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Abstract. Selective aberrant genetic effects that do not depend 
on abnormal DNA sequences are referred to as epigenetic abnor-
malities and are involved in carcinogenesis. In uterine cancer, 
various genes involved in apoptosis, cell cycle, DNA repair, 
cell proliferation and cell adhesion are abnormally methylated, 
resulting in gene silencing. Reversal of such epigenetic abnor-
malities in cancer cells is a potential strategy for cancer therapy, 
and studies on epigenetic abnormalities and treatment methods 
in uterine cancer are in progress. These include the evaluation 
of 5‑hydroxymethylcytosine, which is present in cancer tissues 
at lower levels compared with those in normal tissues, as a 
prognostic marker in cervical cancer; combination therapy with 
5‑azacytidine and cisplatin; combination treatment focusing 
on tumor necrosis factor‑related apoptosis‑inducing ligand in 
cervical cancer; studies focusing on DNA mismatch repair in 
endometrial cancer; and use of a demethylating agent to reac-
tivate tumor suppressor genes and inhibit tumor proliferation. 
Detection of epigenetic changes using biomarkers may be used 
for histological classification, evaluation of disease progression 
and identification of compounds that are able to modulate epigen-
etic changes and may be useful for uterine cancer treatment.
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1. Introduction

Cervical and endometrial cancer rank fourth and fifth, 
respectively, in cancer prevalence by organ among women 
worldwide (1). Studies of oncogenic pathways have shown 
early and frequent DNA methylation, with the extent of this 
change considered to be related to severity. In both cervical 
and endometrial cancer, specific genes involved in various 
pathways are known to be methylated. In cervical cancer, 
these genes include tumor protein p73, fragile histidine triad 
(FHIT), death‑associated protein kinase 1 and PRDI‑BF and 
RIZ domain containing 14 in the apoptotic pathway; cyclin A1 
(CCNA1) and double C2‑like domain β in the cell cycle; adeno-
matous polyposis coli (APC) and secreted frizzled‑related 
protein (SFRP) in the Wnt/β‑catenin pathway; Fanconi 
anemia, complementation group F, O‑6‑methylguanine‑DNA 
methyltransferase, human MutL homolog 1 (hMLH1) and 
CCNA1 in DNA repair; FHIT, retinoic acid receptor‑β and 
myelin and lymphocyte in the cell growth pathway; and CXC 
chemokine receptor 4 and cell adhesion molecule 1, which 
are involved in cell adhesion (2‑21). In endometrial cancer, 
the following genes are methylated: APC, caspase‑8, check-
point with forkhead‑associated and ring finger, E‑cadherin, 
hMLH1, p73, progesterone receptor, phosphatase and tensin 
homologue deleted on chromosome 10, Ras association 
domain family 1 isoform A and thrombospondin 2 (22‑47). 
The roles of these methylated genes are listed in Table I for 
cervical cancer and in Table II for endometrial cancer. Gene 
silencing caused by methylation may promote cancer progres-
sion, and studies on the clinical significance of gene silencing 
are ongoing.

2. Diagnosis of cervical cancer and epigenetic abnormalities

A recent study demonstrated that combined detection of 
methylated chromosome 3 open reading frame 18, junctional 
adhesion molecule 3 (JAM3) and ankyrin repeat domain 18C 
(ANKRD18CP) provided good diagnostic outcomes  (48). 
The sensitivity for lesions of CIN2 or higher was 74% in this 
screening, which is comparable with the 79% sensitivity of the 
high‑risk human papillomavirus (HPV) DNA test. The speci-
ficity of this screening was 76%, exceeding the value of 42% 
for the high‑risk HPV DNA test (P<0.05). Combined detec-
tion using JAM3, glial cell line‑derived neurotrophic factor 
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family receptor α 1 and ANKRD18CP has 73% sensitivity 
and 77% specificity, and that using JAM3/ANKRD18CP has 
72% sensitivity and 79% specificity, which are also considered 
as relatively good diagnostic outcomes. Higher specificity 
is preferable for the prevention of unnecessary follow‑up. 
Furthermore, if HPV vaccination is promoted, the incidence 
of HPV‑negative cervical cancer may increase and the HPV 
test may become less significant. Therefore, an alternative 
screening method with a higher specificity for HPV is needed 
and the methylated markers found in the abovementioned 
studies are candidates for this screening.

