
Abstract. Although cytokine therapy involving interleukin-2
or interferon-· has been employed for metastatic renal cell
cancer (RCC) treatment, these therapies yielded limited
response and benefit. Recently, several molecular-targeted
agents have become available, and one newly developed
anti-RCC agent, sorafenib (BAY 43-9006), is known to target
multiple kinases. In this study, sorafenib was found to inhibit
phosphorylation of the eukaryotic initiation factor-2· (eIF2·)
and induce cell cycle arrest at G2/M phase and increase cell
death. One of eIF2· kinases, PERK was responsible for
eIF2· phosphorylation in RCC cells and PERK knockdown
induced cell death similar to sorafenib treatment. The
efficiency of sorafenib treatment correlated with phos-
phorylation level of eIF2· and nuclear Nrf2 expression level
in eight RCC cell lines. Furthermore, sorafenib made Caki-1
and 786-O cells, but not ACHN cells sensitive to oxidative
stress exerted by both hydrogen peroxide and doxorubicin. In
addition, PERK knockdown sensitized Caki-1 and 786-O
cells, but not ACHN cells to oxidative stress. In conclusion,
levels of phospho-eIF2· and nuclear Nrf2 expression level
in RCC might be a predictor of outcome in sorafenib
treatment. In addition, PERK inhibition as well as sorafenib
plus doxorubicin might be a promising therapeutic approach
for RCC characterized by high levels of phosphorylated-
eIF2· and nuclear Nrf2.

Introduction

Renal cell cancer (RCC) is characterized by the loss of von
Hippel-Lindau tumor suppressor protein, resulting in dys-

regulation of growth factor signaling, including vascular
endothelial growth factor (VEGF), platelet-derived growth
factor (PDGF) and transforming growth factor-· (TGF-·).
These factors play key roles in angiogenesis and lymphangio-
genesis as well as in dysregulation of Raf pathways that
regulate tumor growth and survival (1-6). Patients with metas-
tatic RCC (mRCC) face a poor prognosis, with a historical
median survival of 6-10 months and a 2-year survival of
10-20% (7). Traditional chemotherapy or radiotherapy has
been relatively ineffective, with only 10% of the patients
showing response to these treatments (8). Cytokine therapy
involving interleukin-2 (IL-2) or interferon-· (IFN-·) has also
yielded limited benefit, with objective response rates of only
15% for both (7,9,10). Combination therapies with IFN-· in
RCC have involved using it together with IL-2, 5-fluorouracil,
retinoic acid, and/or thalidomide; none of these studies has
shown any consistent improvement in outcome over IFN-·
monotherapy (7,11-13). Thus, there are many requirements for
new effective therapies for mRCC. Sorafenib (BAY 43-9006)
is a novel bi-aryl urea that has been previously shown to
inhibit Raf-1 and tumor cell line proliferation and tumor
xenograft models (14,15). In addition to Raf-1 inhibition,
sorafenib is a multikinase inhibitor, which targets vascular
endothelial growth factor receptor (VEGFR) 2 and 3; platelet-
derived growth factor receptor-ß (PDGFR-ß); FMS-like tyro-
sine kinase 3 (FLT3); c-Kit; and RET-receptor tyrosine kinase
(16,17). The clinical benefit of sorafenib was initially found
in a phase II randomized trial, which indicated a lengthened
progression-free survival with sorafenib compared with placebo
in patients with mRCC refractory to cytokine therapy (18).
A subsequent phase III randomized controlled trial [Treat-
ment Approaches in Renal cancer Global Evaluation Trial
(TARGET)] confirmed the findings of the phase II trial (19).
We have previously conducted a phase II study to investigate
the efficacy, safety, and pharmacokinetics of sorafenib in
Japanese patients with advanced renal cell carcinoma, and
revealed that sorafenib exerted encouraging efficacy and was
well tolerated in Japanese patients with mRCC (20).

