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Abstract. Chronic lymphocytic leukemia (CLL) represents the 
most common hematological malignancy in Western countries, 
with a highly heterogeneous clinical course and prognosis. 
Translocations involving the immunoglobulin (IG) genes are 
regularly identified. From 2000 to 2014, we identified an IG gene 
translocation in 18 of the 396 patients investigated at diagnosis 
(4.6%) and in 17 of the 275 analyzed during follow‑up (6.2%). 
A total of 4 patients in whom the IG translocation was identi-
fied at follow‑up did not carry the translocation at diagnosis. 
The IG heavy locus (IGH) was involved in 27 translocations 
(77.1%), the IG κ locus (IGK) in 1 (2.9%) and the IG λ locus 
(IGL) in 7 (20.0%). The chromosome band partners of the IG 
translocations were 18q21 in 16 cases (45.7%), 11q13 and 19q13 
in 4 cases each (11.4% each), 8q24 in 3 cases (8.6%), 7q21 in 
2 cases (5.7%), whereas 6 other bands were involved once (2.9% 
each). At present, 35 partner chromosomal bands have been 
described, but the partner gene has solely been identified in 
10 translocations. CLL associated with IG gene translocations 
is characterized by atypical cell morphology, including plasma-
cytoid characteristics, and the propensity of being enriched in 
prolymphocytes. The IG heavy chain variable region (IGHV) 
mutational status varies between translocations, those with 
unmutated IGHV presumably involving cells at an earlier stage 
of B‑cell lineage. All the partner genes thus far identified are 
involved in the control of cell proliferation and/or apoptosis. 
The translocated partner gene becomes transcriptionally 
deregulated as a consequence of its transposition into the 
IG locus. With the exception of t(14;18)(q32;q21) and its vari-
ants, prognosis appears to be poor for the other translocations. 

Therefore, searching for translocations involving not only IGH, 
but also IGL and IGK, by banding and molecular cytogenetics 
is required. Furthermore, it is important to identify the partner 
gene to ensure the patients receive the optimal treatment.
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1. Introduction

Reciprocal chromosomal translocations are recurrent features 
of several hematological malignancies (http://cgap.nci.nih.
gov/Chromosomes/Mitelman; http://atlasgeneticsoncology.
org/). The cloning of the genes located at the breakpoints of 
chromosomal translocations in leukemia and lymphoma has 
led to the identification of new genes involved in carcinogen-
esis. These rearrangements generate new genes, called fusion 
genes, or lead to the activation of a proto‑oncogene by reloca-
tion near active regulatory sequences. The second mechanism 
is the hallmark of lymphoma and B‑cell chronic lymphocytic 
leukemia (CLL).

CLL represents the most common hematological malig-
nancy in Western countries, with a highly heterogeneous 
clinical course and prognosis, and a time‑to‑progression 
varying from months to several years. Some patients live 
for prolonged periods without therapy, while others rapidly 
develop progressive disease and require treatment (1,2).

Morphologically, the World Health Organization recog-
nizes 3 subtypes (3): The ‘typical’ CLL is characterized by 
small lymphocytes with mature chromatin and minimal cyto-
plasm without nucleoli, and <10% of prolymphocytes (PLs). 
The prolymphocytic leukemia (PLL) has >55% PLs, which 
are large cells with a round nucleus, a prominent vesicular 
nucleolus, condensed nuclear chromatin and abundant cyto-
plasm (4). Occasionally, a subset of CLL cases acquires an 
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increased number (10‑55%) of PLs (CLL/PL) and eventually 
transforms to a neoplasm composed predominantly of PLs (5). 
The immunophenotype of CLL is CD5+, CD23+, FMC7‑, 
CD20 dim+ and clonal surface immunoglobulin (sIg) dim+ (6).

Transformation into a fast‑growing diffuse large B‑cell 
lymphoma is encountered in ~5%  of CLL patients and 
it is referred to as Richter's syndrome  (7,8). Under rare 
circumstances, plasmablastic lymphoma or plasmablastic 
transformation may be observed, representing an unusual 
example of Richter's syndrome.

Numerous studies have searched for reliable prognostic 
markers capable of predicting the progression and outcome 
of this disease. They include two different clinical staging 
systems, one described by Rai et al  (9) and the other by 
Binet et al  (10). Other prognostic markers, such as CD38 
and ZAP‑70 expression and IG heavy chain variable region 
(IGHV) mutational status, are being evaluated or used (2,11). 
More recently, next‑generation sequencing has identi-
fied mutations in a few genes that may have a prognostic 
impact (12,13).

At present, interphase fluorescent in situ hybridization 
(iFISH) targeting four chromosomal abnormalities [deletion 
of 13q14, trisomy  12, deletion of 11q22 (ATM) and dele-
tion of 17p13 (TP53)] remains the most effective outcome 
predictor (14). However, iFISH only provides a partial view of 
the karyotypic complexity of CLL; specific cytogenetic abnor-
malities, including translocations, which remain undetected by 
iFISH, are currently identified, due to the use of more effec-
tive B‑cell mitogens. Among these, translocations involving 
the immunoglobulin (IG) genes have emerged as one of the 
cytogenetic abnormalities that have clinical and biological 
specificities and prognostic implications.

