
Abstract. It remains a critical issue to improve the survival
rate in patients with recurrent or metastatic breast cancer.
This study sought to develop a prognostic scheme based on a
28-gene signature in a broad patient population, including
those with advanced disease. Clinically annotated transcrip-
tional profiles of 1,734 breast cancer patients were obtained
to validate the 28-gene signature in prognostic categori-
zation. The 28-gene signature generated significant patient
stratification with regard to breast cancer disease-free
survival (log-rank P<0.0001; n=1,337) and overall survival
(log-rank P<0.0001; n=806) in Kaplan-Meier analyses. The
gene expression signature provides refined prognosis of
disease-free survival (log-rank P<0.006; Kaplan-Meier
analysis) within each classic clinicopathologic factor-defined
subgroup, including LN-, LN+, ER-, ER+ and tumor grade II.
Furthermore, it was investigated whether this gene signature
predicts chemoresponse to drugs commonly used to treat
breast cancer. The mRNA expression levels of this gene
signature in NCI-60 cell lines were used to predict chemo-
response to CMF, tamoxifen, paclitaxel, docetaxel, and
doxorubicin (adriamycin). The 28-gene prognostic signature
accurately (P<0.02) predicted chemotherapeutic response to
the studied drugs. This study confirmed the prognostic
applicability of the breast cancer gene signature in a broad

clinical setting. This prognostic signature is also predictive of
drug response in cancer cell lines.

Introduction

Breast cancer is a complex and heterogeneous disease encom-
passing a wide variety of pathological entities, clinical
behaviors and molecular changes. Patients with the same
disease stage or histopathology classification may have
remarkably different clinical outcome and response to
various therapies. During the past decades, the overall risk of
mortality due to breast cancer has been declining with earlier
detection and the development of advanced therapies (1).
However, the survival rate has not been substantially improved
for patients with recurrent or metastatic breast cancer (2).
One of the main obstacles to improve the survival rate is to
accurately predict the risk for recurrence in breast cancer
patients after initial treatments. High-risk patients should be
considered for more aggressive therapy. Following this,
another essential issue in clinics is to predict the predisposi-
tion to certain chemotherapeutic agents in individual patients.

Substantial efforts have been made to establish the prog-
nostic factors for patients with breast cancer during the last
two decades. Traditional prognostic factors are lymph node
status, tumor size, histologic type, histologic grade, lymphatic
vessel invasion and hormone receptor status (3). With the
development of molecular biology and cell biology, many
new prognostic factors have been proposed, including
markers that regulate cell cycle, cell death, Her2/neu, markers
of metastasis or metastatic process, lymph node microme-
tastases, bone marrow micrometastases and markers of
angiogenesis (4). Recent advances in DNA microarrays have
fostered tremendous advances in molecular diagnosis and
prognosis of breast cancer (5-19). Gene expression-based
signatures such as MammaPrint® (13,19) and Oncotype DX
(9) have been applied in clinics for more refined prognosis in
early-stage breast cancer patients. Breast cancer patients with
advanced stages generally receive chemotherapy, but only
about half of them benefit from it (20). It remains a critical
challenge to identify patients at high-risk for recurrence after
primary chemotherapy. These high-risk patients should be
considered for second-line chemotherapy. A population-
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based prognostic gene signature is needed for devising more
rational treatment options in breast cancer treatment.

In a previous study, we identified a 28-gene signature
from an unselected population of 99 lymph node-negative
and -positive breast cancers obtained from Sotiriou et al (12),
and validated this gene signature in additional 153 patients
for prognostic prediction of breast cancer recurrence and
metastasis (21). To demonstrate the clinical applicability of
this gene signature, a consistent prognostic categorization
scheme needs to be designed for gene expression profiles
generated from current DNA microarray platforms. This stra-
tification scheme was developed by using a nearest centroid
method and was comprehensively evaluated in seven
independent breast cancer patient cohorts (n=1,734) in this
study. The association between the gene signature and
traditional breast cancer prognostic factors was assessed in
the prediction of disease-free survival and overall survival.

