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Abstract. Osteoporosis is the most common and serious 
skeletal disorder among the elderly, characterized by a low 
bone mineral density (BMD). Low bone mass in the elderly 
is highly dependent on their peak bone mass (PBM) as young 
adults. Circulating monocytes serve as early progenitors of 
osteoclasts and produce significant molecules for bone metab-
olism. An improved understanding of the biology and genetics 
of osteoclast differentiation at the pathway level is likely to be 
beneficial for the development of novel targeted approaches for 
osteoporosis. The objective of this study was to explore gene 
expression profiles comprehensively by grouping individual 
differentially expressed genes (DEGs) into gene sets and path-
ways using the graph clustering approach and Gene Ontology 
(GO) term enrichment analysis. The results indicated that the 
DEGs between high and low PBM samples were grouped into 
nine gene sets. The genes in clusters 1 and 8 (including GBP1, 
STAT1, CXCL10 and EIF2AK2) may be associated with 
osteoclast differentiation by the immune system response. The 
genes in clusters 2, 7 and 9 (including SOCS3, SOD2, ATF3, 
ADM EGR2 and BCL2A1) may be associated with osteoclast 
differentiation by responses to various stimuli. This study 
provides a number of candidate genes that warrant further 
investigation, including DDX60, HERC5, RSAD2, SIGLEC1, 
CMPK2, MX1, SEPING1, EPSTI1, C9orf72, PHLDA2, 
PFKFB3, PLEKHG2, ANKRD28, IL1RN and RNF19B.

Introduction

Osteoporosis is the most common and serious skeletal disorder 
among the elderly. Symptomatic osteoporosis occurs due to 
a decreased bone mineral density (BMD) leading to reduced 
bone strength and an increased risk of fractures (1). Low bone 
mass in the elderly is highly dependent on their peak bone 
mass (PBM) as young adults (2). Therefore, it is necessary to 

understand and identify the risk factors for impaired PBM in 
young and middle-aged adults.

Osteopenia may result from an imbalance between 
increased bone resorption and decreased bone formation (3,4). 
Bone resorption involves the dissolution of bone mineral and 
degradation of the organic bone matrix. These two func-
tions are performed by osteoclasts. Osteoclasts are members 
of the monocyte/macrophage lineage and are formed by 
multiple instances of cellular fusion of their mononuclear 
precursors  (5). Monocytes differentiate into osteoclasts in 
the presence of various molecular signals (6). RANKL, one 
of the most frequently studied, is a ligand for the receptor 
activator of nuclear factor-κB (NF-κB; RANK) on osteoclast 
precursor cells (7). RANKL/RANK signaling activates four 
pathways that mediate osteoclast formation; NF-κB, c-fos 
and calcineurin/NFATc1 and three pathways that mediate 
osteoclast activation; Src and MKK6/p38/MITF and survival; 
Src and extracellular signal-regulated kinase (8). Osteoblasts 
produce and secrete osteoprotegerin, a decoy receptor that 
binds to RANKL and blocks RANKL/RANK interactions 
and hence suppresses the ability of RANK to increase bone 
resorption (9). Previous studies have shown that blood mono-
cytes also produce a wide variety of inflammatory factors and 
transcription factors involved in bone metabolism, including 
interleukin-1  (10), tumor necrosis factor-α (TNF-α)  (11), 
interleukin-6 (12), platelet-derived growth factor (13), trans-
forming growth factor-β (14), resolvinE1 (15), runt-related 
transcription factor 2 (Runx2; 16), guanylate binding protein 1 
(GBP1), signal transducer and activator of transcription 1 
(STAT1), CXC chemokine ligand 10 (CXCL10) (17), chemo-
kine receptor 3, histidine decarboxylase and glucocorticoid 
receptor genes (18). 

However, it is unknown whether other mechanisms regu-
lating these factors are significant in the ability of monocytes to 
affect bone metabolism. Since biological processes are mediated 
by multiple, co-regulated genes working in synchrony, certain 
unknown genes may be assigned potential biological functions 
when studied in gene sets with known genes and ontology 
groups (19). Thus, the objective of this study was to screen 
the differential gene expression in monocytes using a high-
throughput microarray platform and to explore gene expression 
profiles comprehensively by grouping individual differentially 
expressed genes (DEGs) into gene sets and Gene Ontology 
(GO) terms. The DEGs between high and low PBM samples 
were grouped into nine gene sets using the graph-clustering 
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approach. GO term enrichment analysis was applied to identify 
the relevant molecular functions in response to an impaired 
PBM. The current study revealed that the DEGs, as precur-
sors of osteoclasts, are functionally involved in the immune 
response. The stimulus response may contribute to differential 
osteoclastogenesis, leading to differential PBM levels.