Phosphorylation of the eukaryotic initiation factor-2·
(eIF2·) is an important mechanism regulating protein synthesis
in response to a diverse range of environmental stresses
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(21-23). Four eIF2· kinases have been identified in mammals,
each responding to different stresses through their unique
regulatory regions. For example, phosphorylation of eIF2·
by PKR-like endoplasmic reticulum kinase (PERK, also known
as EIF2AK3) is induced by accumulation of misfolded proteins
in the endoplasmic reticulum (ER), a phenomenon designated
as unfolded protein reaction (UPR) or ER stress (24-26).
Phosphorylation of eIF2· during ER stress inhibits global
translation by lessening eIF2-GTP (21-23). Together with
reduced protein synthesis, eIF2· phosphorylation increases
the preferential translation of ATF4 mRNA, encoding a basic
zipper transcription activator that is important for directing
the expression of genes involved in metabolism, the redox
status of cells and apoptosis (27-29). Furthermore, eIF2·
phosphorylation has been shown to regulate an expression of
NF-E2-related factor 2 (Nrf2), which is the Cap ‘n’ Collar
transcription factor closely involved in oxidative stress
response through expression of phase II antioxidative stress
proteins (30). Decreased protein synthesis conserves energy
and provides sufficient time for ATF4, Nrf2 and other stress-
responsive transcription factors, to reconfigure gene expression
that would block or ameliorate damage elicited by the under-
lying stress. Other members of the eIF2· kinase family include
GCN2 (EIF2AK4), whose activity is enhanced by amino acid
depletion, UV irradiation or proteasome inhibition; PKR
(EIF2AK2), which function in an antiviral pathway; and
HRI (EIF2AK1), which is regulated by heme deficiency and
oxidative stress (22,23,26,31). Aberrations in these eIF2·
kinase pathways are associated with a number of diseases,
including diabetes, viral infection, anemia, neurological
disorders and various cancers.

In this study, we investigated whether the multikinase
inhibitor, sorafenib could inhibit the eIF2· kinase family.
Then, we attempted to elucidate a mechanism that sorafenib
inhibited RCC-cell growth through an inhibition of eIF2·
kinase pathway and provide a possible molecular marker of
RCC-cell sensitivity to sorafenib. Furthermore, to improve
treatment of mRCC patients, we investigated the effects of
combined therapy of conventional chemotherapy and sorafenib
based on a pharmacological effect of sorafenib toward eIF2·
kinase pathway.

Materials and methods

Cell culture and chemical. Human renal cell cancer KG2,
KPK13, SKR1, KPK1 and SN12C cells were established and
maintained as described previously (32-35). KG2 cells were
a kind gift of Dr Kazuo Gohji (Kobe University, Kobe,
Japan). Human renal cell cancer Caki-1 cells were cultured in
Eagle's minimal essential medium (Invitrogen, San Diego,
CA, USA). Human renal cell cancer ACHN and 786-O cells
were cultured in Eagle's minimal essential medium (Sigma,
St. Louis, MO, USA) and RPMI1640 (Sigma), respectively.
These media were contained 10% fetal bovine serum. Cell lines
were maintained in a 5% CO2 atmosphere at 37˚C. Sorafenib
was obtained from Bayer Pharmaceuticals Corp. (West Haven,
CT, USA). For assay, stock solution was prepared in dimethyl
sulfoxide (DMSO) (10 mM), and stored at -20˚C until use.
Stock solution was diluted to appropriate concentration in
culture medium before addition to the cells.

Antibodies. Antibodies against GCN2 (#3302), p-PERK
(#3191), p-eIF2· (#9721), eIF2· (#2103) and p-ERK1/2
(#9106) were purchased from Cell Signaling Technology
(Danvers, MA, USA). Antibody against ERK1 (sc-94) and
PERK (sc-13073) were purchased from Santa Cruz Bio-
technology (Santa Cruz, CA, USA). Anti-Nrf2 (#2178-1),
anti-p-GCN2 (#2313-1), anti-PKR (#1511-1) and anti-p-PKR
(#2283-1) antibodies were purchased from Epitomics
(Burlingame, CA, USA). Anti-Lamin B1 and anti-ß-actin
antibodies were purchased from Sigma.

Western blotting. Whole-cell and nuclear extracts were
prepared with phosphatase inhibitor Cocktail (Nacalai tesque,
Kyoto, Japan) as previously described (36-40). The protein
concentration was determined using a Protein Assay Kit
(Bio-Rad, Hercules, CA), based on the Bradford method.
Whole-cell and nuclear extracts (30 μg) were separated by
SDS-PAGE and transferred to polyvinylidene difluoride
microporous membranes (GE Healthcare Bio-Science,
Piscataway, NJ, USA) using a semi-dry blotter. The blotted
membranes were incubated for 1 h at room temperature with
a primary antibody. Membranes were then incubated for
40 min at room temperature with a peroxidase-conjugated
secondary antibody. The bound antibody was visualized using
an ECL kit (GE Healthcare Bio-Science) and membranes were
exposed to Kodak X-OMAT film. For the correlation assay,
the intensity of each signal was quantified using the NIH
Imaging program, version 1.62 (NIH, Bethesda, MD, USA).