Next, we sought to explore whether this prognostic gene
signature is also predictive of chemoresponse to drugs com-
monly used for treating breast cancer. The studies assessing
treatments are typically carried out in patients with advanced
disease, who do not routinely undergo surgery. Therefore, it
raises tremendous logistical issues to implement the (unbiased)
genome-wide association studies using tissue samples for
predicting treatment responses (22). As an alternative strategy,
preclinical models such as cell line or animal models are
used for searching predictive gene expression signatures and
then validate them in clinics, thereby reducing the number of
patients required for tissue collection. In this study, we used
a panel of 60 cancer cell lines (NCI-60) to evaluate whether
the 28-gene signature can accurately predict chemosensitivity/
resistance to CMF, tamoxifen, paclitaxel, docetaxel, and
doxorubicin (adriamycin). Furthermore, gene markers that
showed significant differential mRNA expression between
sensitive and resistant beast cancer cells lines were identified
for each drug.

Materials and methods

Patient samples. Seven breast cancer patient cohorts were
analyzed in this study. These datasets include patients from
Bild et al (5) (n=158; GEO accession number, GSE3143),
Sorlie et al (23) (n=117; GEO accession number, GSE4335),
Wang et al (14) (n=286; GEO accession number, GSE2034),
Van de Vijver et al (13) (n=295), Miller et al (17) (n=236;
GEO accession number, GSE3494), Loi et al (24) (n=393;
GEO accession number, GSE6532), and Ivshina et al (25)
(n=249; GEO accession number, GSE4922). Patient cohorts
from van de Vijver et al (13), Sorlie et al (23), Wang et al
(14), Ivshina et al (25) and Loi et al (24) had recorded disease-
free survival (either relapse-free survival and/or metastasis-
free survival). Patient cohorts from van de Vijver et al (13),
Sorlie et al (23), Bild et al (5) and Miller et al (17) had
recorded overall survival information. A more detailed descrip-
tion of each patient cohort is available (data not shown).
(http://www.hsc.wvu.edu/mbrcc/fs/GuoLab/publications.asp).

Nearest shrunken centroid classification. Nearest shrunken
centroid method is an efficient classification algorithm. This
algorithm categorizes an unknown instance to the class

whose centroid is closest to it. It considers the centroid of the
cluster as a representative of the class. The learnt distance
function is used to determine the closest centroid (26). For
cases involving two classes, the nearest centroid algorithm is
linear and implicitly encodes a threshold hyperplane that
separates the two classes (27).

Specifically, the arithmetic mean of a class Cj represents
the prototype pattern (i.e., the average gene expression profiles
of each signature gene in the training centroid) for the class
and is denoted by:

where xi represents the training samples that belong to the
class Cj. Using this algorithm, a class label of an unknown
instance x is predicted as:

C(x)=arg min Cj d (μCj, x)

where d(x,y) denotes the distance function (27).
The distance function measures the strictness of dependence

between the two vectors (28). In this study, Pearson's correla-
tion was used as the distance measure in nearest centroid
classification. Pearson's correlation provides the degree of
linear dependence of vectors x and w by:

where μx and μw are the respective means of the vectors x
(gene expression signature in the training centroid) and w
(gene expression signature in a test sample). The equation is
standardized by the multiplication of the standard deviations
of the vectors after subtracting their respective means. This
causes the Pearson's correlation to be invariant (28).

This method is usually preferred in biological applications
because of its favorable invariance properties, i.e., the corre-
lation between the variables is not affected by an addition of
a constant offset to the components of the data or by applying
a multiplicative factor (28). This is especially appealing to
the classification based on DNA microarray data, where
heterogeneous array platforms pose a challenge to cross-
cohort and cross-experiment validation.

Validation of the 28-gene expression signature in multiple
DNA microarrays. The validation sets used in this study
contain a variety of DNA microarray platforms, including
cDNA microarrays, Affymetrix U95, U133A and U133 plus
2.0. The recorded clinical end-points include relapse-free
survival (RFS), metastasis-free survival (MFS), disease-free
survival (DFS; here a clinical event refers to either a local
recurrence or distant metastasis of breast cancer), disease-
specific survival (DSS; an event is death from beast cancer),
and overall survival (OS).

The training cohort obtained from Sotiriou et al (12) was
partitioned into good-prognosis and poor-prognosis groups
based on patient survival information recorded in the clinical
data. A patient was defined with good-prognosis if the
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patient survived longer than five years after the primary
treatment; otherwise, the patient was defined with poor-
prognosis. The average expression profiles of the signature
genes in both groups were computed for the training set.
These constituted the training centroids of good-prognosis
and poor-prognosis for future prognostic categorization in a
new patient. A nearest centroid classification method (13)
was used to predict clinical outcome in each patient from the
validation sets. Pearson's correlation coefficient was used as
the metrics for classifying a new instance (patient) into the
closest centroid.

