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Abstract. Alcoholic liver disease accounts for 12,000 deaths 
per year in the United States and is the second leading indica-
tion for liver transplantation. It covers a spectrum of disease 
conditions ranging from steatosis and cirrhosis to hepatic 
malignancies. Epidemiological data clearly show a strong 
correlation between alcohol consumption and liver diseases. 
A large body of evidence has accumulated over the years in 
determining the molecular mediators of alcohol-induced liver 
injury. In this review, we provide an overview of such media-
tors, which include alcohol metabolites and reactive oxygen/
nitrogen species, endotoxin via bacterial translocation from 
the gut and TNF-α, and highlight the role of the sympathetic 
nervous stimuli, norepinephrine and the α2A-adrenergic 
receptors in contributing to the deleterious effect observed in 
alcohol-induced hepatic dysfunction.
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1. Introduction

… if the surfeit of delicacies, or the hereditary wine 
of my country dared to disturb my health or the 
equilibrium of my poetry, from you, dark monarch, 
giver of syrups and of poisons, regulator of salts, 
from you I hope for justice: I love life: Do not betray 
me! Work on! 

—Pablo Neruda, Oda al Higado (1)

Alcoholic liver disease (ALD) affects 1% of the North 
American population and accounted for over 12,000 deaths in 
2001. It is the second most frequent indication for a liver trans-
plant in the United States, accounting for 18% of all patients 
awaiting liver transplants (2-4). A recent study from Europe 
showed a 2.8% prevalence of advanced hepatic fibrosis in the 
general population, with alcohol consumption, singly or in 
combination with hepatitis C infection, being the predominant 
risk factor in 75% of those affected (5). ALD covers a spectrum 
of increasing hepatic dysfunction, ranging from steatosis to liver 
failure and malignant hepatic disease. The most prevalent types 
of ALD are fatty liver, alcoholic hepatitis and cirrhosis (6,7). 
As a major synthetic and metabolic organ, the liver plays an 
essential role in the body. It is a remarkably resilient organ and 
its parenchymal cells are capable of extraordinary regeneration. 

Hepatic injury is primarily caused by infections and 
toxins, including alcohol, which contributes substantially 
to the burden of liver disease worldwide (4,8). Liver injury 
resulting from alcohol use is mediated through several 
processes, including the generation of harmful metabolites 
and oxygen species in the local milieu, alteration of intestinal 
permeability and increases in bacterial toxins and changes 
in the levels of endogenous mediators (9,10). The surest way 
of preventing ALD would be complete abstinence. Indeed, 
epidemiological data show a decrease in chronic liver disease 
by the end of the Prohibition in the US in 1914 (11). Alcohol, 
however, has also beneficial effects, and moderate alcohol 
consumption has been shown to improve digestion and choles-
terol profile, and to lower the risk of ischemic heart disease 
(12,13). Epidemiological data has shown a clear correlation 
between excessive and prolonged alcohol consumption and 
liver disease (6,7). The molecular mechanisms underlying 
these interactions are still being elucidated. 

The molecular mediators of alcohol-induced hepatic 
dysfunction have been elucidated over the years. It is widely 
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thought that the autonomic nervous system is involved in 
alcohol-induced hepatic damage, and that the level of plasma 
norepinephrine (NE) is an independent prognostic factor in 
cirrhosis (14,15). Our recent study suggested that NE-induced 
inflammatory response is a potential cause of alcohol-induced 
hepatic dysfunction. In addition, a large body of literature 
indicates the role of alcohol metabolites, reactive oxygen/
nitrogen species (RNS/ROS), bacterial translocation from the 
gut, TNF-α and hepatic stellate cell (HSC) activation as the 
combined cause of alcohol-induced hepatic damage. Therefore, 
a consensus has been emerging concerning the general pathway 
culminating in severe ALD involving a complex orchestration 
between Kupffer cells (KCs), HSC and hepatocytes (7,9,16). 
This study reviews these concepts and highlights the key role 
played by the noradrenergic stimuli NE and its receptor in the 
causation of alcohol-derived injury in the liver.