Materials and methods

Affymetrix microarray data. Circulating monocyte affymetrix 
microarray datasets were accessible from the National Center 
for Biotechnology Information Gene Expression Omnibus 
(GEO) data repository (http://www.ncbi.nlm.nih.gov/geo/) 
using the series accession number GSE7158. Fourteen 
subjects with extremely high PBM levels and 12 subjects with 
extremely low PBM levels were selected for DNA microarray 
experiments. All the recruited volunteers signed an informed 
consent form prior to entering this project.

Statistical analysis. The limma method (20) was used to iden-
tify DEGs. The raw expression datasets from all conditions 
were normalized using the Robust Multiarray Average (RMA) 
method with the default settings implemented in Bioconductor 
and then the linear model was constructed. DEGs with a fold 
change >1.5 and P<0.05 were selected. 

The Pearson correlation coefficient (r) was used to compare 
the potential correlations between DEGs. Statistical signifi-
cance was set at r>0.95 and P<0.05. All statistical tests were 
performed using R language (21).

Network analyses and graph clustering. To identify 
co-expressed groups, DPClus, a graph clustering algorithm 
that extracts densely connected nodes as a cluster, was 
used  (22). DPClus is based on the density and periphery 
tracking of clusters and is freely available from http://kanaya.
naist.jp/DPClus/. In the current study, the overlapping mode 
with the DPClus settings were used. The parameter settings of 
cluster properties were set; density values were set to 0.5 (23) 
and minimum cluster size was set to 2.

GO term enrichment analysis. The GO (24) project is a major 
bioinformatics initiative with the aim of standardizing the 
representation of genes and gene product attributes across 
species and databases. The project provides a controlled 
vocabulary of terms for describing gene product characteris-
tics and gene product annotation data from GO Consortium 
members, as well as tools to access and process this data.

The DAVID tool (25) was used to identify overrepresented 
GO terms in biological process. P<0.05 and counts of >2 were 
set as the threshold for the analysis using the hypergeometric 
distribution.

Results

Differential gene expression profiling and co-expression 
network construction. GSE7158 microarray datasets were 
publicly available from the GEO database. Following micro-
array analysis, a total of 49 genes were selected as DEGs with 
a fold change >1.5 and P<0.05. The expression profiling of 
these 49 DEGs is presented in Fig. 1. 

To form the correlations between DEGs, r>0.7 and P<0.05 
were selected as the cut-off points. A correlation network was 
constructed with a total of 159 correlations among 49 DEGs 
(Fig. 2). 

Graph clustering identifies modules significantly enriched for 
DEGs contained in GO term pathways. At r>0.7, DPClus (22) 
identified 9 clusters in the correlation network for osteoporosis, 
ranging in size from 3-14 genes. Clusters 1, 2, 7, 8 and 9 were 
connected as they shared the same genes. For example, one 
gene (epithelial stromal interaction 1, EPSTI1) was shared 
between clusters 1 and 8; three genes (suppressor of cytokine 
signaling, SOCS3; superoxide dismutase, SOD2 and activating 
transcription factor 3, ATF3) were shared between cluster 
2 and 7 and one gene (adrenomedullin, ADM) was shared 
between clusters 2 and 9. The higher the number of genes 
shared, the more connectivity among them (corresponding to 
the thicker lines; Fig. 3).

To assess the significance of the obtained clusters, the over-
represented GO terms were used. Enrichment analysis was 
performed using the hypergeometrical distribution to find the 
significant GO term enrichment pathways. In accordance with 
the graph clustering results, the genes in clusters 1 and 8 were 
enriched in similar pathways, including immune responses 
and circulatory system processes. The genes in clusters 2, 7 
and 9 were enriched in similar pathways regulating apoptosis 
and responding to various stimuli, including insulin, hypoxia, 
nutrients, drugs, radiation and hormones (Table I). Clusters 2 
and 7 had the most similar GO term enrichment pathways. 
These GO biological processes may be relevant to the differ-
entiation of monocytes into osteoclasts.