5‑Hydroxymethylcytosine (5hmC) has been shown to 
be a prognostic marker for squamous cell carcinoma of the 
cervix (49). 5hmC is a cytosine modification found in various 
biological species that is present at high levels in human and 
murine nerve tissues. 5hmC is a novel DNA modification 
marker in mammalian genomes and is involved in DNA 
demethylation in epigenetic regulation. Tet protein hydroxyl-
ates 5‑methylcytosine (5mC) to form 5hmC, and this oxidation 
pathway is involved in the activation or reduction of gene 
expression (50). The expression levels of 5hmC, 5mC and TET1, 
TET2 and TET3 were determined in squamous cell carcinoma 
tissues from the uterine cervix in 140 patients and in normal 
uterine cervix tissues in 40 healthy volunteers. In addition, 
the prognostic values of 5hmC, 5mC and TET2 were assessed 
for therapeutic outcomes in squamous cell carcinoma of the 
cervix. The results demonstrated that 5hmC is significantly 
decreased and 5mC is significantly increased in squamous 
cell carcinoma of the cervix compared with normal cervical 
tissues. Furthermore, the expression of TET2, but not that of 
TET1 or TET3, was decreased in squamous cell carcinoma of 
the cervix. A reduced level of 5hmC was associated with a 
poor outcome for patients with squamous cell carcinoma of 
the cervix. 5hmC expression was an independent prognostic 
factor for event‑free and overall survival in these patients, and 
is likely to be useful as a prognostic marker for cervical cancer 
in clinical practice.

3. Targeting of epigenetic abnormalities in cervical cancer 
therapy

A recent study demonstrated the efficacy of cisplatin combined 
with 5‑azacytidine, which acts as a demethylating agent (51). 
Chemotherapy with cisplatin inhibited cervical cancer cells, 
but the same dose of cisplatin with added 5‑azacytidine 
exerted a more potent inhibitory effect. Combination of 
another demethylating agent, 5‑aza‑2'‑deoxycytidine, with 
taxol or cisplatin, also inhibited growth of drug‑resistant 
cervical cancer cells (52), with taxol exerting a particularly 
strong effect. The standard of care for cervical cancer is a 
combination of paclitaxel and cisplatin. Therefore, potenti-
ating the effects of these drugs and eliminating chemotherapy 
resistance are important clinical advances.

Combination therapy including tumor necrosis 
factor‑related apoptosis‑inducing ligand (TRAIL) is also effec-
tive (53). TRAIL is a cytokine in the tumor necrosis factor 
(TNF) family that induces apoptosis via its receptor in various 
human tumor cells, but not in normal cells. TNFRSF10C 
(DcR1) and TNFRSF10D (DcR2) are decoy receptors and 
multi‑drug resistance (MDR) genes, and have been identified 

as epigenetically inactivated genes. TNFRSF10C methylation 
is found in precancerous lesions, which suggests that this is 
an early event in the cervical neoplastic process. Cervical 
cancer cells containing inactivated DcR1 and DcR2 exhibited 
increased TRAIL‑induced apoptosis through activation of 

Table I. Methylated genes in cervical cancer.

Gene name	 Function	 (Refs.)

TP73	 Apoptosis	 (4)
FHIT	 Apoptosis	 (3,5,7,15,16)
DAPK1	 Apoptosis	 (3)
PRDM14	 Apoptosis	 (6)
CCNA1	 Cell cycle, DNA repair	 (8,9)
DOC2B	 Cell cycle	 (10)
APC	 Wnt/β catenin pathway	 (11)
SFRP	 Wnt/β catenin pathway	 (12)
FANCF	 DNA repair	 (13)
MGMT	 DNA repair	 (3,14,15)
hMLH1	 DNA repair	 (15)
FHIT	 Cell growth	 (3,5,7,15,16)
RAR‑β	 Cell growth	 (15,17)
MAL	 Cell growth	 (17)
CXCR4	 Cell‑cell adhesion	 (19)
CADM1	 Cell‑cell adhesion	 (20)

Table II. Methylated genes in endometrial cancer.

Gene name	 Function	 (Refs.)

hMLH1	 DNA repair	 (22‑26)
MGMT	 DNA repair	 (27)
APC	 Wnt/β catenin pathway	 (25,28)
CDH	 Wnt/β catenin pathway	 (29,30)
E‑cadherin	 Wnt/β catenin pathway	 (25,29‑32)
PTEN	 Akt pathway	 (33)
RASSF1A	 Apoptosis	 (30,34)
CASP8	 Apoptosis	 (35)
GSTP1	 Apoptosis	 (30,36)
P73	 Apoptosis	 (33)
PAR‑4	 Apoptosis	 (37)
SOX2	 Apoptosis	 (38)
CHFR	 Cell cycle checkpoint	 (39)
P14	 Cell cycle checkpoint	 (40)
P16	 Cell cycle checkpoint	 (40,41)
AR	 Receptor	 (42)
PR	 Receptor	 (43)
RARβ	 Receptor	 (44)
TESTIN	 Epithelial‑to‑mesenchymal	 (45)
	 transition
GATA4	 Transcription factor	 (46)
TIMP3	 Proteasome system	 (47)
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extrinsic apoptosis pathways (53). Therefore, patients without 
expression of decoy receptors are predicted to exhibit an 
enhanced response to combined therapy with TRAIL. This 
suggests that a strategy aimed at downregulating decoy recep-
tors may be a feasible approach to treatment using TRAIL.

