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Abstract. Nanotechnology has broad application prospects in 
the diagnosis and treatment of cancer. Integrating chemistry, 
engineering, biology and medicine, nanotechnology is a multi-
disciplinary research field. Nanoscale imaging technology 
significantly improves the precision and accuracy of tumor 
diagnosis. Nanocarriers are able to significantly improve the 
accuracy of dose and targeted drug delivery and reduce the 
toxic side effects. This review focuses on the emerging roles 
of these innovative technologies in gastrointestinal cancer 
diagnostics and therapeutics. Although several problems and 
barriers are hampering the development of nanodevices, the 
potential for nanotechnologies to function as multimodal 
nanotheranostic agents will likely pave the way for the fight 
against gastrointestinal cancer.
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1. Introduction

Nanotechnology is a multidisciplinary research field that 
integrates a broad and diverse array of equipments derived 

from chemistry, engineering, biology and medicine  (1). 
Nanotechnologies applied to gastrointestinal cancer include 
nanoparticle‑based specific identification of tumors and cancer 
biomarkers, biologically‑targeted contrast agents for magnetic 
resonance imaging (MRI), detection of sentinel lymph nodes 
(SLNs), drug delivery systems and novel treatment approaches. 
Novel nanotechnologies have gained worldwide attention due 
to their great potential to vastly improve current standards and 
techniques for the diagnosis and treatment of gastrointestinal 
cancers.

Devices based on nanotechnology are typically, in at 
least one dimension, in the 1‑100 nm range. The dimensions 
may be manipulated close to the wavelength for scattering 
or absorption over a wide spectral range of light, including 
near‑infrared (NIR) light. The nanodevices have a large surface 
area‑to‑volume ratio that increases the interaction surface 
between the target and the nanodevices (2). Nanodevices are 
able to load drugs at a high concentration, which are then effi-
ciently delivered to specific sites with the advantage of fewer 
side effects and lower toxicity. The advantages of nanodevices 
compared to traditional technologies make them attractive 
modalities for development and they may also help promote 
the application of personalized therapy based on a patient's 
genetic content.

Although considerable progress has been achieved over the 
last few years, certain issues are hampering the development 
of nanodevices (3). Newly engineered nanoparticles exhibit 
significantly reduced toxicity; however, the question of tocixity 
remains a focus of attention (4). The high price of the innova-
tive devices and complex production process currently prevent 
nanotechnology from being routinely applied clinically for 
tumor detection. Regarding the future application of nanodrug 
delivery systems, there is a need for a more complete system 
of safety pharmacology, drug biotransformation, pharmacoki-
netic and toxicokinetic studies.

The nanodevices developed for gastrointestinal oncology 
include nanowires, cantilevers, quantum dots (QDs), 
nanoshells, gold nanoparticles dendrimers, carbon nanotubes, 
paramagnetic nanoparticles, liposomes and nanogels. The 
aim of this review was to summarize the emerging roles of 
this new technology in gastrointestinal cancer diagnosis and 
therapy, particularly focusing on nanowires, cantilevers, QDs, 
nanoshells, dendrimers and nanogels, which may represent 
exciting opportunities in the fight against gastrointestinal 
cancer.
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2. Nanowires

A nanowire may be defined as a material consisting of milli-
meters in length, but achieving a diameter measured in the 
nanometer range. Nanowire devices are based on field effect 
transistors (FETs) (5). When biomarkers flow aside, the change 
in charge density is turned into measurable information in the 
electric field of the nanowire devices, enabling highly effica-
cious detection of biological targets (6).

Silicon nanowire (SiNW)‑FETs with surface receptors 
binding into arrays are favorable for selective, highly sensitive, 
multiplexed and label‑free biomarker measurements (7). The 
integrated control nanowires may further reduce the incidence 
of false‑positive results. Nucleic acid receptors incorporated 
into arrays may enable real‑time assays of the telomerase 
activity using samples extracted from only 10  tumor cells 
without using methods such as repeat amplification protocol (8).

However, there remain certain challenges. One of the chal-
lenges associated with SiNW‑FET sensors is the relatively low 
analytical signal intensity. Due to the higher ionic strength and 
possible contamination of the sensors, whole‑blood samples 
cannot be directly examined (9).