Discussion

In the current study, differential expression profiling was 
systematically investigated and its possible role in the differ-
entiation of osteoclasts was explored. A total of 49 DEGs were 
identified and correlated to produce 159 network connections. 
These DEGs were assigned into nine clusters using the graph 
clustering method in response to different PBM levels. A total 
of 14 genes were included in cluster 1 [GBP1; interferon-
induced protein with tetratricopeptide repeats 2, IFIT2; 
eukaryotic translation initiation factor 2-α kinase 2, EIF2AK2; 
interferon-induced protein 44, IFI44; IFI44L; DEAD 
(Asp-Glu-Ala-Asp) box polypeptide 60, DDX60; HECT and 
RLD domain containing E3 ubiquitin protein ligase 5, HERC5; 
radical S-adenosyl methionine domain containing 2, RSAD2; 
sialic acid binding Ig-like lectin 1, sialoadhesin, SIGLEC1; 
cytidine monophosphate kinase 2, CMPK2; EPSTI1; inter-
feron, α-inducible protein 6, IFI6; CXCL10; and myxovirus 
resistance 1, interferon-inducible protein p78, MX1] and 3 
genes were involved in cluster 8 (STAT1; EPSTI1; and serpin 
peptidase inhibitor, clade G, SERPING1). Notably, cluster 8 was 
connected with all the genes of cluster 1 by STAT1 and EPSTI1 
in order to be involved in immune responses and circulatory 
system processes, as demonstrated in previous studies. 

The immune system has been correlated with bone 
resorption through a complex interaction involving T and 
B lymphocytes, dendritic cells (DCs), cytokines and cell-cell 
interactions  (26). There is strong evidence that STAT1 is 
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significant in bone metabolism as STAT1 has been reported to 
be upregulated in the femur tissue of osteoporotic mice (27) 
and humans (18). STAT1 may serve as a primary mediator 
of interferon (IFN) signaling pathways involving osteoclast 

differentiation. Through the p38 MAPK pathway, RANKL 
stimulates the serine phosphorylation of STAT1, resulting 
in the migration and adhesion of osteoclast precursors (28). 
STAT1 interacts with Runx2, an essential transcription factor 

Figure 1. The expression profiling of 49 DEGs. Each row represents the samples and each line represents the expression values of the DEGs. Black indicates  
low expression, gray indicates medium expression and white indicates high expression. DEGs, differentially expressed genes.

Figure 2. Co-expression network of osteoporosis. A total of 159 correlations with r>0.7 and P<0.05 are exhibited. The nodes indicate the DEGs and the links 
indicate the high correlation among the DEGs. DEGs, differentially expressed genes. 
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Table I. List of enriched GO terms in clusters 1, 2, 7, 8 and 9 detected by DPClus.

