
Abstract. Peroxisome proliferator-activated receptors (PPARs)
belong to a family of transcription factors of which three
isotypes, PPARα, PPARδ (ß) and PPARγ, are known. These
play a central role in regulating intermediate metabolism and
in incidences of inflammation. In recent years, a greater
understanding of their mechanisms of action and their effects,
principally in the management of cardiovascular disease, has
been achieved. PPAR agonists, catalysts and agents have been
used since the 1990s, when it was confirmed that fibrates
possess lipid modifying properties when selectively activating
PPARα. In addition, thiazolidinediones, structures analogous
to fibrates, showed PPARγ activity with an insulin-sensitizing
effect, leading to their use in the control and even prevention of
diabetes mellitus type 2. Currently, studies are oriented to the
development of agents that activate multiple PPAR isoforms
- not only dual (PPARα/γ), but also PPAR pan-agonists (α/γ/δ).
The purpose of this review is to explain the mechanisms of
the molecular action and the effects of PPAR agonists, and
also to analyze existing and current studies concerning their
use in cardiovascular and metabolic illnesses. 
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1. Introduction

In complex organisms, human beings included, life depends
on the metabolic regulation of lipids and carbohydrates
including the organization of, and adequate response to, the
surrounding environment, such as the intake of food, stress,
physical activity and temperature. In order to ensure continual
adaptation to these environmental factors and the maintenance
of the necessary energy levels to make them compatible with
life, close coordination is also required in a series of metabolic
reactions at different levels, such as in the hypothalamus,
muscular cells, adipose tissue, pancreas and liver. This
involves the participation of a large number of metabolic
mediators, including transcription factors.

Transcription factors are proteins that unite with genetic
zones, called promotion regions, capable of controlling the
expression of genes. They can be activated or repressed by
extracellular or intracellular stimuli; for example, by membrane
receptors that set in motion a chain of reactions with the
purpose of carrying specific information through the cytoplasm
and finally to the transcription factor, thus regulating genetic
expression.

A family of transcription factors known as peroxisome
proliferator-activated receptors (PPARs) plays a central role in
the regulation of the storage and catabolization of fatty acids.
These receptors are found united to the nuclear membrane
and are thus named because they are capable of activating the
proliferation of peroxisomes in rats (1). Moreover, the iden-
tification of ligands for the PPARs has provided the ideal
approach to the study of the homeostasis of lipids at the
molecular level. In fact, once activated by the ligands, whether
synthetic or made by the organism itself, PPARs control a
large number of genes involved in many pathways related to
intermediate metabolism. To date, three PPAR isotypes have
been identified, PPARα, PPARδ (ß) and finally PPARγ, for
which 2 isoforms, PPARγ1 and PPARγ2, have been found.
The location of the PPARα gene is on chromosome 22 of the
region 22q12-q13.1; PPARδ is located on chromosome 6 in
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position 6p21.1-p21.2, and PPARγ on chromosome 3 in
position 3p25 (2).

2. Characteristics of PPARs

The different types of PPARs have common structures with
functional domains. The classification of the genes reveal that
they have a common structure possessing codifying exons: one
exon for the A/B domain of the N-terminal, two exons for
the DNA-binding domain, an exon for each one of the ‘zinc
fingers’, an exon for the hinge region and two exons for the
ligand-binding domain (LBD). The A/B domain can undergo
modification, especially phosphorylation, which can activate
these transcription factors (3).

PPARs form heterodimers with another nuclear receptor,
9 cis-retinoic acid receptor, which binds with DNA sequences
containing two hexanucleotides known as PPAR response
elements (PPREs). The nucleotide sequence is AGGTCA,
separated by a nucleotide; this sequence is called direct repeat,
DR-1. Such sequences have been found in numerous PPAR-
induced genes, such as acyl-CoA synthetase, acyl-CoA oxidase
and undesacoplant protein 1 (4).