4. Diagnosis of endometrial cancer and epigenetic 
abnormalities

Endometrial cancer induced by epigenetic abnormalities is 
frequently caused by breakdown of the DNA mismatch repair 
(MMR) system. Under normal conditions, this system perceives 
DNA insertions and deletions, induces expression of repair 
enzymes, deletes affected DNA regions and resynthesizes 
damaged genes via DNA polymerases (54). If the MMR system 
is dysfunctional, DNA replication mistakes are not repaired and 
microsatellites (repeats of 1‑5 bases) are likely to increase or 
decrease. This condition is referred to as microsatellite insta-
bility (MSI). MMR genes may be abnormally methylated and 
cancer develops when MSI occurs in regions of tumor suppressor 
genes. Numerous microsatellites are detectable by PCR and are 
found in 20‑40% of cases of endometrial cancer (22,55‑57).

Genes involved in the MMR system include hMLH1, MutS 
protein homolog 2 (hMSH2) and hMSH6, and postmeiotic 
segregation increased 2 (hPMS2) is frequently abnormally 
methylated (56). hMLH1 methylation has been found in 40.1% 
of cases of endometrial cancer and in 14.3% of cases of atypical 
endometrial hyperplasia, a precancerous endometrial lesion; 
therefore, abnormal methylation of hMLH1 is considered to be 
significantly involved in carcinogenesis (43).

A recent study of cullin‑5 (CUL5) demonstrated that this 
gene is involved in breast and cervical cancer and hepatocel-
lular carcinoma. CUL5 was significantly downregulated in 
serous endometrial adenocarcinoma with a poor prognosis, 
compared with its level in endometrial carcinoma with a 
good prognosis (58). The action of CUL5 involves non‑coding 
RNAs (ncRNAs), which are RNAs that do not include genetic 
information for protein synthesis. These include microRNAs 
(miRNAs) of 18‑25 nucleotides that lead to mature miRNAs 
that bind to the 3'‑untranslated region (UTR) of target 
genes and inhibit gene function (46). Two highly‑conserved 
miR‑182‑binding regions are present in the 3'‑UTR of CUL5, 
and CUL5 targets miR‑182 in endometrial cancer. CUL5 
downregulation causes miR‑182 upregulation and progres-
sion of endometrial cancer  (58). Zhou et  al demonstrated 
that miR‑30c overexpression inhibited metastasis‑associated 
gene‑1 (MTA1)  (59). miR‑30c is decreased in endometrial, 
ovarian, breast and gastric cancer (60‑63) and it is involved in 
carcinogenesis through its association with MTA1.

5. Targeting of epigenetic abnormalities in endometrial 
cancer therapy

Unlike genetic changes, epigenetic alterations are not irreversible, 
and it may be possible to use molecular‑targeted drugs to induce 
transcription of tumor suppressor genes via demethylation (64). 
The effects of demethylating drugs on tumor suppression include 
inhibition of growth of cervical cancer cells in vivo by demeth-
ylation of APC by hydralazine (65) and 5‑azacytidine‑induced 
expression of APC and hMLH1 in endometrial cancer 

in vitro (22). With regard to treatment of epigenetic changes 
by miRNAs, Tsuruta et al demonstrated in vivo and in vitro 
that exogenous miR‑152 targeting of DNA methyltransferase 
1 (DNMT1) in endometrial cancer cells without expression of 
miR‑152 inhibited tumor proliferation (66). Zhao et al recently 
reported similar results for miR‑126 targeting of insulin receptor 
substrate 1 (67). These results suggest that cancer therapy may 
be established by delivery of dsRNA.

DNMTs and histone deacetylases (HDACs) are key 
enzymes mediating epigenetic regulation of gene expression. 
The majority of events involving DNA overexpression and 
histone deacetylation in promoter regions are associated with 
transcriptional downregulation or silencing, and epigenetic 
silencing of tumor suppressor genes plays an important role in 
malignant transformation (68). DNMT inhibitors induce DNA 
demethylation and HDAC inhibitors cause histone acetylation, 
resulting in reactivation of silenced genes and functional and 
morphological changes in cancer cells. DNMT inhibitor‑medi-
ated demethylation of the cadherin (CDH)1 promoter results 
in upregulation of E‑cadherin in endometrial cancer cells. 
A combination of DNMT and HDAC inhibitors upregulated 
CDH1 and downregulated B‑cell lymphoma 2 at the mRNA 
level, inducing cell cycle arrest and apoptosis (69). This combi-
nation has a synergistic effect and is likely to become a new 
treatment for endometrial cancer.

6. Conclusion

In uterine cancer, epigenetic and genetic changes are inter-
twined in a complex manner, resulting in cancer onset. 
Epigenetic changes cause phenomena including inhibition of 
apoptosis, DNA repair inhibition, overgrowth and enhanced 
cancer growth. Genes involved in epigenetic changes are inhib-
ited by methylation, and reactivation of these genes may inhibit 
the growth of cancer cells. Epigenetic information may also be 
useful in screening for uterine cancer with high sensitivity and 
specificity and for development of novel molecular‑targeted 
drugs, leading to improved treatment outcomes in uterine and 
other cancers. Therefore, further studies on cancer epigenetics 
are essential for improvement of cancer therapy.
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