Category	 Term	 Description	 Count	 P-value	 FDR

Cluster 1	 GO:0009615	 Response to virus	 4	 5.86e-5	 0.006833
	 GO:0006955	 Immune response	 5	 0.00110057	 0.062388
	 GO:0006952	 Defense response	 4	 0.00882795	 0.292359
Cluster 2	 GO:0032868	 Response to insulin stimulus	 3	 0.00147149	 0.378515
	 GO:0007568	 Aging	 3	 0.00177687	 0.249653
	 GO:0001666	 Response to hypoxia	 3	 0.00262243	 0.246268
	 GO:0070482	 Response to oxygen levels	 3	 0.00289863	 0.208958
	 GO:0043434	 Response to peptide hormone stimulus	 3	 0.00344654	 0.19991
	 GO:0006915	 Apoptosis	 4	 0.00415134	 0.200641
	 GO:0012501	 Programmed cell death	 4	 0.00432956	 0.181443
	 GO:0031667	 Response to nutrient levels	 3	 0.00557639	 0.202104
	 GO:0006916	 Anti-apoptosis	 3	 0.00608264	 0.196651
	 GO:0008219	 Cell death	 4	 0.00684652	 0.199007
	 GO:0009991	 Response to extracellular stimulus	 3	 0.00691087	 0.184238
	 GO:0016265	 Death	 4	 0.00698058	 0.171843
	 GO:0042981	 Regulation of apoptosis	 4	 0.00934738	 0.208115
	 GO:0043067	 Regulation of programmed cell death	 4	 0.00960751	 0.19967
	 GO:0010941	 Regulation of cell death	 4	 0.00970618	 0.189438
	 GO:0010332	 Response to gamma radiation	 2	 0.01352424	 0.240339
	 GO:0031100	 Organ regeneration	 2	 0.01527641	 0.253599
	 GO:0048666	 Neuron development	 3	 0.01586432	 0.249457
	 GO:0043066	 Negative regulation of apoptosis	 3	 0.01722442	 0.255741
	 GO:0043069	 Negative regulation of programmed cell death	 3	 0.01768878	 0.250411
	 GO:0060548	 Negative regulation of cell death	 3	 0.01778231	 0.241164
	 GO:0009725	 Response to hormone stimulus	 3	 0.01844308	 0.23914
	 GO:0009628	 Response to abiotic stimulus	 3	 0.01853835	 0.231094
	 GO:0006873	 Cellular ion homeostasis	 3	 0.01911445	 0.228747
	 GO:0055082	 Cellular chemical homeostasis	 3	 0.01969829	 0.226664
	 GO:0009719	 Response to endogenous stimulus	 3	 0.0222131	 0.24351
	 GO:0050801	 Ion homeostasis	 3	 0.02262762	 0.239518
	 GO:0030182	 Neuron differentiation	 3	 0.02573112	 0.259709
	 GO:0019725	 Cellular homeostasis	 3	 0.02888801	 0.27855
	 GO:0048878	 Chemical homeostasis	 3	 0.03440423	 0.314043
	 GO:0010212	 Response to ionizing radiation	 2	 0.03494492	 0.309692
	 GO:0031099	 Regeneration	 2	 0.0400934	 0.338357
	 GO:0032496	 Response to lipopolysaccharide	 2	 0.04464963	 0.360509
	 GO:0009266	 Response to temperature stimulus	 2	 0.04805437	 0.373652
	 GO:0002237	 Response to molecule of bacterial origin	 2	 0.04975276	 0.375599
Cluster 7	 GO:0070482	 Response to oxygen levels	 3	 3.21e-4	 0.079885
	 GO:0009314	 Response to radiation	 3	 6.46e-4	 0.080292
	 GO:0042493	 Response to drug	 3	 7.53e-4	 0.062989
	 GO:0009991	 Response to extracellular stimulus	 3	 7.81e-4	 0.049354
	 GO:0055093	 Response to hyperoxia	 2	 0.00177318	 0.087833
	 GO:0043066	 Negative regulation of apoptosis	 3	 0.00201309	 0.08331
	 GO:0043069	 Negative regulation of programmed cell death	 3	 0.00206992	 0.073801
	 GO:0060548	 Negative regulation of cell death	 3	 0.00208138	 0.06523
	 GO:0009628	 Response to abiotic stimulus	 3	 0.00217417	 0.060715
	 GO:0010332	 Response to gamma radiation	 2	 0.00509224	 0.123857
	 GO:0031100	 Organ regeneration	 2	 0.00575517	 0.12707
	 GO:0048145	 Regulation of fibroblast proliferation	 2	 0.00774219	 0.154437
	 GO:0042127	 Regulation of cell proliferation	 3	 0.0097487	 0.177311
	 GO:0042981	 Regulation of apoptosis	 3	 0.01016581	 0.172238
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for osteoblast differentiation, in its latent form in the cyto-
plasm, thereby inhibiting the nuclear localization of Runx2. 
This function of STAT1 does not require the Tyr 701 that 
is phosphorylated when STAT1 becomes a transcriptional 
activator (29). 

The GBP1 gene is also predicted to be involved in bone 
metabolism or osteoclast differentiation  (30) in a STAT1-
dependent manner  (31). The sumoylation-defective STAT1 
mutant exhibits increased induction of GBP1 and transporters 
associated with antigen presentation 1 (TAP1) transcrip-

Table I. Continued. 

