad) (120 V, 25 msec, a single square wave). 

MTT assay. One and a half million SY5Y or IMR5 cells were
transfected by electroporation with either pCI-neo eukaryotic
expression vector (Invitrogen) alone or the vector containing
a human EPHA2 cDNA. The resulting transfectants were
plated into 6 wells of a 24-well plate and selected for 5 days
with 500 μg/ml neomycin. After selection, the cells were
treated with 0.5 μg/ml MTT for 4 h to stain viable cells and
to examine the effect of EPHA2 on growth of neuroblastoma
cells.

Statistical analysis. A ¯2 test with Yates' correction was
employed to examine statistical significance of EPHA2
expression in neuroblastoma cell lines. Survival probabilities
in neuroblastoma subgroups were estimated according to the
methods of Kaplan and Meier (25). Survival distributions were
compared using log-rank tests (26). P<0.05 was considered
statistically significant. 

Results

Neuroblastoma cell lines derived from unfavorable neuro-
blastoma express low levels of EPHA2. We first examined
EPHA2 expression in 23 neuroblastoma cell lines and deter-
mined its expression pattern. As shown in Fig. 1, among the
cell lines, N-type neuroblastoma cells expressed low levels of
EPHA2. In contrast, S-type neuroblastoma cell lines (SHEP and
LA1-5S) expressed high levels of EPHA2, and this differential
expression was statistically significant (p<0.005). The above
observation was intriguing because S-type neuroblastoma
cells are known to be hypo-tumorigenic in mouse xenograft
models and are considered more benign than N-type cells
(27,28). 

EPHA2 expression is silenced in N-type neuroblastoma cell
lines. Our gene profiling study has shown that treatment of
the neuroblastoma cell line IMR5 with inhibitors of DNA
methylation and HDAC resulted in an increased EPHA2
expression (Tang and Ikegaki, unpublished data). In this
report, we confirmed the previous observation by quantitative
RT-PCR. As shown in Fig. 2, EPHA2 expression was
significantly increased in neuroblastoma cell lines IMR5,
CHP134 and SY5Y upon treatment with inhibitors of DNA
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methylation (5-Aza-2'-deoxycytidine or 5AdC) and HDAC
(sodium 4-phenylbutyrate or 4PB). 

Forced expression of EPHA2 in unfavorable neuroblastoma
cells results in growth suppression. The facts that EPHA2
expression is low in N-type neuroblastoma cells, and that gene
silencing inhibitors suppress growth of these neuroblastoma

cells (23) and can increase EPHA2 expression suggest that
high EPHA2 expression confers a growth suppressive effect
on tumorigenic N-type neuroblastoma cell lines. We therefore
examined the effect of forced EPHA2 expression on two
N-type neuroblastoma cell lines (SY5Y and IMR5). SY5Y
is a MYCN-non-amplified neuroblastoma cell line and
IMR5 is a MYCN-amplified line, which express low levels
of endogenous EPHA2 (Fig. 1). As shown in Fig. 3A,
transfection of SY5Y and IMR5 with an EPHA2 cDNA, in
fact, significantly inhibited the clonogenicity in vitro. The
expression of EPHA2 protein in the transfectants was also
confirmed by Western blot analysis (Fig. 3B). These EPHA2
transfectants expressed EPHA2 protein at similar levels to
that in SHEP cells. 

EPHA2 expression is not associated with neuroblastoma
disease outcome. The above results indicate that EPHA2
shares several characteristics with favorable neuroblastoma
genes (EPHB6, EFNB2, EFNB3, TrkA, CD44 and MIZ-1)
(22,23,29). Their expression is low in neuroblastoma cell
lines and can be enhanced by gene silencing inhibitors. In
addition, forced expression of these genes in neuroblastoma cell
lines results in growth suppression. We therefore investigated
whether or not EPHA2 expression would be associated with
disease outcome of neuroblastoma in a cohort of 50 primary
tumors. This cohort was representative of the general neuro-
blastoma population as the expression of known favorable
neuroblastoma genes such as EPHB6 and TrkA was associated
with disease outcome (data not shown). As shown in Fig. 4,
the Kaplan-Meier analysis demonstrated that high EPHA2
expression was not associated with a good disease outcome
of neuroblastoma. Hence, EPHA2 is not a favorable neuro-
blastoma gene (see Discussion), but a growth suppressive
gene for neuroblastoma. 
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Figure 1. EPHA2 expression in neuroblastoma cell lines. Quantitative RT-PCR was used to assess levels of EPHA2 expression in neuroblastoma cell lines.
Neuroblastoma cell lines derived from unfavorable neuroblastoma express low levels of EPHA2. However S-type neuroblastoma cells (SHEP and LA1-5S),
which are more benign as they seldom form tumors in nude mice, express high levels of EPHA2. Differential expression of EPHA2 was examined by a ¯2 test
with Yates' correction. 