The SiNWs device has shown the possibility of highly sensi-
tive label‑free and early detection of miRNA as a diagnostic 
marker for tumors. Zhang et al (10) reported that SiNWs arrays 
allowed direct hybridization detection of miRNA without 
the help of any additional biological labelling. The biosensor 
may identify the concentrations of the miRNA through the 
resistance change caused by direct hybridization with peptide 
nucleic acids immobilized on the SiNW device. Biosensors are 
emerging as promising candidates for detection applications due 
to their ability to detect target miRNA at concentrations as low 
as 1 fM (10). Given that the concentrations of cancer biomarkers 
are extremely low in the tissue or blood samples, a SiNWs‑based 
device is expected to be a reliable and cost‑effective sensor with 
high specificity and sensitivity. Lee et al (11) demonstrated 
that SiNW‑based sensors were ultrasensitive and specific in 
measuring C‑reactive protein (CRP), a marker of inflammation 
which was recently associated with cancer progression. The new 
technology is highly efficacious for accurate, rapid and repeatable 
testing of CRP (11). Zheng et al (12) used nanowires to develop 
a highly selective assay for ultrasensitive multiplexed detec-
tion of prostate‑specific antigen (PSA)‑α1‑antichymotrypsin 
complexes, PSA, mucin‑1 and carcinoembryonic antigen (CEA). 
This device is capable of detecting concentrations of at least 
0.9 pg/ml in undiluted serum samples (12). Another system 
reported by Stern et al (13) uses a two‑step approach, incor-
porating microfluidic purification chips that capture multiple 
biomarkers from whole blood, concentrating the biomarkers of 
interest and releasing the biomarkers for quantitative detection 
with silicon nanoribbon detectors. This technique reduces the 
minimum required sensitivity of the system (13).

Well‑designed SiNWs passively penetrate and transfect 
cells, providing new opportunities for gene therapy of gastro-
intestinal cancers.

3. Cantilevers

Nanoscale cantilevers are microscopic flexible beams that 
are usually arrayed in a row. Cantilevers are able to conduct 

biosensing through the principle that these tiny probes natu-
rally vibrate at a certain frequency dictated by mechanical 
and mass properties. When a biological molecule binds to this 
nanoscale probe, it alters the baseline probe frequency, which 
is typically measured by a difference in the characteristics 
of the light deflection pattern of the probe or through elec-
trical means (14). Cantilever vibrations are mainly deflected 
in atomic force microscopy (AFM) force feedback mode to 
obtain the real‑time imaging (15).

The reported benefits of using nanocantilever systems in 
cancer detection include that there are no requirements for 
fluorescent or radioactive labeling; detection may take place 
in liquid samples and this technology may be easily trans-
lated to lab‑on‑a‑chip techniques, providing point‑of‑care 
diagnostics (16). They have also been described as a simple 
replacement to polymerase chain reaction reactions and detec-
tion methods, as they are more cost‑effective regarding sample 
preparation, in terms of time and costly materials.

Nanoscale cantilever devices, in which cantilevers are 
coated with specific receptors, may provide highly sensi-
tive and rapid detection of disease‑specific molecules, such 
as DNA or protein  (17). Hansen  et  al  (18) incorporated 
molecules capable of binding to the specific gene sequence of 
single‑nucleotide polymorphisms (SNPs) into nanocantilevers 
to inspect the SNPs in DNA target oligonucleotides. Based 
on the good spatial resolution and good contrast of cancer 
cells on mica in water, AFM has been combined with the 
astigmatic detection system for imaging soft DNA molecules. 
Liao et al (19) suppressed the spurious peaks of the cantilever 
holder down to 26.0% of the real resonance peak to achieve 
excellent sensitivity. Methodology composed of the AFM 
tip‑cantilever assembly and silica beads has been fabricated 
to measure specific ligand‑receptor interactions and to adjust 
receptor positions. Gunning  et  al  (20) adopted this novel 
approach to detect the force between wheat germ agglutinin 
and the glycosylated extracellular domain III of the epidermal 
growth factor receptor (EGFR) on the surface of living human 
intestinal epithelial cells. The values for single‑molecule 
interactions are typically expected (20). A patent approach 
incorporating AFM with confocal microscopy was developed 
to detect bulk nuclear stiffness and to simultaneously visu-
alize the cantilever‑nucleus contact. Krause et al (21) used 
this method to identify nuclear compressibility prior to and 
following nuclear softening induced by the chromatin‑decon-
densating agent trichostatin A, with the results indicating 
that this approach may be practical. The proposed tool may 
be extremely useful for the comprehension of the concept 
of limiting nuclear deformation in carcinoma invasion (21). 
Wu et al (22) used a microplate measurement system approach 
based on the deflection of a flexible microcantilever to measure 
cell stiffness (in Pa) and adhesion force (in nN) between cells 
prior to and following transforming growth factor‑β1‑induced 
epithelial‑to‑mesenchymal transition.