In the validation cohorts, the prognostic categorization
was based on the correlation of each patient's gene expression
profile and the average good-prognosis centroid in the
training set. A patient was classified into the good-prognosis
group if the correlation with the good-prognosis-training
centroid was greater than the corresponding cut-off value;
otherwise, this patient was classified into the poor-prognosis
group. If there are multiple probes for the same annotated
signature gene, the average expression of all the probes was
used in the correlation analysis. Since the validation sets
contain DNA microarray data generated on heterogeneous
platforms, different cut-off values were chosen in patient
stratification. Each cut-off value was validated by at least
two independent cohorts.

Statistical analysis. A heat map of the 28-gene signature on
the good-prognosis-training centroid of patients from
Sotiriou et al (12) was generated with CIMminer (29) based
on Euclidean distance matrix with complete linkage (http://
discover.nci.nih.gov/cimminer/index.jsp).

Patient survival rates were assessed with Kaplan-Meier
analysis using log-rank tests. Associations between the gene
expression signature and clinicopathologic parameters were
evaluated with two-sided Chi-square tests. All statistical
analyses were performed with software package R (30).

Transcriptional profiles in NCI-60 Cell Panel. Genome-wide
mRNA expression profiles in NCI-60 cell lines (31) were
retrieved with CellMiner (http://discover.nci.nih.gov/
cellminer). The data were generated on Affymetrix U133A
and normalized with the GCRMA method (32). The signature
genes were identified from the data file with gene symbols or
UniGene Cluster IDs (for unknown genes).

Drug activity profiles in NCI-60. The drug activity data in
NCI-60 were retried from Developmental Therapeutic Program
at NCI/NIH through DTP Data Search (http://dtp.nci.nih.gov/
dtpstandard/dwindex/index.jsp). The latest screening results
for each studied drug was used in the analysis. Growth inhi-
bition was assessed from the changes in total cellular protein
after 48 h of drug treatment using a sulphorhodamine B assay.
Drug activities (log10 GI50) were recorded across the 60 human
cancer cell lines. GI50 is the concentration required to inhibit
cell growth by 50% compared with untreated controls. The
activity profile of an agent consists of 60 such activity values,
one for each cell line.

Defining drug sensitivity and resistance. Drug activity data
of CMF (cyclophosphamide, methotrexate and fluorouracil

5FU), tamoxifen, paclitaxel, docetaxel and doxorubicin
(adriamycin) was processed to define drug resistance and
sensitivity of the NCI-60 lines as described before (33,34).
Specifically, for each drug, log10 (GI50) values were norma-
lized across the 60 cell lines. Cell lines with log10 (GI50) at
least 0.5 SD above the mean were defined as resistant to this
drug. Those with log10 (GI50) at least 0.5 SD below the mean
were defined as sensitive to the drug. The remaining cell lines
with log10 (GI50) within 0.5 SD were defined as intermediate
in the range of drug responses. The log10 (GI50) values of
cyclophosphamide (cytoxan) had little variation in NCI-60
cell lines. There was no resistant cell line to cytoxan.

Classification of chemosensitivity/resistance. The mRNA
expression profiles of the 28-gene breast cancer signature
were used to predict chemosensitivity/resistance in the cancer
cell lines. For each drug, only sensitive and resistant cell
lines were included in the analysis, while those with interme-
diate response were excluded from classification. A k-nearest
neighbor method was used to classify chemoresponse to
methotrexate, fluorouracil (5FU), paclitaxel and docetaxel.
Neural network was used to classify drug response to
tamoxifen. Threshold Selector, choosing a mid-point threshold
on the probability output by logistic regression, was used to
in classifying chemoresponse to doxorubicin (adriamycin).
The classification results were evaluated with a leave-one-out
cross validation. These algorithms were implemented in
WEKA 3.4 (35). No classifier was constructed for cytoxan,
because no cell lines in the NCI-60 panel were resistant to it.