PPARs can be activated by different types of compounds,
called ligands, that are bound in the LBD. A characteristic of
ligands is that they are all hydrophobic. There are natural
ligands (fatty acids) and synthetic ones, among which are
found drugs, such as thiazolidinediones (TZDs) and fibrates,
currently being used in different therapeutic lines. These will
be discussed later.

It has been found that PPAR distribution and activity
differs according to tissue. PPARα is expressed in tissues with
a high mitochondrial and peroxisomal content, such as in the
heart, liver, muscles and kidneys, where the fatty acids are
catabolized. It is also expressed in monocytes/macrophages
and foam cells. PPARγ is abundantly expressed in adiposites
and macrophages, and can also be found in skeletal muscle
and thyroids. It is related to the differentiation of adiposites,
the storing of lipids and glucose homeostasis. Finally, PPARδ
is found expressed in the brain, adiposites, skin and skeletal
muscle, among others (5).

3. Metabolism and PPAR agonists

PPARα plays a crucial role in the intracellular metabolism of
lipids, regulating the expression of proteins related to the
transport and ß-oxidation of fatty acids in the liver, pre-
dominantly. PPARα agonists stimulate the fatty acid transport
protein in the liver, which allows for the uptake of fatty acids
into the interior of the organ (2). Moreover, they promote
ß-oxidation for inducing the key enzymes of this process, such
as acyl-CoA dehydrogenase, enoyl CoA hydratase and acyl-
CoA acetyltransferase (6). The finding that all these enzymes
are induced in the presence of the PPARα agonist shows the
importance of these nuclear factors in the metabolism of fatty
acids and energy homeostasis. In fact, knockout mice do not
produce transcription activation of the enzymes and proteins
associated with the transport of fatty acids after fibrate
stimulation, which causes them to have intrahepatic fat
accumulation following a normal diet (7,8). They are also
incapable of responding to fasting states, resulting in hypo-

acetonemia, which is associated with severe hypothermia and
hypoglycemia (7). PPARα is associated with the inflammatory
process as knockout mice show a prolonged inflammatory
response (9-11). Furthermore, these mice present alterations
in their cardiac function (12). On the other hand, they show
protection against insulin resistance induced by high-fat diets
(13).

PPARs are expressed in the great majority of the cells that
make up the vascular system, endothelial cells, monocytes/
macrophages, foam cells and T linfocytes (14). The first clue
that PPARα is related to atherogenesis is the fact that fibrates
are capable of reducing atherosclerotic plaque formation,
regardless of changes in the levels of lipids in the blood
(15). Synthetic PPARα agonist and fenofibrates decrease the
expression of VCAM-1 (16). This control is due in part to the
suppression of NFκB, the key factor in the activation of the
VCAM-1 promoter. The anti-inflammatory action of the
PPARs occurs through the suppression of NFκB; PPARs
keeps NFκB tied to a repressive protein, IκB, which is
decomposed by the action of certain cytokines, such as
interleukin 1 (IL-1) and TNF-α. Experiments have found that
PPARα agonists increase the intracellular concentration of
IκB and thus repress the action of NFκB (17). Moreover, they
are capable of regulating the expression of AP-1, which is
also involved in the synthesis of proteins and inflammatory
metabolites. It is believed that through this mechanism fibrate
treatment is capable of diminishing the acute phase proteins,
fibrinogens, and reactive-C protein in patients with heart
disease. Other proteins, associated with the development of
atherosclerotic plaque, also had decreased plasmatic con-
centrations when treated with PPARα activators, such as IL-1,
-2, -6, -8 and -12 (18). PPARγ is also associated with inflam-
mation moderation, but this occurs through the suppression
of STAT, AP-1 and NFκB by a trans-repression mechanism
that is, as yet, not well explained.