2. Brest University Hospital cohort

Patients. Between  2000 and  2014, the Cytogenetics 
Laboratory of the Brest University Hospital collected blood 
or bone marrow samples from CLL patients diagnosed and/or 
followed up in 10 hospitals in Brittany. The clinical diagnosis 
of CLL in each patient was based on a persistent lympho-
cytosis of >5x109 cells̸l and a typical immunophenotypic 
picture (CD5+, CD19+, CD20+, CD23+ and weak expression of 
sIg) (15‑17). A total of 396 patients were referred at diagnosis 
and 275 during follow‑up.

Methods. Peripheral blood and bone marrow were cultured for 
72 h. Cell stimulation was performed with tetradecanoylphorbol 
acetate from 2000 to 2010, and with the immunostimulatory 
CpG‑oligonucleotide DSP30 and interleukin‑2 from 2010 
onwards. The chromosomes were R‑banded and the karyo-
type was described according to the International System for 
Human Cytogenetics Nomenclature (18).

iFISH was performed on fixed cells from the cultures 
using the Vysis CLL FISH Probe kit (Abbott Molecular, 
Rungis, France). The CLL panel includes two set of probes: 
A first set consisting of LSI TP53 SpectrumOrange and 
ATM SpectrumGreen probes, and a second set consisting of 
LSI  D13S319 SpectrumOrange/13q34 SpectrumAqua and 
CEP 12 SpectrumGreen probes. A total of 300  interphase 
nuclei were studied for each set of probes. Based on the 

recommendations of the CLL Research Consortium FISH 
standardization project, FISH cut‑off was set at 10% for each 
hybridization (19).

Metaphase and iFISH using the IGH Breakapart Probe 
(Cytocell, Compiègne, France or Abbott Molecular) was not 
systematically performed on all samples, but only on those 
in which an abnormality of chromosome 14 was suspected. 
Translocations involving the IG κ locus (IGK) or IG λ locus 
(IGL) genes were assessed with the IGK Breakapart Probe or 
the IGL Breakapart Probe (Cytocell).

Results. Overall, an IG translocation was identified in 35 patients 
(Table  I). The patients included 22  men and 13  women. 
The mean age was 72 years (range, 40.8‑85 years; standard 
deviation, 8.5 years) and the median age was 72.3 years. The 
patient sample included 18 patients among the 396 investi-
gated at diagnosis (4.6%) and 17 of the 275 analyzed during 
follow‑up (6.2%). An IG translocation was present at diagnosis 
and follow‑up in 3 patients. A total of 4 patients for whom the 
IG translocation was identified at follow‑up did not carry the 
translocation at diagnosis, while no metaphases were observed 
at diagnosis in another patient.

IG  heavy  locus (IGH; chromosome band  14q32) was 
involved in 27 (77.1%), IGK (band 2p11) in 1 (2.9%) and IGL 
(band 22q11) in 7 (20.0%) translocations. The chromosome 
band partners of the IG translocations were 18q21 in 16 cases 
(45.7%), 11q13 and 19q13 in 4 cases each (11.4% each), 8q24 
in 3 cases (8.6%) and 7q21 in 2 cases (5.7%), whereas 6 other 
bands were involved once (2.9% each). However, as rearrange-
ments involving IGH were not systematically searched for by 
FISH, we cannot exclude that some cryptic translocations may 
have escaped detection.

iFISH with the CLL FISH Probe kit was performed on 
25 patients carrying an IG translocation (Table II). Mono‑allelic 
deletion of 13q14 was identified in 9 patients (36%), including 
a bi‑allelic in 2 patients. Trisomy 12 was found in 12 patients 
(48%). Deletions of 11q22 and 17p13 were observed in 1 (4%) 
and 3 (12%) patients, respectively (Table  II). Recently, we 
reported our iFISH results on 638 patients. Del(13q14) was 
found in 65% and a trisomy  12 in 22.1% of the patients. 
Deletions of 11q22 and 17p13 were observed in 13.3 and 8.6% 
of the patients, respectively (20).

3. Frequency and distribution of IG translocations

For years, banding karyotyping has been hampered by the 
low mitotic index of CLL cells, and the majority of the studies 
currently rely on iFISH with an IGH probe to determine the 
frequency of IGH translocations. A total of 18 studies were 
retrieved from the literature (Table III). The overall frequency 
was 8.3% (327/3,922) but the range varied considerably, 
from 1.9% in a study from the USA, to 26.1% in a Canadian 
study. Although a geographic/ethnic uneven distribution 
cannot be ruled out, it is likely that differences in diagnosis 
(PLL included or not), referral, access to care and healthcare 
systems may have affected the frequency. Even for those inves-
tigated at diagnosis, we cannot exclude that socioeconomic 
status or access to healthcare may have delayed the time at 
which diagnosis was made, with the consequence that patients 
in some series were at a more advanced stage (20,21).
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Table I. Demographic data and karyotype of 35 patients with an IG translocation (Brest cohort).