Differential expression analysis in resistant and sensitive
breast cancer cell lines. Using the average expression values
of each gene on the breast cancer cell lines in the NCI-60
panel, fold change of the gene expression in resistant cell
lines versus sensitive cell lines was computed as follows:

Fold change = 2(resistant_mean-sensitive_mean)

Where resistant_mean is the mean expression of the group of
resistant cell lines; sensitive_mean is the mean expression of
the group of sensitive cell lines. In this study, value 1.5 (1.5
for over-expressed and 0.67 for under-expressed) is the
threshold used in deciding if a gene is expressing differently.

Statistical significance of the fold change is computed
using two-tail, unequal variance two-sample t-tests. It is
considered statistically significant if p≤0.05. However, in
cases where there is only one cell line falls into one of the
response group where two-sample t-tests fail, the fold change
is considered statistically significant if the expression value
of the gene for that cell line does not fall into the 95% confi-
dence interval of the other group. The confidence interval of
the group with more than one cell lines is computed by:

where n is the number of cell lines falls into that response
group and t is the critical t-value for two-tail t-tests on 95%
confident with n-1 degree of freedom.
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Results

A general patient stratification scheme for current DNA
microarray platforms. Previously (21), the 28-gene signature
was identified from Sotiriou et al (12) and was validated in
two patient cohorts from Sorlie et al (11) and van't Veer et al

(19). In this study, seven independent cohorts containing
1,734 breast cancers (5,13,14,17,23-25) were obtained to
design a consistent patient stratification scheme using this
prognostic gene signature. In these cohorts, diagnosis ranged
from early stage (T1/T2) to advanced stage (T3/T4). To
develop prognostic categorization for individual patients in
these validation sets, a nearest centroid classification scheme
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Figure 1. The general patient stratification scheme based on the 28-gene breast cancer signature quantified on current DNA microarray platforms. (A) Nearest
shrunken centroid classification method stratified each new patient in the validation sets into good- or poor-prognosis group based on the Pearson's correlation
between the patient's gene-expression profiles and the good-prognosis training centroid from Sotiriou et al (12). (B) Specific cut-off values of the distant
function in nearest centroid classification. Different cut-off values were determined for different DNA microarray platforms and predicted clinical outcomes.
Each stratification scheme was validated in multiple published cohorts. DFS, disease-free survival; OS, overall survival.
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(13) was designed based on the correlation between a new
patient gene-expression profile and the good-prognosis centroid
of the training cohort from Sotiriou et al (12) (Fig. 1A).
Compared with algorithms such as neural networks, random
forests and Bayesian methods, the nearest centroid method is
more robust to the discrepancy of quantification scales and
inconsistency of probe sets from different microarray
platforms during cross-cohort validation. A detailed algorithms
comparison is included in a thesis (http://www.hsc.wvu.edu/
mbrcc/fs/GuoLab/pdfs/Shruti_Rathnagiriswaran_Thesis.pdf).
During the nearest centroid classification, since the validation
cohorts contain data generated from diverse DNA microarray
platforms and contained different clinical end-points, specific
cut-off values based on the Pearson's correlation with the
good-prognosis training centroid were identified for the
corresponding experimental platforms and predicted clinical
end-points. To avoid over-fitting, each cut-off value was
consistently validated in multiple patient cohorts, except for
one cut-off defined for predicting relapse-free survival in
patients from Loi et al (24). Specifically, in predicting
disease-free survival (DFS; including relapse-free survival
and metastasis-free survival) and overall survival (OS) on
samples quantified with cDNA microarray [van de Vijver et al
(13) and Sorlie et al (23)], a patient was classified into the
good-prognosis group if the correlation between the patient
gene expression profile and the good-prognosis training
centroid was greater than 0.15; otherwise, the patient was
classified into poor-prognosis group. In predicting overall
survival on samples quantified with Affymetrix HG-133A
[Miller et al (17)] and Affymetrix HG-U95 [Bild et al (5)], a
patient was classified into the good-prognosis group if the
correlation between the patient gene-expression profile and
the good-prognosis training centroid was greater than -0.3;
otherwise, the patient was classified into poor-prognosis
group. In predicting disease-free survival based on gene
expression quantified with Affymetrix chips, cut-off values
were determined for different platforms as follows: -0.4 for
Affymetrix HG-U133A [Wang et al (14), Ivshina et al (25),
and Loi et al (24)], and -0.5 for Affymetrix U133 Plus 2.0
Array [Loi et al (24)] (Fig. 1B).