2. Sympathetic nervous system and alcoholic liver disease

The autonomic nervous system influences many functions 
mediated by the neurotransmitter released and its interaction 
with the receptors. The primary responses of the autonomic 
nervous system are mediated via the cholinergic and adren-
ergic pathways. The adrenergic nervous system has NE as the 
major neurotransmitter in axon terminals of postganglionic 
fibers. The direct measure of sympathetic nervous activity is 
to measure the plasma concentration of NE. Norepinephrine 
from the synaptic cleft enters into the plasma, where its 
concentration reflects the activity of the sympathetic nervous 
system. A close association exists between plasma NE levels 
in venous blood in the forearm and sympathetic nervous 
activity in muscles during exercise, mental stress, hypogly-
cemia and in patients with liver disease (17,18). A large body 
of evidence has accumulated over the past several decades that 
confirms the importance of sympathetic nervous activity in 
cardiovascular and homeostatic alterations, and in the meta-
bolic syndrome present in advanced liver disease (19,20). In 
addition, excessive consumption of alcohol may induce tran-
sient changes in the sympathetic nervous system. Autonomic 
dysfunction has been implicated in alcoholics. Even though 
there is increasing evidence of parasympathetic dysfunction, 
sympathetic defects may also be present in alcoholics (21). 
There has been increasing attention given to the potential role 
of the adrenergic system in ethanol consumption. Significantly 
elevated NE levels in active drinkers compared to 3-month 
abstinent alcoholics and non-drinking controls have been 
reported. In addition, NE concentrations have been shown to 
decline during the early withdrawal phase from days 1 to 14 
of abstinence (22,23). 

High levels of catecholamines in the portal venous plasma 
of patients with cirrhosis were first reported by Shaldon et al 
(24). Subsequently, at the beginning of the 1980s, studies with 
isotope derivatives and high-pressure liquid chromatography 
showed increased circulating levels of NE and epinephrine 
in patients with cirrhosis and portal hypertension (25-28). 
In fact, a positive relation exists between circulating NE and 
epinephrine and the progession of the disease, and thus the 
level of plasma NE became an independent prognostic factor 
of cirrhosis (14,15). This increased circulating NE in cirrhotic 
patients is caused by the sympathetic nervous activity of a 

number of organs, such as the liver, the prehepatic splanchnic 
areas, the heart and the kidney. 

Increased levels of NE have been reported in both humans 
and in animal studies following alcohol consumption. Ireland 
et al reported elevated blood pressure with increased epineph-
rine levels and a later rise in NE in young human males 
following acute ethanol intake (29). Kovasc et  al showed 
elevated plasma epinephrine and NE levels in mice following 
intraperitoneal injection of 1.75 g/kg ethanol or ingestion of 
5% ethanol in drinking water for 24 h (30). Using dopamine 
β hydroxylase (DBH) knockout mice, a mouse strain that has 
the DBH gene deleted and thus no NE in the brain, adrenal 
glands or circulation (31), Weinshenker et al showed decreased 
preference for and consumption of ethanol, and increased 
ethanol-induced hypothermia and sedation in these animals, 
concluding that NE is a critical component of the response to 
ethanol (32). It has been postulated that under stressful condi-
tions, 30% or more of plasma NE originates in the adrenal 
medulla (33,34). Patterson-Buckendahl et  al demonstrated 
that adrenomedullary gene expression from enzymes of the 
catecholamine synthetic pathway, tyrosine hydroxylase (TH), 
DBH and phenylethanolamine-N-methyl transferase (PNMT) 
was increased in rats after 7  weeks of consumption of 6% 
wt/vol ethanol in drinking water (35). In a similar study of 
a 1-week administration of a liquid diet containing 5% wt/
vol ethanol in rats, ethanol potentiated a normal increase in 
the immobilization-induced increase in adrenomedullary 
TH, DBH and PNMT mRNA expression (36). These studies 
clearly demonstrated that NE levels are elevated in the plasma 
following chronic consumption of alcohol, and this increase is 
in part due to the up-regulation of the various mediators of the 
catecholamine synthesis pathway.