4. Quantum dots (QDs)

QDs are nanocrystals that are composed of semiconductor 
particles, consisting of an inorganic element in its core with a 
surrounding metal shell. The diameters of QDs range between 
2 and 10 nm. The size and composition of QDs may be adjusted 
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to give the QDs a unique fluorescence emission that may vary 
between 400 and 2,000 nm (1). Varying wavelengths allow 
for tuning QDs to any color, which enables recognition and 
tracking of differently labeled biomarkers using only a single 
light source (23). Fluorescent‑labeled QDs make multicolor 
imaging in living tissue a reality in the context of multiphoton 
microscopy (24).

QDs possess promising characteristics, such as stable fluo-
rescence with simple excitation, multispectral tunability, high 
sensitivity and no requirement for lasers. The red/infrared 
colors of QDs enable whole‑blood assays. However, one 
problem that traditionally exists with imaging normal healthy 
tissue is that it often exhibits autofluorescence, which inter-
feres with the signal from cancerous tissue. QDs have been 
engineered to display fluorescence properties in the NIR 
spectra and, thus, are able to eliminate this interference to a 
great extent (25). Another potential problem with using QDs 
in vivo is whether injection poses a toxic risk. Modifications 
have been made to decrease potential toxicity; however, 
further research is required to determine appropriate clinical 
adaptability (26). As cadmium ions released from the QDs are 
associated with cytotoxicity, polyethylene glycol (PEG) was 
developed to reduced the toxicity of uncoated QDs. Indeed, 
the QDs coated with the PEG polymer induced no obvious 
immune response, no cytotoxicity and no cell cycle changes, 
even at high dosage. No more than 0.2% of the human genome 
was affected according to the genome‑wide expression array 
analysis including 18,400 known gene probe sets (27). Another 
type of improved nanoparticles are graphene QDs, which may 
be promising substitutes for QDs based on rigorous research 
including cellular internalization, distribution and cytotoxicity 
studies (28).

QDs labeled with specific DNA tags is a practical testing 
tool for DNA sequences associated with cancer; based on the 
unique fluorescence emission, they may identify oncogene 
fragments in the DNA sample. Zhang et al (29) successfully 
synthesized a microfluidic bead‑based nucleic acid sensor 
labeled with QDs to detect CEA gene fragments with a discrim-
ination limit as low as 5 fM. QDs conjugated with colorectal 
cancer surface antigens may detect circulating tumor cells 
which have been associated with metastasis and prognostic 
significance. Yu et al (30) have created glutathione‑thioglycolic 
acid co‑capped cadmium telluride QDs exhibiting high fluo-
rescence intensity and good biological compatibility. When 
incorporated to the monoclonal antibody ND‑1, the novel 
detection device resoundingly labeled colorectal cancer cells 
in vitro (30). A microfluidic bead‑based nucleic acid sensor 
with QD labels and multienzyme‑nanoparticle amplification 
was found to be highly effective in detecting circulating cancer 
cells in blood samples. This device is capable of discriminating 
one cancer cell in 1 ml of blood (29). Gazouli et al (31) labeled 
QDs with two antibodies that attach to specific proteins on 
the surface of circulating tumour cells to perform diagnostic 
procedures on blood specimens. The detection limit was as 
low as 10 colorectal cancer cells per ml  (31). Apart from 
circulating tumor cell detection, Bodo et al (32) demonstrated 
that QD immunofluorescence had the possibility of in situ 
quantitation of phosphoproteins in fixed samples, providing 
a promising method for highly cell  type‑specific detection 
application in the future.