Flow cytometry analysis. Flow cytometry analysis was
performed as described previously (36). Briefly, Caki-1,
786-O and ACHN cells (2.0x105) were seeded in 6-well
plates, applied to 10 μM of sorafenib and cultured for 24 h,
or transfected with 40 nM of the indicated siRNA and
cultured for 72 h. The cells were harvested, washed twice
with ice-cold PBS containing 0.1% bovine serum albumin
(BSA) and resuspended in 70% ethanol. After washing twice
with ice-cold PBS, cells were resuspended in PBS containing
0.1% BSA, incubated with RNase (Roche Applied Science,
Indianapolis, IN, USA) and stained with propidium iodide
(Sigma). Cells were analyzed using a FACSCalibur (BD Bio-
sciences, San Jose, CA, USA).

Knockdown analysis using siRNAs. Knockdown analysis using
siRNAs was performed as described previously (36-40).
Briefly, the following double-stranded RNA oligonucleotides
were commercially generated: 5'-GGUAAAAAGCAGUGG
GAUUTT-3' (sense) and 5'-AAUCCCACUGCUUUUUAC
CTT-3' (antisense) for PERK #1 (B-Bridge International,
Mountain View, CA, USA); 5'-GGGAAAAGGUAAUGCG
AGATT-3' (sense) and 5'-UCUCGCAUUACCUUUUCC
CTT-3' (antisense) for PERK #2 (B-Bridge International);
5'-CCACAUGAUAGGAGGUUUATT-3' (sense) and 5'-
UAAACCUCCUAUCAUGUGGTT-3' (antisense) for PKR
(B-Bridge International); 5'-AUUAGAUGCACUCAGGAC
CUUAUGC-3' (sense) and 5'-GCAUAAGGUCCUGAGUG
CAUCUAAU-3' (antisense) for GCN2 (Invitrogen). Caki-1,
786-O and ACHN cells were transfected with 40 nM of the
indicated siRNA using Lipofectamine 2000 (Invitrogen)
according to the manufacturer's instructions.
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Cytotoxicity analysis. Cytotoxicity analysis was performed as
described previously (36,38,40). Briefly, Caki-1, 786-O
and ACHN cells (2.5x103) applied to 0.5 μM of sorafenib
or transfected with 40 nM of the indicated siRNA were
seeded into 96-well plates. The following day, the indicated
concentrations of hydrogen peroxide or doxorubicin and/or
N-acetyl-L-cysteine (NAC) were applied. After 48 h, surviving
cells were stained with alamarBlue Assay (TREK Diagnostic
systems, Cleaveland, OH, USA) for 180 min at 37˚C. The
absorbance was then measured using a plate reader (ARVO™
MX, Perkin-Elmer Inc., Waltham, MA, USA).

Determination of inhibitory concentration 50 (IC50) to
sorafenib in RCC cells. Eight RCC cell types (2.5x103) were

seeded into 96-well plates. The following day, the various
concentrations of sorafenib were applied. After 48 h, cyto-
toxicity assay was performed as described above. Then, IC50

was defined as sorafenib concentration when 50% of cells
survived.