During atherosclerotic plaque formation, endothelial cells
and monocytes/macrophages exhibit pro-coagulating activity
by tissular factor (TF) expression on the surface. PPARα
agonists reduce TF expression and the matrix metalloprotease
in monocytes and macrophages, which potentially modifies the
stability and thrombogenicity of the atherosclerotic lesion (19).

Other cells included in the pathogenesis of this illness are
the T helper-1 linfocytes (LT-h1) which, when exposed to
oxidized LDL, liberate certain proinflammatory cytokines,
such as TNF-α, INF-γ and IL-2. These attract other cells to the
vascular endothelium. PPARα and PPARγ activators limit the
expression of these cytokines, suggesting a modification of
the inflammatory function of these transcription factors in the
vascular wall (20).

Concerning the linfocyte CD4+, several researchers have
shown that the expression of proinflammatory cytokines is
modified by PPARγ ligands. An example of this is the
exposure of LT murine clones to glitazone and 15d-PGJ2,
resulting in a reduction in IL-2 expression (21). However, the
main factor related to LT-h1 expression is the inhibiting effect
of the PPARγ agonists in dendritic cells where diminished
IL-12 expression is found, an important factor that directs the
response of these cells, especially during proliferation (20).

Fibrates are drugs that diminish blood levels of cholesterol
and triglycerides, and permit an increase in HDL cholesterol.
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These metabolic effects are produced by the genetic activation
of the genes controlled by this nuclear receptor, among which
are apolipoprotein AI (ApoAI), apolipoprotein AII (ApoAII),
lipoprotein lipase (LPL), adenosine triphosphate-binding
cassette AI (ABCAI) and scavenger receptor class B type I
(SRBI/CLAI). Another important effect of the PPARα agonist
is the reduction of the expression of the codifying gene for
apolipoprotein CIII (ApoCIII), an LPL inhibitor (22-24).

The main use of fibrates in clinical practice is to reduce the
level of triglycerides and to slightly raise the level of plasmatic
HDL (25) by increasing LPL enzyme activity. This is done in
two ways. First, LPL promoter gene transcription activity is
increased, which has an element of response to PPAR (PPRE).
Second, levels of ApoCIII, a natural inhibitor of LPL activity,
are reduced (22). Another effect is the increase in size of the
LDL macromolecules, which makes them less atherogenic
than small particles (26). As previously mentioned, PPARα
activators increase the level of HDL, thus affecting cholesterol
reverse transport from peripheral tissues to the liver, including
the vascular endothelium. The mechanism includes an increase
in the synthesis of ApoAI and ApoAII, the major protein
components of HDL, in the liver. Moreover, PPARα agonists
induce the overexpression of ABCA1 transmembrane protein
in macrophages, resulting in the efflux of cholesterol from
these cells and initiating reverse cholesterol transport. This
mechanism occurs indirectly through LXRα, which contains
a PPRE region in its promoter (27).

Other drugs associated with the cholesterol reverse
transport process are statins, which are also used in hypo-
lipemiant therapy. Their action is to diminish the synthesis of
cholesterol by the organism by inhibiting a key enzyme called
hydroxymethylglutaryl CoA reductase (HMG CoA). This
has also been observed, in clinical practices, to occasionally
increase plasmatic levels of HDL. The way in which the
statins behave is similar to that shown by the PPARα agonists,
increasing ABCA1 and ABCG1 expression (28), but this
depends on the formation of geranyl-geranyl-PP RhoA based
on or derived from mevalonate, a molecule which activates the
PPARα nuclear receptor by phosphorylation. This molecule
remains inhibited by the intracellular reduction of mevalonate;
in its inactive state it stimulates the presence of transcription
factors, which go on to stimulate the appearance of PPARγ,
which, in turn, increases LXRα nuclear expression (29). In the
same manner, PPARα is activated, increasing the concentration
of ApoAI (30).