		  Age
Patient	 Gender	 (years)	 Evolution	 Karyotype

1	 M	 79.1	 E	 46,XY,del(11)(q21q23)[4]/46,idem,add(17)(p11)[6]/46,idem,t(3;14)(q21;q32)[6]/
				    46,idem,add(13)(q14),add(17)(p11)[2]/46,idem,del(17)(p11)[2]/46,XY[1]
2	 M	 62.7	 D	 47,XY,+12,t(14;18)(q32;q21)[22]
3	 M	 65.4	 E	 46,XY,t(7;22)(q21;q11),add(13)(p11)[11]/46,XY[8]
4	 F	 74.4	 D	 45,XX,add(3)(q27),der(8)t(8;12)(p11;q11),t(11;14)(q13;q32),‑12,del(17)
				    (p1?2),‑17,+mar1,avec variations[17]/46,XX[4]
5	 M	 62.9	 E	 47,XY,+12[16]/47,sl,del(13)(q13qq21)[4]/47,sl2,t(9;14)(q13;q32)[2]/
				    47,sl3,add(11)(q21)[2]
6	 M	 78.8	 D	 47,XY,t(10;17)(q21;q22),t(14;19)(q32;q13),del(14)(q23q32),+21[5]/46,XY[18]
6	 M	 79.0	 E	 47,XY,t(10;17)(q21;q22),t(14;19)(q32;q13),del(14)(q23q32),+21[7]/46,XY[18]
7	 M	 72.0	 D	 48,XY,+4,t(11;14)(q13;q32),+12,[15]/46,XY[6]
8	 F	 71.8	 E	 48,XXX,+12,t(18;22)(q21;q11)[6]/46,XX[15]
8	 F	 81.7	 E	 48,XX,+X,+12,t(18;22)(q21;q11)[16]/46,XX[6]
9	 M	 78.3	 E	 48,XY,+8,dup(12q)x2,add(13)(q34),t(14;18)(q32;q21),+20[16]/50,sl,+X,+7[2]/50,sdl1,
				    (p13)[4]/46,XY[1]
10	 M	 76.0	 D	 46,XY,t(14;18)(q32;q21)[5]/47,idem,+12[1]/46,XY[16]
11	 M	 73.7	 D	 46,XY,t(14;18)(q32;q21)[6]/47,idem,+12[3]/46,XY[13]
12	 M	 78.1	 E	 46,XY,t(14;18)(q32;q21)[23]
13	 M	 69.7	 D	 47,XY,+12,t(14;18)(q32;q21)[4]/46,XY[18]
14	 F	 79.6	 D	 47,XX,t(1;14)(p11;q32),+12[7]/46,XX[14]
15	 F	 71.3	 E	 47,XX,+12,t(18;22)(q21;q11)
15	 F	 71.8	 E	 47,XX,+12,t(18;22)(q21;q11)[6]/47,idem,t(1;16)(p10?q10)[2]/46,XX[14]
16	 M	 81.4	 E	 48,XY,+3,del(10)(q2?4),del(13q),ins(13;?)(q14;?),+18[4]/48,idem,t(4;14)
				    (q2?1;q32[1]/46,XY[18]
17	 M	 81.2	 E	 46,XY,del(13q),add(18p)[1]/46,XY,t(11;14)(q13;q32)[1]/46,XY[25]
18	 F	 68.5	 D	 47,XX,+12,t(14;18)(q32;q21)[5]/46,XX[2]
18	 F	 70.7	 E	 47,XX,+12,t(14;18)(q32;q21)[17]/46,XX[5]
19	 M	 72.3	 E	 46,X,‑Y,t(11;14)(q13;q32),del(11)(q22),+mar1[7]/46,XY[17]
20	 M	 76.6	 D	 47,XY,+12[16]/47,idem,t(14;19)(q32;q13)[3]/46,XY[1]
21	 F	 84.1	 D	 46,XX,t(14;22)(q32;q11)[2]/46,XX[33]
22	 M	 81.4	 D	 47,XY,+12,t(14;18)(q32;q21)[12]/47,idem,del(6)(q12q16)[8]/46,XY[1]
23	 F	 75.7	 E	 46,XX,add(3)(q22),der(8)t(8;14)(q24;q32),del(10)(q2?5),del(13)(q13q31),add(14)(q32)
24	 M	 85.0	 E	 46,XY,del(1)(p34)[13]/45,sl,t(8;14)(q24;q32)[3]/46,sdl1,del(11)(q21)[3]/46,XY[2]
25	 F	 74.2	 D	 47,XX,+12,t(14;19)(q32;q13)[18]/47,idem,del(12)(q23)[2]/46,XX[2]
26	 M	 54.0	 D	 47,XY,+12[5]/47,idem,t(14;18)(q32;q21)[8]/47,idem,add(17)(q2?5)[8]/46,XY[1]
27	 F	 65.5	 D	 46,XX,t(14;18)(q32;q21)[12]/46,XX[7]
27	 F	 75.4	 E	 46,XX,t(14;18)(q32;q21)[5]/46,XX[3]
28	 M	 67.9	 E	 45,X,‑Y[6]/47,XY,+12[2]/47,idem,t(6;14)(p21;q32)[7]/46,XY[6]
29	 F	 66.5	 D	 47,XX,+12[2]/47,XX,+12,t(18;22)(q21;q11)[5]/50,XX,+3,+12,+17,+18[2]/46,XX[10]
30	 M	 61.9	 E	 46,XY,t(18;22)(q21;q11)[6]/46,XY,del(13)(q13;q21),t(18;22)(q21;q11)[12]/46,XY[2]
30	 M	 66.5	 E	 46,XY,t(18;22)(q21;q11)[7]/46,idem,del(13)(q13q21)[13]/46,XY,t(7;13)
				    (p2;q14),t(8;13)
				    (p23;q14),t(18;22)(q21;q11)[2]
31	 F	 40.8	 D	 46,XX,t(14;19)(q32;q13)[17]/46,XX[1]
32	 M	 70.1	 E	 46,XY,t(8;22)(q24;q11)[22]
33	 M	 59.9	 E	 46,XY,t(18;22)(q21;q11)[19]/46,XY[1]
34	 F	 78.9	 E	 46,XX,del(5)(q1?4q2?3)[15]/45,idem,‑4,del(4)(p1?3),der(11)
				    (11pter‑>11p12::?::11cen‑>11q22::?)[4]/46,idem,t(14;18)(q32;q21)[2]
35	 F	 69.0	 D	 47,XX,+12[12]/46,XX,t(2;7)(p11;q21)[2]/46,XX[10]