Category	 Term	 Description	 Count	 P-value	 FDR

	 GO:0043067	 Regulation of programmed cell death	 3	 0.01036499	 0.164649
	 GO:0010941	 Regulation of cell death	 3	 0.01044016	 0.156241
	 GO:0010212	 Response to ionizing radiation	 2	 0.01324778	 0.183871
	 GO:0031099	 Regeneration	 2	 0.0152248	 0.198085
	 GO:0007568	 Aging	 2	 0.02419781	 0.283882
	 GO:0014070	 Response to organic cyclic substance	 2	 0.02659589	 0.294663
	 GO:0001666	 Response to hypoxia	 2	 0.02942492	 0.308128
	 GO:0048545	 Response to steroid hormone stimulus	 2	 0.04197997	 0.396429
	 GO:0031667	 Response to nutrient levels	 2	 0.0430572	 0.390801
	 GO:0010035	 Response to inorganic substance	 2	 0.0447791	 0.39006
	 GO:0006916	 Anti-apoptosis	 2	 0.04499419	 0.379328
Cluster 8	 GO:0008015	 Blood circulation	 2	 0.01374926	 0.839184
	 GO:0003013	 Circulatory system process	 2	 0.01374926	 0.839184
Cluster 9	 GO:0051384	 Response to glucocorticoid stimulus	 2	 0.01149882	 0.709892
	 GO:0031960	 Response to corticosteroid stimulus	 2	 0.01252751	 0.490566
	 GO:0048545	 Response to steroid hormone stimulus	 2	 0.02818517	 0.6393

GO, gene ontology; FDR, false discovery rate.

Figure 3. Graph clustering of correlated molecules in osteoporosis (threshold r≥0.7). Using the DPClus algorithm, 9 clusters were extracted for osteoporosis. 
The internal nodes of the clusters are connected by gray edges; neighboring clusters are connected by black edges.
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tion  (32). The mutation in the STAT1 gene dramatically 
reduces the inducibility of the GBP1 and TAP1 genes by 
IFN (33). In this study, STAT1 and GBP1 directly interacted 
with each other (Figs. 2 and 3).

Chemokines have a potential role in the regulation of 
osteoclast functions. For example, IFN-γ-inducible protein-10 
(CXCL10) is expressed in human osteoclasts with changing 
expression levels during osteoclast differentiation  (34). 
CXCL10 has been suggested to contribute to osteoclastogen-
esis by increasing RANKL expression in CD4+ T cells in an 
animal model of rheumatoid arthritis (35). Notably, previous 
studies have shown that osteoblasts secrete IFN-β in response 
to viral infections and that endogenous IFN-β induces CXCL10 
and IFI44L production via an IFN-α/β receptor‑STAT1 
pathway (36,37).

EIF2AK2 is also reported to interact with STAT1 and 
increase its degradation. Reduction of EIF2AK2 activity also 
reduces RUNX2 activity and murine osteoblast differentia-
tion (38,39). Therefore, it appears illogical that EIF2AK2 is 
upregulated in human osteoblasts following IFN-β treatment 
which results in an inhibition of mineralization (40).

Ten genes were included in cluster 2 [ADM; early growth 
response 2, EGR2; BCL2-related protein A1, BCL2A1; 
chromosome 9 open reading frame 72, C9orf72; pleckstrin 
homology-like domain, family A, member 2, PHLDA2; 
ATF3; SOCS3; SOD2; 6-phosphofructo-2-kinase/fructose-
2,6-biphosphatase 3, PFKFB3; and pleckstrin homology 
domain containing, family G (with RhoGef domain) member 
2, PLEKHG2], five genes were included in cluster 7 (SOCS3; 
SOD2; ATF3; cyclin-dependent kinase inhibitor 1A, CDKN1A; 
and ankyrin repeat domain 28, ANKRD28) and three genes 
were included in cluster 9 (ADM; interleukin 1 receptor antag-
onist, IL1RN; and ring finger protein 19B, RNF19B). Cluster 7 
was connected with all the genes of cluster 2 and 9 by SOCS3, 
SOD2 and ATF3. Cluster 9 was connected with all the genes 
of clusters 2 and 7 by ADM and IL1RN. These findings indi-
cate that SOCS3, SOD2, ATF3 and ADM are significant genes 
for responding to various stimuli, including insulin, hypoxia, 
nutrients, drugs, radiation and hormones regulating apoptosis.