The hypolipemiant properties of fibrates and the consequent
reduction in cardiovascular disease are supported by many
clinical studies including, among others, the Bezafibrate
Coronary Atherosclerosis Intervention Trial (BECAIT), which
researched the effect of bezafibrate and a controlled diet on
atherosclerosis in patients, carriers of dyslipidemia (mainly
hypertriglyceridemia), surviving severe myocardial infarction.
Bezafibrate retarded the progression of focal atherosclerosis
to a degree comparable with that reached by the statins, and
reduced the incidence of coronary events in young post-
infarction patients. As well, it brought about improvements
in the lipid profile (29,30).

The Bezafibrate Infarction Prevention (BIP) study inves-
tigated the effect of bezafibrate on patients with stable angina
or prior infarction and high total cholesterol and evaluated

the presence of fatal and non-fatal severe myocardial infar-
ction. The probability of a coronary event was not significantly
reduced, but a later analysis of a patient subgroup with high
triglycerides revealed a significant reduction in the accu-
mulated risk of coronary events (29,32). 

The Helsinki Heart Study (HHS) evaluated the reduction
of the risk of coronary cardiopathy caused by high HDL
cholesterol and the decrease in non-HDL cholesterol using
gemfibrozil in asymptomatic middle-aged men with primary
dyslipidemia. Marked improvement in the lipid profile in the
group using gemfibrozil compared to the group using placebos
was associated with a significantly reduced incidence of
heart disease (29).

The Veterans Affairs High-Density Lipoprotein Cholesterol
Intervention Trial (VA-HIT) examined the effect of gemfibrozil
on non-fatal infarction and death caused by heart disease in
men with coronary cardiopathy and low HDL. Gemfibrozil
compared to placebos significantly reduced the risk of a
coronary event. The risk of stroke was also significantly
reduced. In spite of the fact that LDL levels in both groups
were similar, the reduction in coronary events and death in
the group treated with gemfibrozil was accompanied by an
increase in HDL cholesterol and reduced total cholesterol
and triglyceride levels. Even though an increase in HDL
cholesterol is associated with reduced risk, this alone did not
entirely explain the decrease, suggesting a pleiotropic effect
for gemfibrozil (29,33).

In spite of this evidence, cases have been reported in which
the reduction of LDL levels was insufficient for the proposed
objectives and, moreover, cases in which HDL cholesterol
plasmatic concentration was also reduced. This information
has led to the proposed hypothesis that there could be genetic
variability in the information expressed by PPARα, which
would explain the different effects of these drugs. The most
studied polymorphism of the PPARα gene is that produced in
codon 162, which leads to the substitution of a valine by a
leucine (L162V). There is recent research indicating that this
polymorphism, among others, is capable of modifying non-
classic heart disease risk factors (34). Among individuals
participating in the VA-HIT study, a relationship was demon-
strated between the PPARα polymorphism L162V and
cardiovascular risk in patients with diabetes mellitus and
insulin resistance (35). This same polymorphism affected
ApoCIII and triglyceride concentration in patients participating
in the Framingham Study (36), and was also associated with
different components of metabolic syndrome with or without
high-fat diets (37). The PPARγ polymorphism Pro 12A1a was
associated with hydro-saline retention and edema found in
some patients who were treated with agonists of this nuclear
receptor (38). Similarly, there are many references regarding
the topic of PPAR polymorphisms and their consequences.

4. Fibrates and diabetes

The Diabetes Atherosclerosis Intervention Study (DIAS) was
designed to evaluate the effect of correcting lipoprotein
abnormalities using fenofibrate on coronary atherosclerosis.
Patients with good glycemic control, moderate lipoprotein
alterations and at least one visible coronary lesion were
randomly administered micronized fenofibrate or a placebo.
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The percentage of increase in the diameter of the stenosis and
the decrease in minimal luminal diameter was significantly
improved in the group treated with fenofibrate. The reduction
in the angiographic progression of the coronary illness was
related, at least in part, to significant changes in the levels of
total cholesterol, HDL, LDL and triglycerides, even in subjects
previously considered not to be in need of treatment (39-41). 