IG, immunoglobulin; M, male; F, female; E, during follow‑up; D, at diagnosis.
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A limited number of studies attempted to identify the partner 
genes. Even in those cases, they used commercially avail-
able Dual Color, Dual Fusion Translocation Probes to detect 
IGH/B‑cell lymphoma 2 (BCL2), IGH/cyclin D1 (CCND1), 
sometimes completed by v‑myc avian myelocytomatosis viral 
oncogene homolog (MYC) and BCL3 Dual Color Breakapart 
rearrangement probes. Furthermore, none of these studies 
used probes targeting the IGK and IGL genes and, therefore, 
underestimated the true frequency of IG translocations.

We conducted a thorough search in the literature looking for 
IG translocations, using the Mitelman Database of Chromosome 
Aberrations and Gene Fusions in Cancer (http://cgap.nci.nih.
gov/Chromosomes/Mitelman) as the starting point.

Some translocations have been found to be frequent, while 
others have only been reported in a few or single cases. At 
present, 31 partner chromosome bands have been described, but 
the partner gene has only been identified in 10 translocations. 
We identified 4 chromosomal bands that had never been shown 
to be involved in IG translocations among the 35 patients in 
the Brest cohort, bringing the total to 35 (Fig. 1). The number 
of bands involved in IG translocations is significantly lower 
compared with that involved in Ets variant 6 or Runt-related 
transcription factor 1 gene translocations (48 and 55 bands, 
respectively) (22,23). The difference is likely the result of the 
B‑cell lineage specificity of the partner genes deregulated by 
the IG translocations.

Table II. iFISH results of 35 patients with an IG translocation 
(Brest cohort).

	 iFISH
	 ----------------------------------------------------------------------------------------------------------
Patients	 13q14	 bi13q14	 +12	 ATM	 p53

1	 +/-		  N	 +/-	 +/-
2
3	 +/+	 +/+	 N	 +/+	 +/-
4	 +/+	 +/+	 +	 +/+	 +/-
5
6
6
7
8
8	 +/+	 +/+	 +	 +/+	 +/+
9					   
10	 +/+	 +/+	 +	 +/+	 +/+
11	 +/+	 +/+	 +	 +/+	 +/+
12	 +/-	 +/+	 N	 +/+	 +/+
13	 +/+	 +/+	 +	 +/+	 +/+
14	 +/+	 +/+	 +	 +/+	 +/+
15	 +/+	 +/+	 +	 +/+	 +/+
15	 +/+	 +/+	 +	 +/+	 +/+
16
17	 +/-	 +/+	 N	 +/+	 +/+
18	 +/+	 +/+	 +	 +/+	 +/+
18	 +/+	 +/+	 +	 +/+	 +/+
19
20	 +/+	 +/+	 +	 +/+	 +/+
21	 +/+	 +/+	 N	 +/+	 +/+
22
23	 +/-	 +/+	 N	 +/+	 +/+
24	 +/+	 +/+	 N	 +/+	 +/+
25	 +/+	 +/+	 +	 +/+	 +/+
26	 +/+	 +/+	 +	 +/+	 +/+
27
27	 +/-	 +/+	 N	 +/+	 +/+
28	 +/-	 -/-	 +	 +/+	 +/+
29
30	 +/-	 -/-	 N	 +/+	 +/+
30	 +/-	 -/-	 N	 +/+	 +/+
31	 +/+	 +/+	 N	 +/+	 +/+
32	 +/+	 +/+	 N	 +/+	 +/+
33	 +/-	 +/+	 N	 +/+	 +/+
34	 +/-	 +/+	 N	 +/+	 +/+
35

iFISH, interphase fluorescent in  situ hybridization; IG, immuno-
globulin; +/+, normal; +/-, monoallelic deletion; -/-, biallelic deletion; 
N, normal; 13q14, del(13q14); ATM, del(11q22); p53, del(17p13). 
Certain patients were studied at diagnosis and during follow-up; thus, 
they may appear twice.