Based on the nearest centroid classification schemes, the
28-gene signature stratified individual patients in each vali-
dation cohort into either good- or poor-prognostic group with

distinct disease-free survival (log-rank P<0.05) and overall
survival (log-rank P<0.036) in Kaplan-Meier analyses (data
not shown). When all patient cohorts were combined together,
the gene expression defined good- and poor-prognosis groups
had significantly different disease-free survival (log-rank
P<0.0001; n=1,337) and overall survival (log-rank P<0.0001;
n=806) (Fig. 2). These results demonstrated that the 28-gene
breast cancer prognostic signature has general clinical appli-
cability for multiple DNA microarray platforms.

Association between the 28-gene breast cancer signature and
clinicopathological factors. The association between the
28-gene expression defined prognostic groups and patient
age, lymph node status, ER status, and tumor grade was
assessed with two-sided Chi-square tests. The results showed
that the breast cancer gene signature was significantly asso-
ciated with patient age (P=0.019), lymph node status (P=
6.6e-10), ER status (P=0.0013), and tumor grade (P=9.8e-14)
in predicting disease-free survival (n=1,337; data not shown).
The prognostic gene signature was significantly associated
with ER status (P=0.0037) and tumor grade (P=8.5e-13) in
predicting breast cancer overall survival (n=806). The
association was not significant between the breast cancer
gene signature and patient age (P=0.55) or lymph node status
(P=0.29) in terms of breast cancer overall survival (data not
shown).

The 28-gene signature provides refined prognosis to tradi-
tional factors. Lymph node metastasis, estrogen receptor
(ER) status, and tumor grade are important prognostic factors
of breast cancer. This study sought to investigate whether the
28-gene signature could provide refined prognosis in addition
to these traditional factors. First, all lymph-node negative
patients from the studied cohorts were combined for Kaplan-
Meier analysis. Based on the prognostic categorization
described in the above section, the 28-gene signature further
stratified node-negative patients into subgroups with distinct
disease-free survival (log-rank P=0.0029; n=870) and overall
survival (log-rank P=0.0001; n=334; Fig. 3A). Similarly, the
28-gene signature further stratified node positive patients into
subgroups with distinct disease-free survival (log-rank
P<0.0001; n=444) and overall survival (log-rank P=0.0008;
n=300; Fig. 3B).
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Figure 2. The 28-gene signature predicted breast cancer disease-free survival and overall survival in Kaplan-Meier analysis. The studied patient cohorts were
stratified as either good-prognosis (upper curves) or poor-prognosis (lower curves) and were combined in the analysis. The survival probabilities of two
prognostic groups were assessed with log-rank tests.
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Next, we investigated whether the signature could refine
positive and negative estrogen receptor (ER+ and ER-) groups.
The results showed that the prognostic gene signature parti-
tioned ER+ breast cancers into subgroups with distinct
disease-free survival (log-rank P<0.0001; n=1,075) and
overall survival (log-rank P<0.0001; n=618; Fig. 4A). In ER-
breast cancer patients, the gene expression-defined subgroups
also showed significantly different disease-free survival (log-
rank P=0.0062; n=248) and borderline different overall
survival (log-rank P=0.06; n=179; Fig. 4B).

Finally, we explored whether the 28-gene signature could
further stratify grade II breast cancers, which are more
challenging in prognosis than grade I or grade III tumors.
Kaplan-Meier analyses showed that the gene expression-
defined risk groups within grade II breast cancers had diver-
gent disease-free survival (log-rank P=0.0197; n=327) and
overall survival (log-rank P=0.0024; n=270; Fig. 5). Overall,
these results demonstrated that the 28-gene breast cancer
signature provides independent prognostic information within
subgroups defined by lymph node status, ER status and
tumor grade.

The 28-gene signature predicts chemoresponse in NCI-60
cell lines. After substantiating the clinical relevance of the
28-gene signature in predicting breast cancer disease-free
survival and overall survival, we sought to explore whether

the signature can predict chemoresponse to anti-breast cancer
agents, including CMF, tamoxifen, paclitaxel, docetaxel and
doxorubicin (adriamycin). Here, the NCI-60 cell lines,
regardless of tissue origin, were used in the study. For each
drug, cancer cell lines that are either sensitive or resistant to
the drug were included to build a chemoresponse classifier
based on the 28-gene expression profiles in the cell lines. The
performance of the classifier was evaluated with leave-one-
out cross validation (Table I). The overall prediction accu-
racy of chemoresponse was 90.6% (P<0.0004) for tamoxifen,
82.4% (P<0.005) for fluorouracil (5FU, part of CMF), 73.3%
(P<0.02) for methotrexate (part of CMF), 92.3% (P<0.0008)
for paclitaxel, 89.2% (P<0.0002) for doxorubicin and 88.2%
(P<0.0007) for docetaxel. These results demonstrated that the
28-gene signature accurately predicted sensitivity and resi-
stance to common breast cancer chemotherapy in cancer cell
lines.