The St. Mary's, Ealing, Northwick Park Diabetes Cardio-
vascular Disease Prevention (SENDCAP) study was set up
to determine how intervention with fibrates (combined with
conventional therapy) might improve cardiovascular response
in patients with type 2 diabetes. Patients with no history of
clinical cardiovascular disease were randomly administered
either a placebo or bezafibrate. Those treated with bezafibrate
had a significantly greater reduction in levels of triglycerides
and, moreover, significantly greater increases in HDL choles-
terol than in those given placebos. However, there was no
significant difference in the advance of arterial disease as
measured by ultrasound. The group receiving bezafibrate
showed a significant reduction in the combined incidence of
probable ischemic changes in the electrocardiogram at rest
and in the incidence of infarction (42,43).

The Fenofibrate Intervention and Event Lowering in
Diabetes (FIELD) study was designed to evaluate the effect
of fenofibrate on cardiovascular events in high-risk type 2
diabetes patients. The study was carried out on 9,795 patients
with a 5-year (average) follow-up. The patients were randomly
given a placebo or 200 mg of fenofibrate and coronary events,
including death from heart failure and non-fatal infarction,
were evaluated. Fenofibrate did not reduce the incidence of
fatal infarction, but there was a significant reduction (24%)
in non-fatal infarction and a non-significant reduction in total
coronary events. There was no improvement in survival rate
in the group treated with fenofibrate. The main finding of this
study was the decrease in microvascular events. The relative
risk of the necessity of revascularization was significantly
reduced (21%), the advance of albuminuric was slowed and
the rate of diabetic retinopathy requiring laser treatment was
reduced in comparison to the group receiving the placebo. It
must be noted that an appreciable subgroup of the patients
receiving placebos received treatment with statins (17 vs. 8%)
(29,44,45).

Synthetic PPAR ligands are of particular interest in the
treatment of type 2 diabetes since they reestablish insulin
sensitivity. This property has been attributed to the direct
effect of the PPAR agonists on the lipid metabolism in adipose
tissue, and secondarily to their effect on glucose and the lipid
metabolism in the liver and skeletal muscle. PPARγ agonists
promote the differentiation of adipocytes and the capture and
storing of free fatty acids in the subcutaneous adipose tissue
rather than in the visceral tissue. This causes a reduction in free
fatty acids and insulin resistance. Moreover, PPARγ activation
increases the expression and transfer to the cell surface of the
GLUT 1 and 4 glucose transporters, increasing muscular and
hepatic glucose uptake and reducing plasmatic glucose levels.
The PPARγ agonists reestablish insulin sensitivity, decreasing
TNFα expression and increasing adiponectin expression
(31,33,46-50). Furthermore, there are numerous studies
demonstrating the direct effect of these drugs on pancreatic ß
cells through a decrease in lipotoxicity over the pancreatic

islets. How these function is not as yet clear, but the tran-
scriptional repressor ß-cell lymphoma-6 (BCL-6) plays a
crucial role (51-55).

The effect of PPARγ is to stimulate the expression of
the scavenger receptor (CD36), involved in the entrance of
modified forms of cholesterol, among which are the 9 and
13-hydroxyoctadecadienoic (HODE) acids important in the
pathogenesis of the atherosclerotic lesion (27). A hypothesis
has been developed based on the fact that cholesterol exit
from the macrophages is regulated by a transporter named
ABCA1 and in turn by PPARγ. Thus, PPARγ regulates not
only the entry but also the exit of cholesterol, from the
macrophages to the liver, with HDL as the intermediary (27).

The therapeutic value of PPARγ agonists in the handling
of insulin resistance has been demonstrated in a large number
of studies with TZDs (31,48,50,56).