Table III. Frequency of translocations involving IGH detected 
by iFISH.

First			   No. of	 Frequency
Author/		  No. of	 patients	 of IGHt
(Refs.)	 Country	 patients	 with IGHt	 (%)

Gerrie (133)	 Canada	 290	 27	 9.3
Gerrie (132)	 Canada	 142	 37	 26.1
Lu (134)	 USA	 149	 23	 15.4
Shanafelt (135)	 USA	 159	   3	 1.9
Aoun (136)	 USA	   58	 10	 17.2
Nelson (137)	 USA	 109	 10	 9.2
Flanagan (138)	 USA	   42	   8	 19.0
Jenderny (139)	 Germany	 129	   4	 3.1
Haferlach (140)	 Germany	 500	 30	 6.0
Jeromin (13)	 Germany	 1,158	 57a	 4.9
Alhourani (141)	 Germany	   85	   3	 3.5
Döhner (142)	 Germany	 325	 12	 3.7
Berkova (143)	 Czech	 146	 11	 7.5
	 Republic
Amare (144)	 India	 116	   7	 6.0
Yoon (145)	 South	   48	   6	 12.5
	 Korea
Xu (146)	 China	 83	   8	 9.6
Qiu (147)	 China	 143	 28	 19.6
Wang (148)	 China	 240	 43	 17.9

aIncluding IGH deletions. IGH, immunoglobulin H; iFISH, interphase 
fluorescent in situ hybridization; IGHt, translocations involving IGH.
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4. Recurrent IG translocations with known partner genes

As previously mentioned, IG translocations relocate genes 
near active regulatory sequences, leading to their overex-
pression. However, two  exceptions are known. In  2004, 
Schmidt et al (24) reported a patient with B‑cell CLL carrying 
a t(12;14)(q23;q32), in whom the carbohydrate (chondroitin 4) 
sulfotransferase 11 gene (CHST11) was fused to IGH to create 
a chimeric gene. Fusion RNAs may be translated into trun-
cated proteins and lead to deregulation of the CHST11 protein 
trafficking across intracellular membranes, resulting in loss of 
function, as observed with other fusions (23).

A t(14;22)(q32;q11) involving the IGH and IGL genes was 
retrieved from the literature (25) and another was identified in 
our series (patient 21). Although the mechanism of neoplastic 
transformation remains unknown, one cannot exclude that 
a nearby gene may be involved. Indeed, the BCL11B (zinc 
finger protein) gene, closely related to BCL11A involved in 
t(2;14)(p16;q32), may be deregulated, although it is located 
6.3 Mb from the IGH locus. It was suggested that BCL11B 
acted as a transcriptional repressor as well as an activator in 
a context‑dependent manner and may function on the P53 
signaling pathway (26,27).

t(14;18)(q32;q21) and variants (IGH/BCL2). All 3  trans-
locations, t(14;18) (q32;q21), t(2;18)(p11;q21.3) and t(18;22)
(q21.3;q11), and their molecular consequences, IGH/BCL2, 
IGK/BCL2 and IGL/BCL2, have been reported (28,29). These 
translocations are present at diagnosis or arise during evolution 
and are usually associated with additional karyotypic changes, 
more particularly with trisomy 12 (30‑32).

A total of 144 cases reported in the literature were reviewed. 
A t(14;18) was identified in 111 cases (77.1%), a t(2;18) in 8 cases 
(5.5%) and a t(18;22) in 25 cases (17.4%). Trisomy 12 was found 
in 71 cases (49.3%). The IG translocation was the sole abnor-
mality in 39 cases (27.1%) and part of a complex karyotype 
(defined as composed of ≥3 abnormalities) in 37 cases (25.7%).

These are found in typical CLL (sometimes during 
Richter's transformation) and in CLL/PL (29,30,32). Atypical 
cytological characteristics (increased number of lymphoid 
cells with irregular nuclear contour, plasmacytoid features 
or PLs) and̸or immunophenotypic profile (lack of CD23 and 
intermediate̸strong CD20 expression) is reported and hypoth-
esized to be linked to trisomy 12 (29,33,34). IG/BCL2 fusion 
is significantly associated with mutated IGHV status (30‑32), 
which led Baseggio et al (30) to conclude at a post‑germinal 
center cellular origin.

There is persisting controversy regarding the prognostic 
impact of IG/BCL2, being considered as poor by certain 
authors (31), while others found that the clinical course was 
not affected (30,32).

The t(14;18)(q32;q21) and its variants lead to the over-
expression of the BCL2 gene (35,36). This gene encodes an 
integral outer mitochondrial membrane protein that blocks the 
apoptotic death of some cells, such as lymphocytes (37,38).

t(14;19)(q32;q13) (IGH/BCL3). This translocation appears at 
diagnosis in the primary clone in the majority of the cases, 
and as a secondary change during karyotypic progression in a 
limited number of cases (39). This is rarely the sole cytogenetic 
aberration, with trisomy 12 being the most frequent associated 
abnormality (40‑45).