The differential expression in sensitive and resistance
breast cancer cell lines was analyzed for each signature gene.
The drug responses of the breast cancer cell lines in the
NCI-60 panel are available (data not shown). As there was
no breast cancer cell line showing resistance to docetaxel,
this drug was not included in the analysis. Among the signa-
ture genes, the over-expression of TOMM70A and PLSCR1
was linked to chemoresistance to all the studied drugs in the
breast cancer cell lines; whereas the over-expression of
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Figure 3. The 28-gene signature stratified subgroups defined by lymph node status in predicting breast cancer disease-free survival and overall survival using
Kaplan-Meier analyses. The breast cancer gene signature further partitioned lymph node-negative (A) and -positive (B) patients into distinct prognostic
subgroups, respectively.
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Figure 4. The 28-gene signature stratified subgroups defined by ER status in predicting breast cancer disease-free survival and overall survival using Kaplan-
Meier analyses. The breast cancer gene signature further partitioned ER+ (A) and ER- (B) patients into distinct prognostic subgroups, respectively.

Figure 5. The 28-gene signature-generated significant prognostic categorization in predicting disease-free survival and overall survival for grade II breast
cancers in Kaplan-Meier analyses.

Table I. Prediction accuracy of chemosensitivity/resistance in NCI-60 cell lines using 28-gene breast cancer prognostic
signature.a

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Drug name Sensitivity Specificity Overall accuracy P-value

(chemoresistance) (chemosensitivity)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Tamoxifen 94.4% (17/18) 85.7% (12/14) 90.6% (29/32) 0.0004
Fluorouracil (5FU; part of CMF) 76.5% (13/17) 88.2% (15/17) 82.4% (28/34) 0.005
Methotrexate (part of CMF) 60.0% (12/20) 84.0% (21/25) 73.3% (33/45) 0.02
Paclitaxel (taxol) 86.7% (13/15) 100.0% (11/11) 92.3% (24/26) 0.0008
Doxorubicin (adriamycin) 100.0% (19/19) 77.8% (14/18) 89.2% (33/37) 0.0002
Docetaxel 94.4% (17/18) 81.3% (13/16) 88.2% (30/34) 0.0007
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
aP<0.05 represents the overall accuracy is significantly higher than that of random prediction (two-sided Z-tests).
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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MCF2 and IGHA1 was associated with chemosensitivity to
all the studied drugs in breast cancer cell lines. The over-
expression of TXNRD1, FAT and FGF2 was observed in
resistance to 5FU, methotrexate, tamoxifen and doxorubicin,
but was associated with sensitivity to paclitaxel. MCM2 and
S100P also showed similar expression patterns in drug
responses. Their over-expression was associated with chemo-
resistance to paclitaxel (P<0.05), and chemosensitivity to
tamoxifen (Fig. 6).

Discussion

Predicting the risk for recurrence and treatment response for
patients with advanced disease remains a critical issue in
clinics. Patients at high risk for recurrence after the primary
treatment should be considered for more aggressive chemo-
therapy, whereas second-line chemotherapy may not be
necessary in low-risk patients. The FDA recently approved
the first gene test for cancer, MammaPrint of Agendia
(Amsterdam, the Netherlands) (19), for use in lymph node-
negative women under age 61 and with a tumor size less than
5 cm. Oncotype DX of Genomic Health (Redwood City, CA)
is a clinically applied multigene assay to predict recurrence
of tamoxifen-treated, node-negative, and estrogen receptor-
positive breast cancer (9). Both Oncotype and MammaPrint
target early stage breast cancer patients. New gene signatures
are needed for predicting breast cancer recurrence in broader
clinical settings.