Results

Sorafenib reduces eIF2· phosphorylation levels and induces
cell cycle arrest at G2/M phase and cell death. To investigate
whether multikinase inhibitor, sorafenib could inhibit the eIF2·
kinase family, Western blot analysis was performed after
RCC cells were treated with increasing concentrations of
sorafenib. As shown in Fig. 1A, various concentrations of
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Figure 1. Sorafenib reduces phosphorylated form of eIF2· and ERK1/2, and induces cell-cycle arrest at G2 phase and cellular apoptosis in Caki-1 and 786-O
cells. (A) Caki-1, 786-O and ACHN cells were cultured with various concentrations of sorafenib for 6 h, and the cells were harvested. Whole-cell extracts
were subjected to SDS-PAGE, and Western blotting was performed using the indicated antibodies. (B) Caki-1, 786-O and ACHN cells were cultured with
10 μM of sorafenib for various durations, and the cells were harvested. Whole-cell extracts were subjected to SDS-PAGE, and Western blotting was
performed using the indicated antibodies. (C) Caki-1 cells were cultured with various concentrations of sorafenib for 6 h or 10 μM of sorafenib for various
durations, and the cells were harvested followed by 0.5 μg/ml of tunicamycin treatment for 6 h. Whole-cell extracts were subjected to SDS-PAGE, and Western
blotting was performed using the indicated antibodies. (D) Caki-1, 786-O and ACHN cells were applied to vehicle or 10 μM of sorafenib for 24 h, and the cells
were stained with propidium iodide and analyzed by flow cytometry. The cell cycle fractions are shown at the top right of each graph.
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sorafenib treatment for 6 h reduced phosphorylation of ERK1/2
(p-ERK1/2) as well as phosphorylation of eIF2· (p-eIF2·) in
Caki-1 and 786-O cells. On the contrary, p-eIF2· level was

increased in ACHN cells although p-ERK1/2 level declined.
About 1 μM of sorafenib inhibited phosphorylation of eIF2·
to 50% of vehicle treatment in Caki-1 and 786-O cells. When
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Figure 2. Silencing of PERK reduces phosphorylation form of eIF2·, and induces cell cycle arrest at G2 phase and cell death in Caki-1 and 786-O cells.
(A) Caki-1, 786-O and ACHN cells were transfected with 40 nM of control siRNA, PKR siRNA, GCN2 siRNA, PERK siRNA #1 or PERK siRNA #2. At
72 h after transfection, whole-cell extracts were subjected to SDS-PAGE, and Western blotting was performed using the indicated antibodies. (B-D) Caki-1
(B), 786-O (C) and ACHN (D) cells were transfected with 40 nM of control siRNA, PERK siRNA #1 or PERK siRNA #2. At 72 h after transfection, cells
were stained with propidium iodide and analyzed by flow cytometry. The cell cycle fractions are shown at the top right of each graph.
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RCC cells were treated with 10 μM of sorafenib for various
durations, p-ERK1/2 as well as p-eIF2· level declined in
Caki-1 and 786-O cells whereas p-eIF2· did not in ACHN
cells (Fig. 1B). There are four members of eIF2· kinase family:
PKR, GCN2, PERK, and HRI, the former three are expressed
in RCC cells; HRI expression is restricted to erythroblast
cells. To determine which p-eIF2· kinase was responsible for
dephosphorylation of eIF2· by sorafenib treatment in Caki-1
cells, immunoblotting for phosphorylated forms of these
eIF2· kinases was performed. The results showed sorafenib
treatment decreased p-PERK level in concentration- and
duration-dependent manner (Fig. 1C). On the other hand, p-
PKR and p-GCN2 levels were constant during sorafenib
treatment (data not shown). Because sorafenib is known to
suppress cell proliferation in RCC cells, we performed cell
cycle analysis using flow cytometry analysis to investigate
a mechanism of tumor growth suppression by sorafenib.
First, Caki-1 cells were subjected to cell cycle analysis.
Application of 10 μM sorafenib induced cell cycle arrest at
G2 phase and cellular death represented by sub-G1 fraction.
Similar results were obtained when 786-O cells were
investigated. Of note, both Caki-1 and 786-O cells have high
levels of p-eIF2·. On the other hand, ACHN cells possessing
low eIF2· phosphorylation status exhibited only a slight
increase in the G2-phase fraction and little effect of cellular
apoptosis as compared with either Caki-1 or 786-O cells
(Fig. 1D).

PERK knockdown reduces eIF2· phosphorylation level and
nuclear Nrf2 expression, and induces cell cycle arrest at G2
phase and cellular death. To confirm that PERK is the respon-
sible eIF2· kinase for eIF2· phosphorylation in RCC cells,
PKR, GCN2 and PERK eIF2· kinases were silenced by the
corresponding specific-siRNAs, then eIF2· phosphorylation
status was investigated by Western blot analysis. As shown
in Fig. 2A, PERK knockdown using two kinds of PERK-
specific siRNA decreased eIF2· phosphorylation level in
Caki-1 and 786-O cells, whereas PKR or GCN2 knock-
down had no effect. This result also indicated that in Caki-1
and 786-O cells, PERK is mainly responsible for eIF2· phos-
phorylation. In addition, Nrf2, whose expression is known to
be regulated by PERK (30), decreased when only PERK was
silenced. On the other hand, eIF2· phosphorylation was
hardly detected in ACHN cells, and Nrf2 expression level
was slightly affected. We performed cell cycle analysis using
flow cytometry to investigate a functional correlation
between sorafenib and PERK inhibition. First, Caki-1 cells
were subjected to cell cycle analysis and PERK knockdown
induced cell cycle arrest at G2/M phase and cell death
although at a lesser degree than sorafenib treatment (Fig.
2B). Similar results were obtained when 786-O cells which
possess high eIF2· phos-phorylation level similar to Caki-1
cells were investigated (Fig. 2C). On the other hand, ACHN
cells possessing low eIF2· phosphorylation level exhibited
little effect on cell cycle and cell death (Fig. 2D).