The SOCS3 family are cytoplasmic adaptor proteins that 
negatively regulate various cytokine responses in leuko-
cytes. SOCS3 overexpression augments TGF-β, TNF-α and 
RANKL-induced osteoclast formation, priming precursors to 
the osteoclast lineage by suppressing specific anti-osteoclastic 
JAK/STAT signals (41). Zhang et al demonstrated that a higher 
SOCS3 expression level is associated with RANKL-mediated 
alveolar bone loss and enhances CD11c+ DC-derived osteo-
clastogenesis in vivo and in vitro. The reduced expression 
of functional SOCS3 in CD11c+ DCs results in significantly 
lower osteoclastogenesis and dendritic cell-derived osteoclasts 
development during immune interactions with T cells, based 
on TRAP expression and bone resorptive activity  (42). In 
SOCS3-deficient bone marrow-derived monocytes, the expres-
sion levels of TNF-receptor-associated factor-6 and IκB are 
drastically reduced. The receptor activation of NF-κB ligand-
induced IκB phosphorylation is severely impaired, indicating 
that SOCS3 regulates osteoclastogenesis by blocking the 
inhibitory effect of inflammatory cytokines on receptor acti-
vation of the NF-κB ligand-mediated osteoclast differentiation 
signals (43).

ADM is a 52-amino acid peptide first described in a human 
phaeochromocytoma but has since been identified in numerous 
tissues, including the bone (44). Systemic administration of 
ADM stimulates the proliferation of osteoblasts and promotes 
bone growth (45). Treatment with ADM significantly blunts 
the apoptosis of serum-deprived osteoblastic cells, evaluated 
by caspase-3 activity, DNA fragmentation quantification 
and Annexin V-FITC labeling. This effect is eliminated by 
calcitonin-related polypeptide α (CGRP1) and insulin-like 
growth factor‑I (46). The selective inhibitor of MAPK kinase 
(MEK), PD98059, also eliminates the protective effect of 
ADM on apoptosis and prevents ADM activation of ERK1/2. 
These data show that ADM acts as a survival factor in osteo-
blastic cells via a CGRP1 receptor-MEK-ERK pathway, which 
provides further understanding on the physiological function 
of ADM in osteoblasts (47).

The SOD2 gene encodes a free radical-scavenging 
enzyme that removes superoxidate and catalyzes the produc-
tion of hydrogen peroxide. Oxidative stress is significant in 
the pathogenesis of osteoporosis (48). Previous studies have 
revealed that SOD2 is significantly upregulated in circulating 
monocytes at the mRNA and protein level in vivo in Chinese 
patients with low versus high hip BMD levels (49). Women 
with postmenopausal osteoporosis have significantly higher 
plasma SOD enzyme activity levels than those in controls (50). 
This indicates that SOD2 is significant in the pathogenesis of 
osteoporosis, promoting osteoclast differentiation, formation 
and activity (51).

EGR2 is a highly conserved transcription factor involved 
in bone remodeling. The upregulation of EGR2 is involved in 
the biological affinity of titanium for osteogenic cells and in 
the promotion of osteoblast differentiation (52). Macrophage 
colony-stimulating factor activates MEK/ERK and induces 
the MEK-dependent expression of the immediate early gene 
EGR2. Inhibition of either MEK1/2 or EGR2 increases osteo-
clast apoptosis (53). Previous studies have revealed a novel role 
for EGR2 in postnatal skeletal metabolism. EGR2+/- mice 
reveal a low bone mass phenotype. EGR2 silencing in pre-
osteoclasts increases the expression of cFms and the response 
to macrophage colony‑stimulating factor, leading to a cell-
autonomous stimulation of cell‑cycle progression. Thus, the 
anti-mitogenic role of EGR2 in pre‑osteoclasts is the predomi-
nant mechanism underlying the low bone mass phenotype of 
EGR2-deficient mice (54). 

The osteoporotic state increases ATF3 expression in dorsal 
root ganglia neurons innervating L3 vertebrae (55). BCL2A1, 
an anti-apoptotic activated macrophage protein, is also heavily 
overexpressed in osteolysis patients, providing a possible 
mechanism for the persistence of the particle‑laden cells 
expressing macrophage phenotype activation markers (56).

In conclusion, the present findings shed new light on 
the biology of osteoporosis and have implications for future 
research. The changes in the immune system (GBP1, STAT1, 
CXCL10 and EIF2AK2) and stimulus response (SOCS3, 
SOD2, ATF3, ADM EGR2 and BCL2A1) may be associ-
ated with osteoclast differentiation. This study provides a 
number of candidate genes that warrant further investigation, 
including DDX60, HERC5, RSAD2, SIGLEC1, CMPK2, 
MX1, SERPING1, EPSTI1, C9orf72, PHLDA2, PFKFB3, 
PLEKHG2, ANKRD28, IL1RN and RNF19B.
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