Troglitazone was one of the first PPARγ agonists to be
used, but was removed from the market due to serious hepato-
toxic effects. In one study, troglitazone was administered in
different doses to patients with type 2 diabetes. It was shown
that levels of glycosylated hemoglobin (HbAIC), fasting
glucose, plasmatic non-esterified fatty acids, triglycerides and
fasting insulin were significantly lower in the group receiving
treatment than in the control group. As well, the group
receiving treatment showed an increase in insulin sensitivity,
and HDL cholesterol was increased by the highest dose of
troglitazone (29).

The Troglitazone in the Prevention of Diabetes (TRIPOD)
study found that troglitazone improved insulin sensitivity in 2
out of 3 Hispanic women with prior pregnancy- related diabetes
(59). Moreover, it protected against the development of type 2
diabetes through an action associated with the preservation of
the functioning of pancreatic ß cells.

Later, studies on pioglitazone and rosiglitazone found no
hepatotoxicity, confirming that this was not a class effect
(57-59); however, similar metabolic effects were found. In a
study using pioglitazone and a placebo control, HbAIC, fasting
glycemia, fasting insulin, C peptide and triglycerides were
reduced while HDL cholesterol was increased. c-LDL and
total cholesterol were not affected (60).

A recent study by the GLAI group investigated the effect of
glitazones on lipid profiles. They determined that pioglitazone
was associated with significant improvements in triglyceride,
HDL and non-HDL cholesterol levels, and the size of LDL
particles compared to rosiglitazone (50).

The PIOSTAT study demonstrated that pioglitazone and
simvastatine have a very strong anti-inflammatory effect, as
well as improving the homeostasis model assessment
(HOMA) in patients with cardiovascular disease and high
levels of ultra-sensitive C-reactive protein (CRP) (61).

The Pioglitazone Prevention of Type 2 Diabetes (PIPOD)
study, an extension of the TRIPOD study, is currently
investigating, by means of a 4-year follow-up, whether or not
pioglitazone treatment offers protection against diabetes with
normal or low glucose tolerance (50,56).

As is the case with pioglitazone, the effect of rosiglitazone
on the advance of diabetes is being investigated in various
studies. The Diabetes Reduction Approaches with Ramipril
and Rosiglitazone Medications (DREAM) study evaluated
whether rosiglitazone alone or in combination with ramipril
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is capable of slowing or preventing the advance of diabetes in
subjects with glucose intolerance. The results were recently
published and showed that, in spite of there being no signi-
ficant differences between ramipril and the placebo for the
advance of type 2 diabetes, rosiglitazone did achieve a
reduction of over 50% in the progression from pre-diabetes
to diabetes. Thus, this drug achieved the maximum return to
normoglycemia in patients with glucose intolerance (62).
Another study currently being carried out is the Canadian
Normoglycemia Outcomes Evaluation (CANOE) study, which
is evaluating whether treatment with rosiglitazone plus
metformin can prevent the development of type 2 diabetes and
reduce cardiovascular risk in patients with glucose intolerance
(29).

5. Beyond glycemic control

In diabetics, the PPAR agonists have demonstrated many other
beneficial effects apart from those having to do with insulin
resistance and glucide metabolism. 

Over 70% of diabetics have some degree of dyslipidemia,
usually characterized by elevated levels of triglycerides and
low HDL. The United Kingdom Prospective Diabetes Study
(UKPDS) demonstrated that lipid abnormalities are an even
greater risk factor for coronary cardiopathy than HbAIC (63),
a highly significant fact given that nearly 80% of type 2

diabetics die from cardiovascular complications. The ability of
the PPARα agonists, like fibrates, to improve the lipid profile
is well established. As well, there is evidence that PPARγ has
a positive impact on diabetic dyslipidemia (29,31,46).

Type 2 diabetes is also characterized by elevated levels of
inflammatory markers such as CRP, which is intimately tied
to the risk of cardiovascular disease (64).

Taking advantage of their beneficial effect on glycemia,
the lipid profile and their anti-inflammatory effects, a new
group of PPARα/γ dual agonists are being investigated. A few,
such as ragaglitazar and MK-0767, were removed from the
market because of their toxicity (29,31,33,49).