Phosphorylation level of eIF2· and nuclear Nrf2 expression
level are correlated with efficiency of sorafenib treatment.
Because the finding that sorafenib inhibits eIF2· phospho-
rylation was revealed, whether eIF2· phosphorylation level

and nuclear Nrf2 expression level could predict an efficiency
of sorafenib treatment in RCC cells was examined. First,
eight RCC cell lines were subjected to Western blot analysis.
Because sorafenib is well-known to inhibit ERK phospho-
rylation, p-ERK1/2 and ERK1 in addition to p-eIF2·, eIF2·
and Nrf2 were investigated in untreated cells. Although
ERK1/2 phosphorylation status was high in ACHN cells, basal
eIF2· phosphorylation status and nuclear Nrf2 expression
level were high in 786-O cells (Fig. 3A). As speculated from
previous finding (30), correlation between eIF2· phospho-
rylation status and nuclear Nrf2 expression level was suggested.
In RCC cells, coefficient of correlation between basal eIF2·
phosphorylation status and nuclear Nrf2 expression level
was 0.50 although not significant statistically (Fig. 3B).
Next, IC50 for cell-growth inhibitory effects of sorafenib was
determined in these eight RCC cell lines. As shown in Table I,
786-O cells were most sensitive to sorafenib whereas KPK13
cells were most resistant and ACHN cells were relatively
resistant. To reveal a possible predictor of sensitivity to
sorafenib treatment, correlations between either eIF2· phos-
phorylation status or nuclear Nrf2 expression level and
sorafenib IC50s were examined. The results showed that both
basal eIF2· phosphorylation status and nuclear Nrf2 expression
level were inversely correlated with IC50 value of RCC cells
to sorafenib. Coefficients of correlation between eIF2· phos-
phorylation status and IC50 value, and nuclear Nrf2 expression
level and IC50 value were -0.75 (p=0.033) and -0.73 (p=0.040),
respectively (Fig. 3C and D).

Sorafenib sensitizes both Caki-1 and 786-O cells to oxidative
stress exerted by hydrogen peroxide and doxorubicin. Although
mRCC was believed to be resistant to conventional chemo-
therapy (8), conventional chemotherapy combined with
sorafenib may be useful to improve treatment outcome.
Sorafenib was shown to suppress nuclear Nrf2 expression,
which regulates several antioxidative stress proteins. First,
cytotoxicity of hydrogen peroxide to RCC cells treated with
sorafenib was investigated. Hydrogen peroxide combined
with sorafenib suppressed Caki-1 and 786-O cell viability more
effectively compared with hydrogen peroxide alone, although
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Table I. IC50 to sorafenib, phosphorylated eIF2·/total eIF2·

and nuclear Nrf2 expression in RCC cell lines.
–––––––––––––––––––––––––––––––––––––––––––––––––
RCC IC50 to Phosphorylated Nuclear  
cell line sorafenib eIF2·/total Nrf2

(μM) eIF2· expression
–––––––––––––––––––––––––––––––––––––––––––––––––
Caki-1 7.8 0.99 0.31

KG2 8.8 0.79 0.36

KPK13 18 0.12 0.13

SKR1 11 0.17 0.54

KPK1 12 0.05 0.28

786-O 6.5 1 1

ACHN 10 0.12 0.51

SN12 14 0.08 0.13
–––––––––––––––––––––––––––––––––––––––––––––––––
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ACHN cells were not affected by an addition of sorafenib
(Fig. 4A). To investigate a mechanism of an additional effect
of sorafenib to hydrogen peroxide, we assayed cytotoxicity
of hydrogen peroxide combined with sorafenib and with
NAC antioxidant added. When NAC was added, the
enhancement of hydrogen peroxide on sorafenib activity was
abolished in Caki-1 and 786-O cells (Fig. 4B).