QDs are considered to be a ideal method for cancer targeting 
and imaging due to their unique properties, including enhanced 
permeability and retention effect and nanoscale‑vehicle prop-
erties with high imaging‑agent capacity. PEG‑coated QDs 
may be used for identifying SLNs in mouse tumor models (33).

NIR light possesses promising characteristics, such as high 
signal‑to‑background ratio, high photon penetration into living 
tissues and low tissue autofluorescence, which have attracted 
significant attention for use in biomedical imaging (34). The 
NIR QDs have been reported to be a practical imaging tool for 
simultaneous visualization of SLNs (35,36). Soltesz et al (37) 
intra‑parenchymally injected NIR fluorescent QDs in different 
parts of the gastrointestinal tract of pigs and identified lymph 
node drainage and SLNs during surgery using the NIR 
fluorescence imaging system. This development was a major 
breakthrough, since it provided real‑time imaging of SLNs 
without using any radiolabels (37). Hikage et al (38) investi-
gated the possibility of detecting SLNs with NIR QDs under a 
confocal microscope. In that study, the QDs were introduced 
into the gastrointestinal wall of pigs. The SLNs were quickly 
and accurately mapped, demonstrating the possibility of 
highly sensitive label‑free SLN mapping (38). QDs conjugated 
with bioprobe labels are emerging as promising candidates 
for more specific imaging applications. Zhang  et  al  (39) 
created gastric tumor‑specific QDs (CC49‑QDs), which are 
QDs labelled with the tumor‑associated glycoprotein  72 
monoclonal antibody CC49, and found that antibody grafting 
significantly improved the specifity of QDs in mapping target 
gastric tumor cells without any difference in optical proper-
ties. Geraldo et al (40) produced a new QDs/polyamidoamine 
(PAMAM)‑folate derivative. The supramolecular complexes 
appear to hold promise for highly efficacious and highly 
selective imaging of gastric tumor cells. Paramagnetic QDs 
(cNGR‑pQDs) labeled with cyclic Asn‑Gly‑Arg (cNGR) were 
created by Oostendorp et al  (41) to determine angiogenic 
tumor vasculature, which is significant for tumor invasion and 
metastasis. The results demonstrated that cNGR‑pQDs were 
a highly specific tool for in vivo detection and quantifica-
tion of tumor angiogenic activity using MRI (41). An optical 
imaging nanoprobe using EGF‑conjugated QDs for repetitive 
and quantifiable imaging of EGFR expression within tumor 
parenchyma was created by Diagaradjane et al (42). These 
results indicated that QDs conjugated with antigens enhanced 
the specificity of imaging application.

The use of multicolor QD probes is increasingly being 
investigated in the field of immunohistochemistry, which 
is widely used in the diagnosis of malignant tumors. This 
technique was applied to assess the expression of Cav‑1 and 
LC3B, which have been found to be independent predictors 
of gastric cancer prognosis in humans (43,44). QDs‑based 
multiplexed biomarker detection has attracted significant 
attention as a reliable predictor of disease progression and 
treatment response (45). Bostick et al  (46) created a panel 
of bioconjugated QDs to simultaneously detect and quantify 
well‑recognized prognosticators for colorectal cancer on the 
same histological sections. QDs conjugated with multiple 
biomarkers may also be used for simultaneous prognosticator 
detection to predict medical outcomes in gastric cancer through 
studying the major components of the tumor stroma, including 
tumor infiltrating macrophages, tumor microvascular density 
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and neovessel maturity, type IV collagen and matrix metal-
loproteinase 9 (47‑49).

5. Dendrimers

Dendrimers are synthetic complex nanostructures with 
branched concentric layers surrounding an inner core. The 
shape, size, surface functionalities and branching length of 
a dendrimer may be manipulated to perform different func-
tions  (50,51). The diameters of dendrimers range between 
1 and 10 nm. Dendrimers are proving to be particularly adept 
at serving as a versatile modularity capable of detecting a 
number of proteins, which are currently detected by individual 
ELISA testing. In addition, dendrimer nanoparticles have been 
created, which may be dually utilized for imaging using MRI 
or NIR fluorescent modalities in a single probe. This has also 
been shown to be effective in mouse SLN mapping (52).