A total of 123  cases reported in the literature were 
reviewed. No variant translocation was found. Trisomy 12 
was identified in 72 cases (58.5%). The translocation was the 
sole abnormality in 13 cases (10.6%) and part of a complex 
karyotype in 52 cases (42.3%).

A high proportion of patients with CLL and t(14;19) are 
aged <40 years (40‑44) and the median age is significantly 
lower compared with that observed in non‑carriers (20).

CLL with t(14;19) is associated with atypical 
morphological (small cells, often with nuclear indentations) 
and immunophenotypical characteristics  (40,41,46). The 
translocation is found in all three  subtypes and during 

Figure 1. Distribution of the chromosomal band partners of immunoglobulin gene translocations. Squares, translocations with known partner gene; circles, 
translocations with unknown partner gene; triangles, translocations with unknown partner gene identified in Brest.
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Richter's transformation (42,43,45,47). The vast majority of 
t(14;19) express unmutated IGHV genes (39‑41,45,46), which 
is significantly higher compared with the 46% reported in the 
literature for typical CLL (48). Patients have an aggressive 
clinical course and the overall prognosis is poor (42,43,45,46).

The t(14;19)(q32;q13) and its variants lead to the overexpres-
sion of the BCL3 gene (49). This gene encodes a protein that 
is a member of the IκB family and is present predominantly in 
the nucleus. It contributes to the regulation of transcriptional 
activation of nuclear factor‑κB target genes and to the regula-
tion of cell proliferation. It binds to the promoter of CCND1, 
thus stimulating gene transcription, and inhibits P53‑induced 
apoptosis (50‑55).

t(11;14)(q13;q32) t(11;22)(q13;q11) (IGH/CCND1). Although 
the (11;14)(q13;q32) translocation was previously considered to 
be the hallmark of mantle cell lymphoma (MCL), it is currently 
identified in 10‑20% of PLL and 2‑5% of CLL cases (56). 
CLL cases in which this translocation has been found are 
usually atypical in terms of morphology (majority of small 
lymphocytes with PLs and/or large lymphocytes) and immu-
nophenotype (CD5+, CD19+, sIg+, FMC7+ and CD10‑) (57‑60). 
Recognition of this cytogenetic subset of atypical CLL is 
crucial, as, given its poor prognosis, it may require early treat-
ment (61).

We identified 106  CLL or PLL cases associated with 
t(11;14) in the literature. Only one variant translocation, t(11;22)
(q13;q11), was found (62). Trisomy 12 was identified in 5 cases 
(4.7%). The translocation was the sole abnormality in 21 cases 
(19.6%) and part of a complex karyotype in 64 cases (59.8%).

Although t(11;14) is usually present at diagnosis, 
Nishida et al (63) reported a patient with CLL associated with 
trisomy 12 and t(14;19)(q32;q13) at diagnosis, who developed a 
t(11;14)(q13;q32) at relapse.

Distinction of t(11;14) translocation‑associated CLL and 
MCL in the leukemic phase is not unequivocal (60,64). It is 
hypothesized that MCL and atypical CLL with the t(11;14) 
represent the extremes of a spectrum of disorders of follicle 
mantle lineage (60).

The t(11;14)(q13;q32) leads to the overexpression of 
the CCND1 gene  (65). The protein encoded by this gene 
belongs to the highly conserved cyclin family. It interacts 
with the cyclin‑D‑dependent kinases (CDK) 4 and 6 that 
phosphorylate the retinoblastoma 1 (RB1) tumor suppressor, 
thus regulating a process that promotes the G1/S cell cycle 
transition (66,67).

t(8;14)(q24;q32) and variants (IGH/MYC). This abnormality 
is rare in typical CLL and is associated with increased PLs 
(CLL with occasional PLs, CLL/PL and PLL) (68‑71). Male 
and elderly patients are predominantly affected, as in CLL/PL 
patients (69‑71).

This translocation may be acquired in the chronic phase, 
but is associated with an advanced clinical stage at presenta-
tion (68,71). It is usually included in a complex karyotype. It 
may represent a secondary abnormality contributing to disease 
progression and carries a poor prognosis (68‑70).

We reviewed 38 cases from the literature. A t(8;14) was 
identified in 22 cases (57.9%), a t(2;8) in 5 cases (13.2%) and a 
t(8;22) in 11 cases (28.9%). Trisomy 12 was rarely associated, 

being identified in only 3 cases (7.9%). The IG translocation 
was the sole abnormality in 8 cases (21.1%) and part of a 
complex karyotype in 18 cases (47.4%).

Put et al (70) reported a prevalence of del(11)(q22) and 
del(17)(p13) in a cohort of 25 patients with a t(8;14) or vari-
ants, which was higher compared with that reported in CLL 
[6̸25 (24%); and 7̸25 (28%), respectively] (70).