3. Direct effect of ethanol on Kupffer cell activation by 
norepinephrine

KCs are the resident macrophages of the liver. They ensure 
maximal liver function by removing bacteria and phagocy-
tosing foreign materials. The importance of KCs in causing 
alcohol-induced injury in the liver was illustrated by Adachi 
et  al (37). They demonstrated that twice weekly treatment 
of male rats with gadolinium chloride (GdCl3), a selective 
Kupffer cell toxicant, to inactivate KCs, prevented injury in 
a rat model of ethanol-induced injury (37). KCs are quies-
cent in the absence of stimulatory agents. When activated, 
KCs release several inflammatory cytokines. These include 
TNF-α, IL-1, IL-6 and TGF-β. Clinical studies have shown 
an increased production of TNF-α by circulating monocytes 
in patients with ALD. This has been corroborated by animal 
studies in chronically alcohol-fed animals (38,39). KCs also 
produce significant amounts of ROS and other inflamma-
tory mediators when activated. Direct production of ROS by 
KCs is catalyzed by NADPH oxidase. Cytokines secreted by 
KCs, most significantly TNF-α, contribute to increased ROS 
production. In addition, Kupffer cell facilitation of neutrophil 
infiltration contributes to ongoing oxidative stress through the 
generation of ROS via the myeloperoxidase pathway.

NE acts in the liver to activate KCs. Using a cecal 
ligation and puncture (CLP) model of rodent polymicrobial 
sepsis, we previously demonstrated that the up-regulation of 
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pro-inflammatory cytokines, such as TNF-α, is caused by 
the increased release of NE from the gut during sepsis. This 
is evidenced by our studies (40) and others (41), which show 
that peripheral sympathetic activity increases during sepsis, 
resulting in the elevation of plasma levels of NE. Intraportal 
infusion of NE in  vivo increased TNF-α release and was 
inhibited by co-infusion with yohimbine, a non-specific 
antagonist of the α2-adrenergic receptor. Cellular levels of 
TNF-α in KCs were also significantly increased following 
intraportal NE infusion, and were inhibited by co-infusion 
with yohimbine (42). KCs isolated from rats during early 
sepsis exhibited a marked increase in the mRNA expression 
of the α2A-adrenergic receptor subtype (43,44). Furthermore, 
Zhou et al showed increased TH gene expression and protein 
levels in the intestine of septic rats, suggesting that the 
increased NE levels are due to an increase in NE biosynthesis 
from the gut (45). These studies in sepsis showed that NE 
released from the gut during sepsis enters the liver through 
the portal vein and binds to α2A-adrenergic receptors on KCs, 
facilitating the increased production of TNF-α.

Although previous studies have reported that the adrenal 
medulla is the major contributor for ethanol-induced NE 
release, it is possible that the release of NE by the intestine as 
evidenced in sepsis also contributes to alcoholic liver injury 
via the gut-liver axis. Nevertheless, in vitro experiments from 
our laboratory with rat KCs treated with ethanol for 7 days, i.e., 
chronic condition, showed a 120% increase in α2A-adrenergic 
receptor mRNA expression. This was reflected by a 98% 
increase in TNF-α mRNA expression in the cultured KCs, and 
is supported by the attenuation of the Kupffer cell response to 
the portal vein infusion of NE by the specific α2A-adrenergic 
receptor inhibitor BRL44408 maleate (43). Paradoxically, NE 
also acts on KCs via the β-adrenergic receptor to depress their 
phagocytic and immune functions (46-48). Ethanol exposure 
leads to increased circulating NE and the activation of KC 
β-receptors. This results in the depression of KC immune 
function via the activation of adenylate cyclase. This particu-
larly affects the phagocytosis and cytocidal actions of these 
macrophages (48,49). Recently, Parlesak et  al showed that 
ethanol significantly depressed the amount of ROS released 
by LPS-stimulated monocytes (50).

Ethanol potentiates the release of pro-inflammatory cytok-
ines by up-regulating KC α2A-adrenergic receptors, and their 
activation leads to the increased release of pro-inflammatory 
cytokines, in particular TNF-α. Thus, the interaction of ethanol 
and NE with KCs leads to several deleterious effects typi-
fied by the clinical effects observed in the chronic alcoholic. 
Ethanol potentiates cytokine-mediated injury by priming KCs 
to respond to NE by producing TNF-α, which mediates a 
variety of hepatotoxic effects by direct toxicity and the activa-
tion of HSCs. Ethanol also promotes LPS-associated hepatic 
damage by depressing the immune function of KCs. Ethanol 
consumption has been linked to endotoxemia and increased 
susceptibility to infections from microorganisms that would 
ordinarily have been cleared from the circulation by KCs. 
In addition, this suppression of KC cytotoxicity inhibits its 
tumoricidal activity and is implicated in the multifactorial 
development of hepatic malignancies (51,52).

