
MOLECULAR MEDICINE REPORTS  7:  1229-1234,  2013

Abstract. Previous data have shown that the type  II 
cGMP‑dependent protein kinase (PKG  II) inhibits the 
EGF‑induced MAPK signaling pathway. In order to thor-
oughly investigate PKG, it is necessary to elucidate the 
function of another type of PKG, PKG I. The aim of this 
study was to investigate the possible inhibitory effect of 
PKG II and PKG I activity on the basic fibroblast growth 
factor (bFGF)‑induced proliferation and migration of U251 
human glioma cells and the possible underlying mecha-
nisms. U251 cells were infected with adenoviral constructs 
encoding cDNA of PKG I (Ad‑PKG I) or PKG II (Ad‑PKG II) 
to increase the expression levels of PKG I or PKG II and then 
treated with 8‑Br‑cGMP and 8‑pCPT‑cGMP, respectively, to 
activate the enzyme. An MTT assay was used to detect the 
proliferation of the U251 cells. The migration of the U251 
cells was analyzed using a Transwell migration assay. Western 
blot analysis was used to detect the phosphorylation/activa-
tion of the fibroblast growth factor receptor (FGFR), MEK 
and ERK and the nuclear distribution of p-ERK. The results 
showed that bFGF treatment increased the proliferation 
and migration of U251 cells, accompanied by increased 
phosphorylation of FGFR, MEK and ERK. Furthermore, 
the nuclear distribution of p-ERK increased following bFGF 
treatment. Increasing the activity of PKG II through infection 
with Ad-PKG II and stimulation with 8-pCPT-cGMP signifi-
cantly attenuated the aforementioned effects of the bFGF 
treatment, while increased PKG I activity did not inhibit the 
effects of bFGF treatment. These data suggest that increased 

PKG II activity attenuates bFGF‑induced proliferation and 
migration by inhibiting the MAPK/ERK signaling pathway, 
whereas PKG I does not.

Introduction

Basic fibroblast growth factor (bFGF) is a multifunctional 
growth factor involved in tumor development, including cell 
differentiation, cell growth, migration, angiogenesis and 
tumor formation (1-4). Its biological effects have been reported 
to be exerted mainly through interaction with its high‑affinity 
receptor, fibroblast growth factor receptor 1 (FGFR1) (5-8). 
Narong and Leelawat (9) reported that bFGF enhances the 
migration of cholangiocarcinoma cells by the phosphorylation 
of MEK1/2. Results from previous studies have shown that 
bFGF signaling plays a key role in the development of cancer, 
including gastric, lung and endometrial cancer (10-12).

The cGMP-dependent protein kinases (PKGs) are 
serine/threonine kinases and include two types of PKGs, 
PKG I and PKG II (13,14). PKG I is widely distributed within 
the body and its expression levels are lower in various tumor 
tissues. PKG II is more tissue‑restricted and is characterized 
by reduced expression levels in many types of tumor cells (15). 
PKG I leads to decreased tumor growth and invasiveness in 
many types of cells, including cardiomyocytes, mesangial cells 
and neutrophils (16-19). PKG I has been identified to be a tumor 
suppressor (20). Previous studies suggest that PKG II has a role 
in the regulation of cell proliferation and apoptosis (21-24). 
Swartling et al (25) reported that PKG II inhibits the prolifera-
tion of human neuroglioma cells and that the inhibition was 
related to reductions in transcription factor Sox9 expression 
levels and Akt phosphorylation. We have prevously observed 
that the expression and activity of PKG II in human gastric 
cancer cells were significantly lower compared with those in 
normal cells (26). Additionally, another study conducted in our 
laboratory demonstrated an inhibitory effect of PKG II on the 
proliferation of gastric cancer cells (27).

Previous studies have demonstrated the inhibitory effect 
of PKG on cell proliferation and the stimulatory effect of 
bFGF on cell proliferation and migration. However, whether 
PKG is able to attenuate the bFGF-induced effects on U251 
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cells remains to be elucidated. The aim of this study was to 
determine the relationship between PKG and bFGF, and to 
investigate how PKG exerts its inhibitory effects.

Materials and methods

Cell line. The human glioma cell line U251 was provided by 
the Institute of Cell Biology (Shanghai, China).