Doxorubicin is well known to exert oxidative stress to
cells (41). The cytotoxicity of RCC cells to doxorubicin
combined with sorafenib was investigated. As shown in
Fig. 4C, sorafenib could increase the sensitivity of Caki-1
and 786-O cells, but not of ACHN cells, to doxorubicin. In
addition, NAC abolished this favorable effect of sorafenib
similar to hydrogen peroxide combined with sorafenib
(Fig. 4D).

PERK knockdown sensitizes both Caki-1 and 786-O cells to
oxidative stress exerted by hydrogen peroxide and doxorubicin.
Because sorafenib was suggested to inhibit PERK-kinase
activity, the effects of PERK knockdown using PERK-specific
siRNAs on RCC viability was determined. First, cytotoxicity

of hydrogen peroxide to RCC cells transfected with PERK-
specific siRNAs was examined. Hydrogen peroxide with
PERK knockdown suppressed survival of Caki-1 and 786-O
cells more effectively compared with hydrogen peroxide
alone, although survival of ACHN cells were not affected by
silencing of PERK (Fig. 5A). To confirm a mechanism of an
additional effect of PERK knockdown to hydrogen peroxide,
we assayed cytotoxicity of hydrogen peroxide with PERK
knockdown when further NAC was added. When NAC was
added to hydrogen peroxide combined with PERK knockdown,
the enhanced cytotoxicity was abolished in Caki-1 and 786-O
cells (Fig. 5B).

Similarly, doxorubicin plus PERK knockdown increased
cytotoxicity to both Caki-1 and 786-O cells, but not to ACHN
cells (Fig. 5C). In addition, NAC abolished the enhancement
of doxorubicin plus PERK knockdown similar to hydrogen
peroxide with PERK knockdown (Fig. 5D).

Doxorubicin sensitizes both Caki-1 and 786-O cells to
sorafenib. Because sorafenib sensitized doxorubicin in RCC
cells possessing high levels of eIF2· phosphorylation status

SHIOTA et al:  SORAFENIB INHIBITS PERK ACTIVATION1526

Figure 3. Phosphorylation level of eIF2· and nuclear Nrf2 expression level are correlated with efficiency of sorafenib treatment. (A) Western blot analysis
was performed with whole-cell extracts (p-ERK1/2, ERK1, p-eIF2· and eIF2·) and nuclear extract (Nrf2 and Lamin B1) from eight RCC cell lines using the
indicated antibodies. (B) Correlation between phosphorylation ratio to total eIF2· and nuclear Nrf2 expression level were analyzed. The maximum levels
of phosphorylation ratio to total eIF2· and nuclear Nrf2 expression in 786-O cells were set to 1. (C) Correlation between IC50 to cytotoxicity of sorafenib and
phosphorylated eIF2· ratio to total eIF2· in untreated cells was analyzed. (D) Correlation between IC50 to cytotoxicity of sorafenib and nuclear Nrf2 expression
level was analyzed.
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and nuclear Nrf2 expression, whether doxorubicin could
sensitize RCC cells to sorafenib was investigated. As shown
in Fig. 6A and B, doxorubicin sensitized both Caki-1 and
786-O cells to sorafenib about 2-fold. As expected, ACHN
cells could not be sensitized to sorafenib by an addition of
doxorubicin (Fig. 6C).

Discussion

Sorafenib has been shown to exert an anti-tumor effect through
inhibition of multiple kinases, such as Raf-1, VEGFR 2 and 3,
PDGFR-ß, FLT3, c-Kit and RET-receptor tyrosine kinase
(16,17). A possible involvement of ER stress and generation
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Figure 4. Sorafenib sensitizes both Caki-1 and 786-O cells to oxidative stress exerted by hydrogen peroxide and doxorubicin. (A and C) Caki-1, 786-O and
ACHN cells were seeded into 96-well plates and treated with 0.5 μM of sorafenib. The following day, various concentrations of hydrogen peroxide (A) or
doxorubicin (C) were applied. After 48 h, cell survival was analyzed by cytotoxicity assay. Cell survival in the absence of hydrogen peroxide (A) or
doxorubicin (C) was set as 1. All values are representative of at least three independent experiments. Boxes, mean; bars ± SD (B and D) Caki-1, 786-O and
ACHN cells treated with 0.5 μM of sorafenib and 5 mM of NAC were seeded into 96-well plates. The following day, various concentrations of hydrogen
peroxide (B) or doxorubicin (D) were applied. Cytotoxicity assay was performed as described in (A) and (C). Boxes, mean; bars ± SD.
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of reactive oxygen species in the cytotoxicity of sorafenib
against leukemia cells has been reported (42). The role of ER
stress in pancreatic function has been well characterized.
Pancreatic ß-islet cells produce large amounts of pro-insulin
proteins and are continuously exposed to ER stress and must
control the protein-synthesis process to protect themselves