Figure 2. Inhibitors of DNA methylation and HDAC enhance EPHA2
expression in neuroblastoma cells. EPHA2 expression is enhanced by 5AdC
and 4PB in neuroblastoma cell lines. EPHA2 expression in neuroblastoma
cell lines was examined using quantitative RT-PCR. SY5Y is a MYCN
non-amplified cell line. IMR5 and CHP134 are a MYCN-amplified cell
lines. These cells were treated with 5AdC (2.5 μM) and/or 4PB (2.5 mM)
for 4 days and subjected to the gene expression studies. Levels of EPHA2
expression were presented as fold increase over control (no drug treated
cells). 
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Doxorubicin augments the expression of EPHA2 in neuro-
blastoma cells. The growth suppressive effect of EPHA2 on
tumorigenic N-type neuroblastoma cells suggests that
EPHA2 is potentially involved in the drug responsiveness
of unfavorable neuroblastoma. We therefore examined

EPHA2 expression in neuroblastoma cell lines treated with
doxorubicin, a commonly used chemotherapeutics for patients
with neuroblastoma. As shown in Fig. 5A, treatment of
SY5Y and IMR5 neuroblastoma cells with doxorubicin
resulted in a significant increase in EPHA2 transcript
expression. Thus, EPHA2 is a doxorubicin-inducible gene.
Furthermore, Western blot analysis showed that EPHA2
expression was up-regulated in the doxorubicin-treated IMR5
cells in a time-dependent fashion. The increase in EPHA2
expression was accompanied by a similar time-dependent
increase in p53 as well as p21WAF1, a p53 target in these cells
(Fig. 5B). As EPHA2 is a known target of p53 (18,19), this
result suggests that the effect of doxorubicin on the increase
in EPHA2 expression is mediated by p53. To address this
question, IMR5 cells were treated with CoCl2, which is
known to mimic hypoxia and increases p53 expression (30).
The expression of EPHA2, p53 and p21waf1 was then examined
in the treated cells. As shown in Fig. 5B, the CoCl2 treatment
caused a marked increase in p53 and p21waf1 expression in a
time dependent fashion but resulted only in a slight increase
in EPHA2 expression. 

Discussion

We previously mapped the human EPHA2 gene (or ECK) to
1p36.1 (31), a region where putative neuroblastoma tumor
suppressor genes have been suggested (32). Extensive efforts
from several laboratories have focused on mutation analysis
on the genes localized to the 1p36 region to identify putative
tumor suppressor genes of neuroblastoma. However, no
consistent gene mutation in any gene in this region has
been found so far. One exception to this is KIF1B, where
mutations in this gene were found in a small number of
familial neuroblastoma cases (33). Nevertheless, because
of its chromosomal localization, mutation analysis was
performed for the EPHA2 gene in a dozen neuroblastoma
cell lines. We found no mutation in EPHA2 in the cell lines
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Figure 3. Forced expression of EPHA2 in neuroblastoma cell lines results in
growth suppression. (A) A full-length cDNA of EPHA2 was cloned into a
eukaryotic expression vector, pCI-neo (Promega). IMR5 and SY5Y cells were
transfected with either the vector control or the pCI/EPHA2 cDNA construct
by electroporation. The resulting transfectants were selected by neomycin
(500 μg/ml) for 4 days. MTT assay was used to assess viable cells in each
culture on the seventh day. (B) Expression of EPHA2 protein in the EPHA2
transfectant neuroblastoma cells. SHEP was used as a positive control. 