In a previous study (21), we presented a population-based
approach to predicting recurrence and metastases of breast
cancer by using gene expression patterns in tumors obtained
from Sotiriou et al (12). The external validation sets used in
this study consist of completely independent patient cohorts.
The prognostic prediction based on the 28-gene signature
employed the ‘gold standard’ of validation schemes, i.e., an
independent training set and a validation in multiple, non-
overlapping datasets. Specific cut-off values were identified
for multiple experimental platforms and clinical outcomes
using a nearest centroid classification method. All cut-off

schemes except one were consistently validated on multiple
breast cancer patient cohorts. The 28-gene signature was
confirmed to predict disease-free survival and overall survival
in individual breast cancer patients (n=1,734). These results
showed that the stratification scheme could be applied to
predicting clinical outcomes in a new breast cancer patient
based on the 28-gene expression profiles measured on various
commonly used microarray platforms.

Fan et al (36) compared five breast cancer signatures,
including Oncotype DX (9), MammaPrint (13,19), wound
response predictor (6), intrinsic subtypes (10,11,23) and the
‘two-gene ratio’ (8) using the cohort from van de Vijver et al
(13). This comparison represents an entirely independent test
set only for Oncotype DX and the ‘two-gene ratio’, whereas
the remaining three signatures used part of the samples from
van de Vijver's cohort (n=295) in model development. If the
training samples were removed for testing these three
signatures, the resulting test dataset would be greatly reduced
to fewer than 147 samples and possibly as few as 72 samples
(36). In this evaluation, all five signatures except the two-
gene ratio allowed for prognostic categorization with respect
to disease-free survival (log-rank P<0.001) and overall
survival (log-rank P<0.001). Compared with these results in
consideration of the bias toward MammaPrint, intrinsic sub-
types and wound response predictor, our 28-gene prognostic
signature is comparable as Oncotype DX and could poten-
tially be more accurate than the other signatures in terms of
predicting disease-free survival and overall survival in van
de Vijver's cohort (data not shown). More importantly, the
28-gene breast cancer signature showed prognostic ability
beyond early-stage breast cancer. The 28-gene prognostic
signature quantified disease-free survival and overall survival
in a broad patient population including those with advanced
stage (T3/T4), tumor grade III, lymph node metastasis, or
negative estrogen receptor status (ER-).

According to the REMARK guidelines (37,38), cancer
prognostic studies must demonstrate whether tumor markers
provide information independent of traditional criteria or
provide prognostic information within subgroups defined by
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Figure 6. Signature genes with significant differential expression in sensitive and resistant breast cancer cell lines for the studied anti-cancer agents. Fold
change represents the gene expression ratio in resistant versus sensitive breast cancer cell lines. In the graph, statistically significant differential expression is
marked by a red asterisk.
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traditional criteria. This study demonstrated that the breast
cancer gene signature could refine prognosis within each
subgroup defined by lymph node status (node positive or
negative), tumor grade (patients with grade II), and ER status
(ER+ or ER-). These results indicated that the 28-gene
signature provides independent prognostic information in
addition to the traditional factors.

The prognostic categorization will address one clinically
important issue, i.e., who should receive more aggressive
chemotherapy? Following this, another unresolved issue is
which chemotherapy should be given to a specific patient?
Breast cancer patients with the same tumor stage may have
remarkably different response to a chemotherapeutic agent.
This study demonstrated that the 28-gene prognostic signa-
ture was also predictive of chemoresponse in cancer cell
lines. Since each NCI-60 cell line was derived from a clinical
tumor and the gene expression was measured in untreated
cell lines, this finding has important clinical implications in
predicting a patient's predisposition to certain chemotherapy
based on her molecular tumor characteristics, in addition to
the tumor stage. This would help physicians to design
optimal treatment strategies by including drugs within the
sensitive range of this patient in personalized therapy.

In summary, this study developed a scheme for apply-
ing a 28-gene signature in patient stratification based on
transcriptional profiles generated on a diverse range of micro-
array platforms. The signature predicts a poor outcome in
breast cancer patients with early stage as well as advanced
disease. This is significant in the clinical management of
breast cancer, because this molecular classification scheme
may help physicians to identify high-risk patients who might
need additional or more aggressive chemotherapy after the
primary treatment. Furthermore, this prognostic gene signa-
ture is also predictive of chemoresponse to CMF, tamoxifen,
paclitaxel, docetaxel and doxorubicin (adriamycin) in cancer
cell lines, which could potentially be used to predict patient
predisposition to chemotherapy.
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