from over-dosing ER stress. Therefore, pancreatic ß-islet
cells regulate protein synthesis at the translational level. In
this process of translation control, PERK plays a critical role
to phosphorylate eIF2· and repress translation; with the
exception of ATF4. Mutations in PERK were shown to induce
diabetes mellitus through apoptosis of pancreatic ß-islet cells,
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Figure 5. PERK knockdown sensitizes both Caki-1 and 786-O cells to oxidative stress exerted by hydrogen peroxide and doxorubicin. (A and C) Caki-1,
786-O and ACHN cells transfected with 40 nM of control siRNA, PERK siRNA #1 or PERK siRNA #2 were seeded into 96-well plates. The following day,
various concentrations of hydrogen peroxide (A) or doxorubicin (C) were applied. After 48 h, cell survival was analyzed by cytotoxicity assay. Cell survival
in the absence of hydrogen peroxide (A) or doxorubicin (C) corresponds to 1. All values are representative of at least three independent experiments. Boxes,
mean; bars ± SD (B and D) Caki-1, 786-O and ACHN cells transfected with 40 nM of control siRNA, PERK siRNA #1 or PERK siRNA #2, and treated with
5 mM of NAC were seeded into 96-well plates. The following day, various concentrations of hydrogen peroxide (B) or doxorubicin (D) were applied.
Cytotoxicity assay was performed as described in (A and C). Boxes, mean; bars ± SD.
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probably due to disorder of a mechanism of UPR (43).
Elevation of serum lipase, pancreatic disorder and drug-
induced pancreatitis could occasionally occur during sorafenib
administration, suggesting that multikinase inhibitor; sorafenib
inhibits PERK activation (44). As expected, results clearly
showed that phosphorylation level of eIF2· was reduced
by sorafenib treatment in Caki-1 and 786-O cells (Fig. 1A).
There are four eIF2· kinases, that is, HRI, PRK, PERK
and GCN2. In RCC cells, the latter three eIF2· kinases are
expressed. Sorafenib was able to suppress PERK phos-
phorylation level. Therefore, sorafenib is suggested to reduce
phosphorylation of eIF2· through an inhibition of PERK
kinase activity in Caki-1 and 786-O cells. However, eIF2·
phosphorylation level was inversely increased by sorafenib
treatment in ACHN cells. Although exact mechanism could

not be revealed, PERK mutation may affect inhibitory effect
by sorafenib similar to FLT3 (45). This paradoxical response
was shown in another study reporting that phosphorylated
form of MEK, sorafenib target kinase, was increased in
response to sorafenib in cells containing high level of B-Raf
and low Ras activity (46). In addition, this opposite response
of p-eIF2· to sorafenib treatment may determine cell fate
after sorafenib administration because increases of p-PERK
and p-eIF2· can rescue cell death induced by ER stress
(27,30). Furthermore, a newly revealed finding in this study
that sorafenib could inhibit a kinase other than the previously
known targets suggests that multikinase inhibitor may indeed
inhibit kinases more than thought and that comprehensive
assay to global kinases should be performed, which is
supported by the previous finding that sorafenib interacted with
relatively broad spectrum of kinases (47). Discrepancy in
degree of cell cycle arrest at G2 phase and cell death between
sorafenib treatment and PERK knockdown may suggest that
sorafenib prevents activation of other kinases.