KCs express α- and β-adrenergic receptors, however, and 
the relative activation of these receptor subtypes determines 

the differential response of KCs to NE. However, a likely 
effect of chronic alcohol consumption is the up-regulation of 
α2A-adrenergic receptors in KCs. This probably explains the 
contrasting effects of NE increase in the liver with moderate 
versus chronic or excessive alcohol intake. An intriguing new 
development has been the demonstration of endogenous NE 
secretion by macrophages and other immune and inflamma-
tory cells (30,53,54). This requires further study, particularly 
as it raises the possibility of a self-perpetuating cycle of auto-
crine stimulation of KCs by endogenously-derived NE in the 
causation of hepatic injury.

4. Alcohol metabolites and ROS-associated alcohol-
induced hepatic injury

Alcohol is primarily metabolized in the liver through two 
pathways: the alcohol dehydrogenase (ADH) pathway and 
the microsomal ethanol-oxidizing system (MEOS). After 
moderate intake, most of the alcohol is broken down by ADH, 
which converts ethanol to acetaldehyde with the reduction 
of nicotinamide adenine dinucleotide (NAD) to reduced 
NAD (NADH). Subsequently, the acetaldehyde is converted 
to acetate by a second enzyme, aldehyde dehydrogenase. 
The MEOS comes to play particularly after higher alcohol 
consumption. The main component of the MEOS is the 
enzyme cytochrome P450, which also converts alcohol to acet-
aldehyde. Acetaldehyde has been shown to cause the injury 
and death of hepatocytes. It forms adducts with proteins and 
DNA and therefore impairs microtubules, decreases protein 
secretion and causes protein retention and ballooning of the 
hepatocyte. Acetaldehyde exerts toxicity also with regard to 
other key cellular functions, particularly in the mitochondria, 
and it may promote the peroxidation of the cellular membranes 
(55-57).

Alcohol acting through its metabolites produces oxidative 
stress by enhancing the production of ROS/RNS and by inhib-
iting the protective antioxidant enzyme systems. Reactive 
species, primarily the superoxide radical O2•-, the peroxide 
(O2

=)-containing hydrogen peroxide radical (H2O2) and the 
hydroxyl radical (•OH), cause hepatic damage by interacting 
with constituent cellular molecules, including lipids, in the 
cell membrane, cellular proteins and DNA. Lipid peroxida-
tion of the bi-lipid plasma membrane of the cells generates 
more radicals and results in extensive cellular damage (10). 
Cysteine, methionine and histidine are amino acids that are 
particularly sensitive to attack and oxidation by the hydroxyl 
radical (58). This results in the inactivation of crucial enzymes, 
and conformational changes in protein structure. The results 
of these insults are permanent cell damage or death. Mutations 
that occur, when persistent, may lead to cell transformation 
and eventual malignancy. 

5. Gut permeability and bacterial translocation in alcohol-
induced hepatic damage

The permeability of the gut mucosa is increased following 
alcohol intake. This leads to a rise in the translocation of 
endotoxin from the gut into the circulation. Alcohol also alters 
the gut microflora, in particular when consumed chronically, 
with a shift towards increased gram-negative bacteria. This, 
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too, increases circulating bacterial endotoxin. Experiments in 
animals have revealed that the liver quickly removes intrave-
nously administered endotoxin from the bloodstream (59,60). 
This would be the case in the portal circulation with relatively 
higher gut-derived endotoxin due to the first pass effect (61). 
Hepatic uptake and detoxification is essential for preventing 
systemic reactions to blood-borne LPS, a gram-negative 
bacterial endotoxin. The endotoxins released by these bacteria 
activate KCs by binding to TLR4 and its co-receptors, CD14 
and MD-2 (62), leading to the release of inflammatory cyto-
kines, in particular TNF-α.