Reagents. Antibodies against MEK and p-MEK (Ser217/221) 
were purchased from Cell Signaling Technology, Inc. (Danvers, 
MA, USA). Antibodies against ERK, p-ERK1/2 and actin 
were from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA, 
USA). Antibodies against p-ERK (Thr202/Tyr204), p-FGFR 
(Y154), FGFR and β-actin were from Bioworld Technology 
Co., Ltd. (St. Louis Park, MN, USA). Horseradish peroxidase 
(HRP)-conjugated secondary antibodies were from Jackson 
ImmunoResearch Laboratories, Inc. (West Grove, PA, USA). 
The cellular permeable cGMP analog 8-pCPT-cGMP and 
8-Br-cGMP were from Calbiochem (San Diego, CA, USA). 
Electrochemiluminescence (ECL) reagent was from Millipore 
(Billerica, MA, USA). Dulbecco's modified Eagle's medium 
(DMEM) and newborn calf serum (NBCS) were from Gibco 
(Grand Island, NY, USA).

MTT assay. U251 cells (0.5-1x103) were plated on 96-well 
plates in 150  µl medium. The cells were infected with 
Ad-Lacz, Ad-PKG  I or Ad-PKG  II for 24  h to establish 
Ad-Lacz+bFGF, Ad-PKG  I+bFGF and Ad-PKG  II+bFGF 
groups. In the Ad-PKG I+bFGF and Ad-PKG II+bFGF groups, 
250 µM 8-Br‑cGMP and 250 µM 8-pCPT-cGMP were added 
to activate PKG I and PKG II, respectively. Then, the cells 
were incubated with bFGF (100 ng/ml) for 12 h. The cultured 
cells were washed with phosphate‑buffered saline (PBS), 
treated with 20 µl MTT (0.5 mg/ml) and then incubated at 
37˚C for 1 h. The medium was removed and 100 µl dimeth-
ylsulfoxide (DMSO) was added to each well. The absorbance 
was determined at 570 nm using a microplate reader. All the 
experiments were performed in triplicate.

Cell migration assay. The migration of the U251 human glioma 
cells was investigated using a chamber with 8‑µm pore filters 
(Transwell, 24-well cell culture; Coster, Boston, MA, USA). 
U251 cells were infected with Ad-Lacz, Ad-PKG I or Ad-PKG II 
for 48 h to establish Ad-Lacz+bFGF, Ad-PKG I+bFGF and 
Ad-PKG  II+bFGF groups. The cells were serum starved 
overnight and, in the Ad-PKG I+bFGF and Ad-PKG II+bFGF 
groups, 250  µM 8-Br-cGMP and 250  µM 8-pCPT-cGMP 
were added to activate PKG I and PKG II, respectively. The 
cells were then incubated with bFGF (100 ng/ml) for 12 h at 
37˚C. Following incubation, the filters were fixed and stained 
with hematoxylin and the cells were counted in five random 
high‑power fields under a light microscope.

Nuclear protein preparation. According to the method 
described by Chen et al (28), cells growing on 100‑mm plates 
were harvested in HEM buffer (10 mM HEPES pH 7.5, 2 mM 
EDTA, 1 mM MgCl2) and homogenized with an ultrasonic 
homogenizer. The homogenate was centrifuged at 500 x g 
at 4˚C for 5 min to obtain the nuclei of the cells. Pre‑heated 

SDS‑PAGE loading buffer was added to the pellet and boiled 
for 5 min to obtain the nuclear proteins.

Western blot analysis. Sample proteins were separated on 
SDS-PAGE gels and blotted onto polyvinyl difluoride (PVDF) 
membranes. The PVDF membranes were blocked with 
3% (w/v) bovine serum albumin (BSA) in TBS-T for 1 h at 
room temperature. Incubation with the primary antibody was 
conducted at 4˚C overnight, and incubation with the secondary 
antibody was conducted at room temperature for 1 h, with three 
washes following each incubation. ECL reagents were used to 
show the positive bands on the membrane. The bands were 
detected using Typhoon 9400 (GE Healthcare, Piscataway, NJ, 
USA).

Statistical analysis. Values are expressed as the means ± SE 
(n=5; *P<0.05). The Student's t‑test was used for comparisons 
of two sample means. A P‑value of <0.05 (P<0.05) was consid-
ered to indicate a statistically significant difference.

Results

bFGF promotes the proliferation and migration of U251 
human glioma cells. bFGF has been observed to stimulate 
cancer cell proliferation (29). In the present study, an MTT 
assay was used to determine whether bFGF had any effect on 
the proliferation of U251 human glioma cells. The U251 cells 
were treated with bFGF at a concentration of 100 ng/ml for 