Imatinib is a multikinase inhibitor suppressing BCR-ABL,
c-kit and PDGFR. The mechanism of imatinib resistance in
chronic myeloid leukemia appears to result from the
emergence of mutations in the kinase domain of BCR-ABL
(48). In addition, a product of MDR gene, P-glycoprotein and
human organic cation transporter family member 1 (hOCT1)
are suggested to be a molecular predictor of imatinib
treatment in chronic myeloid leukemia (49,50). Furthermore,
imatinib resistance in gastrointestinal stromal tumors by
second mutations of imatinib target, c-kit was reported
(51,52). Although sorafenib is used widely in many
countries, predictive molecular markers of therapeutic
efficiency have not been elucidated. Naturally, sorafenib
exhibits therapeutic effects and adverse events differentially
on individuals. It is very important for ideal treatment of
mRCC to distinguish patients who are likely to benefit from
sorafenib administration. In this study, phosphorylation ratio
of eIF2· and its associated molecule, Nrf2 was shown to be
possibly useful in predicting efficiency of sorafenib
administration, although this finding should to be confirmed
in in vivo model and in clinical setting.

It is important to improve the outcome of mRCC patients.
Cytokine therapy using IL-2 or IFN-· has been employed for
the treatment of mRCC, however, outcomes have been
unsatisfactory (7,9,10). Recently, new small molecule agents
were started to be administered for mRCC patients, and one
of them is sorafenib. Although sorafenib improved
progression-free survival and overall survival, its benefit is
limited (18,19). Therefore, more beneficial therapeutics is
needed for RCC patients. Recently, sorafenib in combination
with doxorubicin has been reported to double the median
overall survival from 6.5 months in the doxorubicin-mono
therapy group to 13.7 months in the combination group in a
randomized, double-blind, placebo-controlled phase II study
of patients with hepatocellular carcinoma, indicating the
possibility of better sorafenib effect in combination with
doxorubicin (53). However, sorafenib in combination with
conventional chemotherapeutic agents, paclitaxel plus
carboplatin for melanoma patients failed to show improve-
ment in overall survival (54). In our study, sorafenib in vitro
sensitized RCC cells possessing high eIF2· phosphorylation
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Figure 6. Doxorubicin sensitizes both Caki-1 and 786-O cells to sorafenib.
(A-C) Caki-1 (A), 786-O (B) and ACHN (C) cells were seeded into 96-well
plates and treated with 1 nM of doxorubicin. The following day, various
concentrations of sorafenib were applied. After 48 h, cell survival was analyzed
by cytotoxicity assay. Cell survival in the absence of doxorubicin corresponds
to 1. All values are representative of at least three independent experiments.
Boxes, mean; bars ± SD.
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status and nuclear Nrf2 expression level to oxidative stress
exerted by hydrogen peroxide and doxorubicin, indicating that
combination therapy of anticancer agents exerting oxidative
stress and sorafenib may be a beneficial in the RCC
dependent on PERK pathway. This finding is supported by
the previous report that doxorubicin with sorafenib have an
over-additive growth-inhibitory effect (55). In addition, some
anticancer agents combined with anti-angiogenic drugs could
improve therapeutic index through their anti-angiogenic
effects (56). As it  was shown that in mouse model,
doxorubicin combined with anti-VEGFR2 antibody could
exert an excellent therapeutic effect (57), sorafenib plus
doxorubicin might be a novel method in terms of anti-
angiogenic therapeutics. Metronomic therapy has also been
focused on in anti-angiogenic therapy. Sorafenib plus
doxorubicin might be an ideal combination because non-
toxic dose of doxorubicin could enhance cytotoxic effect of
sorafenib, which prevent neovascularization and re-
vascularization after maximum-tolerated dose chemotherapy
(58). However, further investigation of the effect of the
sorafenib and doxorubicin combination using in vivo models
and in clinical trials are necessary to confirm the promising
in vitro results reported here.

In conclusion, the multikinase inhibitor sorafenib was found
to inhibit the PERK pathway regulating protein translation
in the cells possessing high p-eIF2· level and high nuclear
Nrf2 expression. Furthermore, its pharmacological effects on
the phosphorylation ratio of eIF2· and its associated molecule,
Nrf2 might be useful to predict efficiency of sorafenib adminis-
tration. Silencing of PERK sensitized RCC cells to hydrogen
peroxide and doxorubicin, probably due to oxidative stress.
In addition, PERK inhibitor, sorafenib also sensitized to
hydrogen peroxide and doxorubicin. Conversely, doxorubicin
could sensitize to sorafenib. These findings indicate that
doxorubicin might be a useful agent for treatment of mRCC
patients in combination with sorafenib.
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