Figure 4. EPHA2 expression is not associated with outcome of neuroblastoma. Survival probabilities of two groups of neuroblastomas with low- or high-level
EPHA2 expression were estimated by the method of Kaplan-Meier. The median expression value of EPHA2 based on the entire cohort (n=50) was used as a cut-off
to define high- and low-expression subgroups. Of 50 neuroblastoma specimens, 49 had survival data. The same analysis was performed for TrkA and EPHB6
as a comparison. Five-year survival was calculated for each group, and the log-rank test was used to compare survival probabilities of the two groups. 
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examined (Kung and Ikegaki, unpublished data), indicating
that EPHA2 is not a classic tumor suppressor gene. Rather,
results of this study suggest that the low expression of EPHA2
in neuroblastoma cell lines is due to an epigenetic mechanism.
In fact, similar observations were previously made in genes
residing in 1p36. These include ZBTB17 (MIZ-1) (29) and
CHD5 (34,35). 

As mentioned earlier, EPHA2 is not a favorable neuro-
blastoma gene, as its expression does not predict neuroblastoma
disease outcome. This is an unexpected finding because 1p
deletion is associated with a poor disease outcome of neuro-
blastoma (36,37) and EPHA2 resides in this region of
chromosome (31) and is subjected to epigenetic silencing
(this study). This inconsistency may be explained by the
fact that S-type cells express EPHA2 at very high levels in
comparison to N-type cells. As has been reported, primary
neuroblastomas are composed of a mixture of neuroblastic
and Schwannian stroma cells of a common tumor progenitor
cell origin, and their proportional representation may vary
in given tumors (38). We speculate that the progressive
neuroblastomas expressing high EPHA2 at diagnosis may
have included a greater number of Schwannian stroma cells,
an equivalent to S-type cells in vitro, but neuroblastic and
perhaps neuroblastoma stem cells, in vivo equivalents of
N-type and/or ‘I-type’ cells (28), respectively (39), may
eventually dominate, leading to a poor outcome. 

The effect of ectopic overexpression of EPHA2 on growth
of neuroblastoma cell lines (Fig. 4) and the augmentation on
EPHA2 expression by doxorubicin in neuroblastoma cells
(Fig. 5) have their own biological and clinical implications.
Firstly, although EPHA2 expression was augmented along
with a p53 up-regulation by doxorubicin, p53 expression
induced by CoCl2 had a small effect on the expression of
EPHA2 in neuroblastoma. These observations suggest that
EPHA2 expression can be augmented by both p53-dependent

and p53-independent mechanisms in neuroblastoma cells.
Secondly, our results suggest that high-level EPHA2 expression
is incompatible with the aggressive growth of unfavorable
neuroblastoma cells. Moreover, the fact that doxorubicin
effectively induces EPHA2 expression in unfavorable neuro-
blastoma cells could explain why cytotoxic drugs are effective
during the initial course of treatment in patients with neuro-
blastoma (Fig. 5). However, the cytotoxic drugs may also
cause genetic changes that would ultimately lead to the drug
resistance phenotype of unfavorable neuroblastoma cells
(40,41). If so, pharmaceutical augmentation of EPHA2 by
non-cytotoxic agents would be among the attractive therapeutic
approaches in treatment for children with unfavorable neuro-
blastoma. 

Our previous study has demonstrated that epigenetic
silencing inhibitors suppress neuroblastoma growth in vitro
and in vivo (23). In this study, we have shown that chemo-
therapeutic agents such as gene silencing inhibitors (Fig. 2)
and doxorubicin (Fig. 5) markedly increase EPHA2 expression
in neuroblastoma cells. In addition, we have observed that
13-cis-retinoic acid (a current maintenance therapy agent for
neuroblastoma) alone or its combination with an HDAC
inhibitor MS-275 enhances EPHA2 expression in neuro-
blastoma cells (Ikegaki and Tang, unpublished data). Together
these observations suggest that EPHA2 expression can be
considered a biomarker of drug responsiveness during the
course of chemotherapy of unfavorable neuroblastomas. 
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Figure 5. Chemotherapeutics enhances EPHA2 expression in neuroblastoma cells. (A) Doxorubicin enhances the expression of EPHA2 in SY5Y and IMR5
neuroblastoma cells. SY5Y and IMR5 cells were treated with 0.5 μg/ml doxorubicin for eight hours, and then subjected to RT-PCR analysis for EPHA2
expression. (B) Treatment of the neuroblastoma cell line IMR5 with doxorubicin or CoCl2 results in concomitant up-regulation of EPHA2, p53 and p21WAF1.
IMR5 cells were treated with either 0.5 μg/ml doxorubicin or 250 μM CoCl2 for the time indicated and are subjected to Western blot analysis using antibodies
specific for the proteins indicated. 
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