6. TNF-α and alcohol-induced hepatic damage

Clinical and animal studies have revealed TNF-α to be a 
key mediator of the hepatic damage that occurs in alcohol-
induced liver injury (63,64). Its adverse effects on cells range 
from mitochondrial damage to oncotic necrosis and apoptosis. 
Activated KCs release TNF-α through a series of molecular 
steps involving sequential activation of transcription factor 
NF-κB via the TIR domain-containing adaptor myeloid 
differentiation factor 88 (MyD88) and the phosphorylation of 
transcription factor inhibitor IκB by IKK (IκB kinase). The 
disinhibition of transcription factor NF-κB by IκB leads to 
the nuclear translocation of NF-κB. NF-κB initiates cytokine 
gene transcription leading to the up-regulation and release 
of TNF-α and other pro-inflammatory cytokines (62,65,66). 
TNF-α amplifies and prolongs the inflammatory response by 
activating cells to release pro-inflammatory cytokines, such as 
IL-1 and high mobility group B1 (HMGB1), as well as media-
tors, such as eicosanoids, nitric oxide and ROS. These promote 
further inflammation and tissue injury (67). Studies have 
shown that gut-derived NE itself induces the release of TNF-α 
from KCs and leads to hepatic dysfunction (43,44). However, 
as its action depends on its interplay with other cytokines and 
the general hepatic milieu (63,68), TNF-α does have physi-
ologically beneficial effects, thus straightforward antagonism 
would not necessarily be an effective intervention.

7. Hepatic stellate cell activation in alcohol-induced hepatic 
damage

The interaction of KCs with other component cells of the 
liver, most notably HSCs, is another mechanism of alcoholic-
induced hepatic damage. Physiologically, HSCs act as fat 
storage cells in the liver and are a reservoir for lipid soluble 
vitamins. Hepatic stellate cells, which are pericytes, are 
nominally differentiated cells capable of transforming to 
different lineages following liver damage. However, during 
chronic inflammation following continuous cytokine stimu-
lation, these cells become activated and are transformed to 
myofibroblasts responsible for the hepatic scarring that 
culminates in liver cirrhosis. Activated HSCs proliferate and 
undergo phenotypic transdifferentiation to become myofibro-
blasts. This is believed to be the central pathogenetic event 
in the development of fibrosis. Cytokines secreted by KCs, 
particularly TGF-β and TNF-α, are central to this activation. 
HSC transformation to myofibroblasts can be summarized as 
a three step cascade: a pre-inflammatory phase that initiates 
HSC activation by discharge of mitogenic cytokines (TGF-α, 

IGF-1) from damaged and apoptotic hepatocytes, followed by 
the inflammatory phase, based on cytokines (platelet-derived 
growth factor, TGF-β, TNF-α) from activated KCs. The 
consecutive post-inflammatory phase is characterized by the 
secretion of fibrogenic cytokines from myofibroblasts and 
interacting matrix components potentially contributing to a 
perpetuation of the fibrogenic process even after cessation of 
the primary event (69,70).

8. Summary and conclusions

Alcohol abuse plays a significant role in the causation of liver 
disease worldwide. Hepatic damage resulting from alcohol 
consumption is manifested in a spectrum of clinical and histo-
pathological changes. KCs play a central role in the initiation 
and propagation of hepatic dysfunction through their produc-
tion of several intermediaries. Ethanol increases NE release 
and potentiates NE-mediated dysfunction by up-regulating the 
α2A-adrenergic receptors, thereby promoting the release of pro-
inflammatory cytokines by KCs. Ethanol also depresses KC 
phagocytosis and the clearance of endobacteria, and in associa-
tion with its effect on increasing gut permeability, potentiates 
endotoxin-Kupffer cell-mediated damage. This, in addition 
to the production of ROS and the activation of HSCs by KCs, 
highlights its dynamic role in the pathogenesis of alcoholic 
liver disease. The modulation of the Kupffer cell response 
to ethanol presents an exciting opportunity to attenuate the 
deleterious response of the liver to ethanol consumption and 
reduce the enormous morbidity associated with it.
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