Dendrimers were developed to be used as non‑viral 
delivery vectors by exploiting their unique and superior 
property of enhanced permeability  (53). Teow  et  al  (54) 
demonstrated that the third‑generation dendrimer is an ideal 
carrier system for paclitaxel (PTX) following conjugation with 
lauryl chains and labeling with fluorescein isothiocyanate, 
based on its increased permeability compared to PTX alone. 
The most commonly used dendrimer application in genetic 
transmission is PAMAM. Dufes et al (55) demonstrated that 
polypropylenimine dendrimers are able to effectively deliver 
the tumor necrosis factor α gene into colorectal adenocarci-
noma cells to inhibit the growth of colorectal cancer without 
evident toxicity on the animals, demonstating that dendrimers 
are a promising carrier for the delivery of targeted antitumor 
genes for cancer therapy. Li et al (56) investigated a synthetic 
vector system based on PAMAM dendrimers for effective 
delivery of survivin antisense oligonucleotide into transplanted 
colorectal tumor cells to reduce the expression of survivin and 
inhibit the growth of subcutaneously transplanted colorectal 
cancer in nude mice. PAMAMs have also been utilized in 
synthetic drug delivery vehicles due to their properties, such 
as high loading content, simple synthesis, excellent biode-
gradability and remarkable versatility (57). Drugs covalently 
bound to the periphery or loaded into the inner core of a 
dendrimer are efficiently delivered to the site of action (58,59). 
Goldberg et al  (58) found that SN38 conjugated with G3.5 
dendrimers exhibited enhanced transepithelial transport and 
reduced gastrointestinal toxicity compared to free SN38 in 
colorectal cancer cells, demonstrating that dendrimers have 
enormous potential as carriers in the transport of anticancer 
drugs. Further research evaluated the anticancer effect of 
the G3.5‑conjugated SN38 via a glycine or β‑alanine spacer 
and found that PAMAM dendrimers significantly enhanced 
the oral bioavailability as targeted antitumor drug delivery 
systems  (60). PAMAM dendrimers complexed with c‑Src 
antisense effectively decreased c‑Src, a member of the 
non‑receptor tyrosine kinase protein family that is overex-
pressed and activated in a number of human cancer cells and 
EGFR‑dependent downstream genes (61). Morgan et al (62) 
created a biocompatible polyester dendrimer, able to load three 
different antitumor drugs, as a novel pharmaceutical carrier 
that significantly increased cellular uptake and drug retention, 
while maximizing cytotoxicity toward cancer cells in vitro. 

PEGylated dendrimers have also shown great promise as drug 
carriers; they are manufactured in an easy and cost‑effective 
manner, but exhibit higher targeting and anticancer abilities, 
as van der Poll et al (57) demonstrated in their in vivo study.

Studies in vitro as well as in vivo show promise for the 
targeted delivery of drugs currently used in clinical practice. 
Thiagarajan et al (63) synthesized a conjugated macromol-
ecule composed of camptothecin and a polydendrimer, 
which efficiently inhibited colorectal cancer growth. Nuclear 
fragmentation was also observed in vitro (63). Lee et al (64) 
conjugated doxorubicin (DOX) with dendrimers to investigate 
the pharmacokinetic profiles of attached DOX. The conju-
gated polymer molecules were then injected into BALB̸c 
mice with subcutaneously transplanted C‑26 tumors. The 
results demonstrated that tumor growth was efficiently 
inhibited and the life span of the mice was significantly 
extended  (64). Due to the unique properties of PAMAM 
dendrimers, they have been successfully employed as new 
MRI contrast agents (65). Khosroshahi et al (66) developed 
99mTc‑dendrimer  G‑methionine and found that the newly 
synthesized complex exhibited better cancer molecular imaging 
and anticancer properties compared to DTPA‑methionine 
conjugates. Kobayashi  et  al  (67) visualized the vascula-
ture in transplanted tumors using 3D  MR angiography. 
G6‑(1B4M‑Gd)192 with a generation‑6 PAMAM dendrimer 
core as a newly synthesized MR contrast agent proved to be 
significantly more useful for intratumoral vasculature imaging 
compared to Gd‑DTPA. The vascular visualization achieved 
higher scores at all time points during contrast enhancement, 
without severe side effects (67).