The t(8;14)(q24;q32) and its variants lead to the overex-
pression of the MYC gene (72). MYC is a transcription factor 
that controls functions associated with cell cycle progression, 
growth, differentiation, apoptosis, survival and metabolism. 
It functions as a transcription factor that regulates transcrip-
tion of >15% of all genes. MYC positively affects cell cycle 
regulation, apoptosis and metabolism, but negatively affects 
cellular differentiation and cell adhesion. Therefore, aberrant 
MYC expression deregulates the balance between survival and 
apoptosis signals at several different stages (73‑76).

t(2;14)(p16;q32) IGH/BCL11A. This rare but recurrent 
translocation affects young adults, even children  (77,78). 
Morphologically, the disease is characterized by a mixture 
of small and larger lymphocytes with indented and irregular 
nuclear contours, also including plasmacytoid lymphocytes 
and PLs. The immunophenotype is almost always typical of 
CLL (78).

The (2;14) translocation appears to be an early event, as 
it has been found to be the sole karyotypic abnormality at 
diagnosis. It is also present in the main clone, with subclones 
containing additional abnormalities in other patients (77,78). 
Only 6 cases were retrieved from the literature,  2 of which 
were associated with trisomy 12, and 3 of which were present 
in subclones with a complex karyotype.

All patients thus far analyzed express ZAP‑70 and all but 
one also carried unmutated IGVH genes (78,79). Therefore, it 
is expected that t(2;14) is associated with an aggressive disease 
and a poor prognosis, which appears to be the case, although 
data is sparse (77,78).

The t(2;14)(p16;q32) leads to the overexpression of the 
BCL11A gene (77). BCL11A encodes a zinc finger protein 
that interacts directly with BCL6; it is essential for the early 
lineage commitment steps in lymphopoiesis and functions in 
the development of T as well as B cells (77,80). The BCL11A 
protein is expressed in the germinal centers and mantle zones 
of the lymph nodes (80,81).

t(10;14)(p12;q32) t(10;22)(p12;q11) [IGH/BMI1 proto-onco-
gene, polycomb ring finger (BMI1)]. The t(10;14)(p11‑p13;q32) 
and t(10;22)(p12;q11) were identified in 5 and 1 CLL cases, 
respectively  (82). The translocation was identified during 
clinical progression or Richter's transformation and appears to 
carry a poor prognosis (82).

These translocations are not associated with a particular 
subtype of CLL, or with IGVH mutation status; they do not 
appear to be driver abnormalities in CLL genesis, but are 
rather a marker of disease progression (82).

The t(10;14)(p12;q32) and variants lead to the over-
expression of the BMI1 proto‑oncogene  (82). This gene 
encodes a protein containing a conserved RING finger and 
a helix‑turn‑helix motif  (83). The BMI1 protein is a core 
subunit of the PRC1 complex, which plays important roles 
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in the regulation of HOX gene expression  (84,85). BMI1 
regulates the proliferation activity of normal cells, stem cells 
and progenitor cells, and plays a role in cell cycle check-
points and progression, DNA damage repair, cell fate and 
differentiation, apoptosis and senescence (86,87). BMI acts 
as transcriptional repressor of the cyclin‑dependent kinase 
inhibitor 2A gene (CDKN2A), also referred to as INK4A or 
ARF gene (88,89).

t(4;14) (p16;q32) t(4;22)(p16;q11) [IGH/fibroblast growth 
factor receptor 3 (FGFR3)‑multiple myeloma SET domain 
(MMSET)]. Although the t(4;14) has long been known to 
be a recurrent abnormality in multiple myeloma, it was first 
described by Bacher et al  (90) in 2 patients exhibiting the 
immunophenotype of CLL and CLL/PL. Cerny et al  (91) 
reported a CLL patient with the t(4;22)(p16;q11) and a typical 
immunophenotype, in whom the lymphoid proliferation was 
composed of small lymphocytes (with round nuclei, condensed 
chromatin, indistinct nucleoli and scant cytoplasm) and PLs 
(larger nucleolated lymphocytes). A fourth case was reported 
by Geller et al (92) in a patient with CLL/PL and a typical 
immunophenotype. A total of 2 cases had a trisomy 12.

These 4 patients exhibited no consistent characteristics, 
other than the presence of PLs. The translocation was identi-
fied at diagnosis or during evolution. The cells were negative 
or positive for CD38 and ZAP‑70, and had a mutated  or 
non‑mutated IGVH status. Although the number of cases 
reported is small, this translocation should be considered as 
indicative of adverse prognosis.

The t(4;14)(p16;q32) is a unique example of IG translocation, 
as it simultaneously deregulates 2 genes with oncogenic potential. 
Indeed, MMSET domain (also referred to as Wolf‑Hirschhorn 
syndrome candidate 1) and FGFR3 reside on either side of the 
4p16 breakpoint. After the translocation, MMSET remains 
on the derivative chromosome 4, while FGFR3 moves to the 
derivative chromosome 14 (93‑95). The MMSET protein has 
histone methyltransferase activity and may act as a transcrip-
tional regulator controlling cell cycle and apoptosis (96,97). 
The FGFR3 protein is a tyrosine protein kinase that acts as a 
cell surface receptor for fibroblast growth factors and triggers 
downstream mitogen‑activated protein kinase and phosphati-
dylinositol 3‑kinase signaling. It plays an essential role in the 
regulation of cell growth and differentiation (98,99).

t(7;14)(q21;q32) and variants (IGH/CDK6). Although 
these translocations, particularly t(2;7)(p11;q21), have been 
reported in several cases of splenic marginal zone lymphoma 
(SMZL), they were unequivocally identified in 12  CLL 
patients (100‑104). Unfortunately, no data on cell morphology, 
immunophenotype, or prognosis, are available.