Preliminary findings in an ongoing study with muraglitazar
are discouraging. In this study, different doses of muraglitazar,
pioglitazone or placebo are being compared in monotherapy or
in combination with metformin or glyburide to evaluate their
effect on death and major cardiovascular events in patients with
type 2 diabetes. Compared with the placebo or pioglitazone,
muraglitazar has been associated with an excessive incidence
of death, major cardiovascular events and cardiac insufficiency
(65).

On the other hand, a recently published study on muragli-
tazar and pioglitazone, either alone or in combination with
metformin, showed a significant improvement in HbAIC and
in lipid profiles (66).

Another ongoing study with tesaglitazar has shown
encouraging preliminary results, decreasing fasting glycemia
and triglycerides and increasing HDL with a low percentage
of adverse effects (67).

6. Potential applications of PPAR agonists

Along with the positive effects of glitazones on glycemia and
fibrates on dyslipidemia, the PPAR agonists are seen as being
able to greatly influence many other components of metabolic
syndromes, such as hypertension, inflammation, vascular
dysfunction and vascular remodeling (Table I). The latter are
also seen in atherosclerosis, where the effects of the PPAR
pleiotropics have an added value in the treatment of cardio-
vascular complications (30,32,47) (Fig. 1).

Studies directed toward determining whether glitazones
have beneficial long-term effects at the cardiovascular level
are currently underway.

The Prospective Pioglitazone Clinical Trial in Macro-
vascular Events (PROACTIVE) was directed toward proving
whether treatment with pioglitazone reduces the incidence
of macrovascular illness and consequent death in high risk
type 2 diabetic patients. This recently published trial, involving
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Table I. Known effects of PPAR agonists in the handling of insulin resistance.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Metabolic effects Additional effects
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Improvement and maintenance of glycemic control Stabilization of the function secretor of ß cells
Improvement in the metabolism of fatty acids Decrease in levels of inflammatory cytokines and protrombotic markers
Improvement in lipid profile (increase of HDL with variable effect Improvement in vascular physiology
on triglycerides)
Prevention of the progression of diabetes in high risk individuals
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Figure 1. Pleiotropic effects of agonists of PPAR. LPL, lipoprotein lipase;
IL-1, interleukin 1; IL-6, interleukin 6; COX-2, cyclooxygenase 2; ApoCIII,
apoprotein CIII; ApoAI, apoprotein AI; ApoAII, apoprotein AII; SR-
B1/CLA-1, scavenger receptor class B type 1; ABCA1, cholesterol transport
from family ABCA; ICAM-1, intercellular adhesion molecule-1; VCAM,
vascular adhesion molecule-1.
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5,238 patients in a 34.5-month (average) follow-up, demon-
strated that treatment with pioglitazone reduced death from
all causes, the incidence of non-fatal infarction and strokes in
diabetics with a high risk of macrovascular events (44,56).

As well, there are studies that aim to demonstrate the anti-
inflammatory properties of the PPAR agonists on endothelial
function and vascular remodeling, as well as its other effects
at the macrovascular level.

One study, with 357 type 2 diabetics tracked over 26
weeks, determined that the use of rosiglitazone significantly
reduced the levels of CRP and also brought down the levels
of metalloprotease, a plaque stability marker, in the extra-
cellular matrix (65). In another study of non-diabetic patients
with coronary cardiopathy, it was shown that rosiglitazone
reduced not only inflammation markers but also the
endothelial activation markers E-selectin, Von Willebrand
factor, fibrinogen and CRP (66).