6. Nanogels

Nano‑size hydrogels (often called nanogels) are swollen 
nano‑sized networks formed by non‑covalent interactions 
or covalent cross‑linking of polymer chains (68). Given that 
nanogels have the properties of large surface area‑to‑volume 
ratio, size tunability, controlled drug release profile, excellent 
drug loading capacity and responsiveness to environmental 
stimuli, they have attracted significant attention in medicine 
as imaging labels and targeted drug delivery, while reducing 
systemic side effects (69).

NIR polynagogel (NIR‑PNG) was recently considered to 
be an optimal tracer for SLN navigation surgery in gastric 
cancer. Kong  et  al  (70) found that IRDye900‑conjugated 
pullulan‑cholesterol nanoprobe NIR‑PNG exhibited the favor-
able characteristics of lower dispersion and longer retention 
in the SLN compared to diluted indocyanine green (ICG) 
and ICG/poly‑γ‑glutamic acid complex following injection 
into the stomachs of dogs and pigs (70). Nanogels may be 
controlled for various applications in drug delivery and may 
be tailored to exhibit exceptional stability, low cytotoxicity 
and higher blood compatibility (71,72). Nanogels containing 
5‑fluorouracil (5‑FU) were developed to be utilized as a new 
colon‑targeting drug carrier systems, owing to their excel-
lent pH‑sensitive release property and effectively reduced 
toxicity (73). Yim et al (74) found no specific manifestations 
in organ sections from experimental mice injected with 
PTX‑loaded degradable cationic nanogels in conventional 
histopathological examinations demonstrating considerable 
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toxicity of the nanoparticles. Nanogels also represent a set of 
biodegradable nanoparticles that may be utilized as non‑viral 
gene carriers. Heparin‑polyethyleneimine (HPEI) nanogels 
were reported to successfully transfect the plasmid expressing 
the vesicular stomatitis virus matrix protein (VSVMP) into 
colon carcinoma cells in vitro and in vivo, exhibiting higher 
transfection efficiency, lower cytotoxicity and better blood 
compatibility compared to PEI25K. The development of 
abdominal and pulmonary metastases was significantly inhib-
ited by intraperitoneal or intravenous injection of the HPEI 
nanogels loaded with pVSVMP. Yim et al (74) synthesized 
a biodegradable drug delivery vehicle based on nanogels, 
which effectively deliver PTX into human cancer xenograft 
in BALB/c mice. The new complex DpNG‑PTX achieved 
a higher efficacy in inhibiting tumor growth compared to 
PA‑PTX (75). Based on thse findings, nanogels may provide 
novel opportunities for further advances in drug delivery.

Nanogels have been demonstrated to be potential oral 
drug delivery systems. The 5‑FU nucleoside floxuridine has 
reported been prepared into polymeric nanogels as a novel 
oral drug form, which exerts a good antitumor effect on 
drug‑resistant tumors (76). Senanayake et al created an inno-
vative nanoencapsulated drug congjugated with gemcitabine 
for oral administration in cancer chemotherapy (76). This new 
medical technology enabled gemcitabine to successfully cross 
the normally impermeable gastrointestinal barrier and reach 
the site of interest, according to the results of permeability 
studies. A good antitumor effect was also observed in vivo in 
nude mice against several drug‑resistant human tumors.

7. Conclusion and future directions

This review provides an summary of the currently available 
nanotechnologies developed for the diagnosis and treatment 
of gastrointestinal tumors. Although several problems and 
barriers are hampering the development of nanodevices, 
the potential of nanotechnologies to function as multimodal 
nanotheranostic agents will likely pave the way for the fight 
against gastrointestinal cancer and promote the development 
of personalized therapy for early diagnosis and treatment of 
cancer.
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