Of note, in SMZL and CLL, t(2;7) is more frequent compared 
with the two other translocations, t(7;14) and t(7;22). No expla-
nation has been provided as to why IGK is more likely than 
IGH to juxtapose to CDK6, contrary to the other translocations 
in which IGH is much more frequently rearranged (104). Of 
the 11 cases retrieved from the literature, 7 had a (2;7)(p11;q21) 
translocation (63.6%), 3 had a t(7;14) (27.3%) and 1 had a t(7;22)
(q21;q11) (9.1%). Our series included 1 case with t(2;7) and 
1 case with t(7;22). The translocation was the sole abnormality 
or included in a complex karyotype in 4 cases each.

The t(7;14)(q21;q32) and its variants lead to overexpres-
sion of the CDK6 gene (103,105,106). CDK6 and CDK4 are 
serine/threonine kinases, members of the cyclin‑dependent 
protein kinase family, involved in the control of the cell cycle 
and differentiation. CDK6 is important for G1 phase cell cycle 
progression and G1/S transition by phosphorylating and inac-
tivating the RB1 protein (107‑110).

t(9;14)(p13;q32) [IGH/paired box gene 5 (PAX5)]. Although 
the t(9;14)(p13;q32) and its variants have been mostly identi-
fied in diffuse large B‑cell lymphoma (109), the t(9;14) has 
also been found in 7 CLL cases (111‑114). Few data are avail-
able on the cell morphology, but plasmacytoid differentiation 
is a common characteristic.

Although no trisomy 12 was found, a duplication of part of 
its long arm was identified in 2 cases. The t(9;14) was included 
in a complex karyotype in 4 patients, but present as the sole 
abnormality in the remaining 3 patients.

This translocation leads to the overexpression of the PAX5 
gene (115,116). The nuclear transcription factor encoded by 
this gene is a B‑cell lineage‑specific activator protein that is 
expressed during the early, but not the late stages of B‑cell 
differentiation. It restricts the developmental potential of 
progenitor cells to the B lymphoid pathway by suppressing 
alternative cell fates and  is also involved in the regulation of 
the CD19 gene, a B lymphoid‑specific target gene (117-119).

t(6;14)(p21;q32) (IGH/CCND3). Although the t(6;14)(p21;q32) 
has been mostly identified in multiple myeloma  (118), it 
has also been found in diffuse large B‑cell lymphoma, 
splenic lymphoma with villous lymphocytes, SMZL and 
MCL (120,121). The t(6;14) was identified as the sole chromo-
somal abnormality in a male patient with CLL associated with 
atypical cell morphology and involvement of CCND3 (122).

This translocation leads to the overexpression of the 
CCND3 gene (120,123). This gene, which is closely related in 
sequence to the CCND1 gene, codes a protein belonging to 
the highly conserved cyclin family. Similar to CCND1, this 
protein regulates a process that promotes the G1/S cell cycle 
transition (124‑126).

5. IG translocation‑associated CLL is heterogeneous

The main characteristics of the translocations for which the 
partner gene was identified are summarized in Table  IV. 
IG translocations result in the deregulated expression of genes 
involved in several pathways. All the partner genes thus far 
identified are involved in the control of cell proliferation 
and/or apoptosis (127). In the majority of the cases, the trans-
located partner gene becomes transcriptionally deregulated as 
a consequence of its transposition into the IG locus (128).

Although the number of cases with a given transloca-
tion is sometimes low, it appears that CLL associated with 
IG translocations is characterized by atypical cell morphology, 
including plasmacytoid characteristics, and the propensity of 
being enriched in PLs. The IGHV mutational status varies 
between translocations, those with unmutated IGHV presum-
ably involving cells at an earlier stage of the B‑cell lineage.

With the exception of t(14;18), prognosis appears to 
be poor for the translocations for which sufficient data is 
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available (123,129,130). Davids et al (131) demonstrated that 
the time to first treatment was significantly shorter among 
CLL patients harboring 14q32 translocations without t(14;18), 
compared with those with t(14;18). Furthermore, the presence of 
an IGH translocation associated with a del(13q) was shown to 
confer a poorer prognosis compared with del(13q) alone (132).

Although most centers currently use FISH to identify 
trisomy 12 and deletions of 13q14, 11q22 and 17p13, which 
are known to have prognostic significance, it is evident that 
searching for translocations involving not only IGH, but also 
IGL and IGK, by banding and molecular cytogenetics, will add 
new information. Furthermore, as the prognosis depends on 
the partner gene involved in the translocation, it is important to 
identify this partner gene, at least in recurrent translocations, 
to ensure the patients receive optimal treatment.
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