PPARγ is strongly associated with adipose differentiation,
from undifferentiated fibroblast-type adipose to the appearance
of a small, mature adipose cell. Knockout mice (-/-) for PPARγ
die in utero due to problems with the placenta; heterozygotes
(-/+) show increased sensitivity to insulin and protection
from obesity when they are exposed to high-fat diets. The
ligands most used in these experiments were TZDs such as
rosiglitazone and pioglitazone. Treatment with TZDs or
glitazones produced hypoglycemiant effects and improved
sensitivity to insulin. Other functions included the storing of
lipids, not only in the liver but also in the adipose tissue, and
the regulation of the expression of adipokines (67). In addition
to these results, a protein called PPARγ coactivator-1α,
(PGC-1α), related to the activation of this transcription factor,
produced a powerful set of genetic responses to changes
occurring in the cell environment once stimulated, such as
increased uptake of glucose increasing transporter expression
in different tissues and the control of hepatic gluconeogenesis
(68).

Arterial hypertension is also affected by the PPARγ
activators which, like PPARα, inhibit the expression of
endothelin (ET)-1, a potent vasoconstrictor that reduces the
production of free radicals under treatment with glitazone (70). 

It has recently been discovered that PPARß/δ has a special
relevance to the control of fatty acid catabolism and energy
homeostasis, confirmed by the use of the synthetic agonist
GW 501506. The studies point to PPAR isoforms as a key
element in the use of fatty acid by cells and in the coordination
of energy use (70).

A very recent study demonstrated that the effect of
rosiglitazone on muscle sensitivity to insulin is produced by
PPARδ and the PGC-1α coactivator, and is dependent on the
improved oxidative capacity of the muscle (71).

The benefits of the PPAR agonists are many. Nevertheless,
as with all medication, TZDs and fibrates carry undesirable
effects, such as hydrosaline retention, that may lead to edema
(72) and lack compensation in congestive illnesses (73). It is
worth pointing out that this effect is not observed with statins
(72). Another undesirable effect is weight gain in patients
receiving TZD and fibrates (74-76), similar to observations
in the majority of glycemia-reducing therapies.

Finally of note is the recent discovery that telmisartan, a
drug that blocks the angiotensin receptor (77) and has been

used in the treatment of hypertension, depends on PPARγ for
activation. Telmisartan improves insulin sensitivity in non-
diabetic patients with hypertension (78,79) and, moreover,
induces adipogenesis via PPARγ (80). It also inhibits the
production of CRP in hepatocytes (81) and improves metabolic
parameters, such as HbAIC and blood pressure, in diabetic
and hypertensive patients (82-85).

7. Conclusions

In light of the previous information, it is evident that PPARs,
with their isoforms, polymorphisms and ligands both natural
and synthetic, constitute a tremendously important group in
terms of their potential role as targets for drug treatment. This
role takes on even greater relevance in modern societies, where
there is a growing incidence of illnesses such as obesity,
diabetes and cardiovascular disease, for the most part related
to the excessive accumulation of fats. This is due in large part
to unhealthy, sedentary lifestyles with high calorie intake, as
well as to genetic alterations in energy metabolism. 

Undoubtedly, a change of lifestyle is the basis of any
treatment of these pathologies, but the lack of adherence to this
measure constitutes a major challenge to the drug industry.
Beyond the discussion of cost versus the benefit of using
rosiglitazone in the prevention of diabetes, and the lack of
class evidence which backs up this use and/or its use in
cardiovascular disease prevention, this family of nuclear
receptors constitutes a new superfamily that, given its potential
efficacy, should be considered when studying and treating
diseases associated with glucose metabolism, lipids, and
atherosclerosis. Recent studies have shown that roziglitazone
is also likely to have an effect on cardiovascular disease (86).

A final point regarding PPAR agonists is their pleiotropic
effect, by which they are capable of combating illnesses
developed due to the disruption produced by hypercholes-
terolism. They do so not only by decreasing levels of plasmatic
cholesterol, influencing the pathological profile of LDL by
reducing its size, but also by also inhibiting the inflammatory
process which takes place in the vascular epithelium during
the development of atherosclerotic lesions.
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