Figure 1. bFGF enhances the proliferation and migration of U251 human 
glioma cells. (A) An MTT assay was used to detect the proliferation of U251 
cells. Compared with the control, cell growth was markedly increased fol-
lowing treatment with 100 ng/ml bFGF for 48 h. A Transwell migration assay 
was used to measure the migration of U251 cells. (B and C) Representative 
figures of cell migration in control and bFGF-treated U251 cells. Compared 
with the control, cell migration was markedly increased following treatment 
with 100 ng/ml bFGF for 12 h. The means of five independent experi-
ments ± standard error are shown. *P<0.05. bFGF, basic fibroblast growth 
factor.
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48 h. The results showed that there was a significant increase 
in the proliferation of cells treated with bFGF (Fig.  1A). 
Recent findings have shown that bFGF stimulates cancer cell 
migration (30). In order to determine the effects of bFGF on 
the migration of U251 cells, the cells were treated with bFGF 

at a concentration of 100 ng/ml for 12 h and then examined 
using a cell migration assay. Compared with the control, the 
percentage of U251 cell migration was significantly increased 
when the cells were treated with 100 ng/ml of bFGF (P<0.0051) 
(Fig. 1B). This demonstrates that bFGF increases both the 
proliferation and migration of U251 human glioma cells.

PKG II, but not PKG I, prevents the bFGF-induced prolif-
eration of U251 human glioma cells. In the present study, we 
demonstrated that bFGF stimulates the proliferation of U251 
human glioma cells. Since our previous study demonstrated 
that PKG II inhibits the proliferation of gastric cancer cells, 
the aim of the current study was to investigate whether PKG II 
and PKG I are able to attenuate the bFGF-induced proliferation 
of U251 cells. Compared with U251 cells treated with bFGF 
at a concentration of 100 ng/ml alone, cells infected with 
Ad-PKG II and stimulated with 8-pCPT-cGMP prior to treat-
ment with bFGF, showed a reduction in proliferation, while 
there was no obvious change when the cells were infected with 
Ad-PKG I and stimulated with 8-Br-cGMP (Fig. 2). This indi-
cates that PKG II, but not PKG I, inhibits the bFGF‑induced 
proliferation of U251 cells.

PKG II, but not PKG I, prevents the bFGF-induced migra-
tion of U251 human glioma cells. In the present study, it was 
demonstrated that bFGF enhances the migration of U251 
human glioma cells. There has been no data demonstrating 

Figure 2. PKG II, but not PKG I, reverses bFGF-induced proliferation of 
U251 human glioma cells. An MTT assay was used to detect the prolif-
eration of U251 cells. U251 cells were infected with Ad-Lacz, Ad-PKG I 
or Ad-PKG II for 24 h to establish Ad-Lacz+bFGF, Ad-PKG I+bFGF and 
Ad-PKG II+bFGF groups. The cells were serum starved overnight and, in 
the Ad-PKG I+bFGF and Ad-PKG II+bFGF groups, 250 µM 8-Br-cGMP and 
250 µM 8-pCPT-cGMP were added to activate PKG I and PKG II, respec-
tively. The cells were then incubated with bFGF (100 ng/ml) for 48 h. The 
means of five independent experiments ± standard error are shown. *P<0.05. 
PKG, cGMP-dependent protein kinase; bFGF, basic fibroblast growth factor.

Figure 4. PKG II, but not PKG I, attenuated the bFGF-induced activation 
of the MAPK/ERK pathway in U251 human glioma cells. U251 cells 
were infected with Ad-Lacz, Ad-PKG I or Ad-PKG II for 48 h to estab-
lish Ad-Lacz+bFGF, Ad-PKG  I+bFGF and Ad-PKG  II+bFGF groups. 
The cells were serum starved overnight and, in the Ad-PKG I+bFGF and 
Ad-PKG II+bFGF groups, 250 µM 8-Br-cGMP and 250 µM 8-pCPT-cGMP 
were added to activate PKG I and PKG II, respectively. Then, the cells were 
incubated with bFGF (100 ng/ml) for 15 min. Whole cells were harvested 
and lysed as described in Materials and methods and cell lysates were sub-
jected to western blot analysis. Results showed that infection with Ad-PKG I 
and Ad-PKG II caused a marked increase of PKG I and PKG II expression 
levels, respectively. bFGF treatment induced a significant increase of FGFR, 
MEK and ERK phosphorylation. Infection with Ad-PKG II and stimulation 
with 8-pCPT-cGMP, but not Ad-PKG I+8-Br-cGMP treatment, efficiently 
inhibited the bFGF‑induced phosphorylation of FGFR, MEK and ERK. The 
means of five independent experiments ± standard error are shown. PKG, 
cGMP-dependent protein kinase; bFGF, basic fibroblast growth factor; 
FGFR, fibroblast growth factor receptor.

Figure 3. PKG II, but not PKG I, prevents bFGF-induced migration of U251 
human glioma cells. (A and B) A Transwell migration assay was used to 
investigate the migration of U251  cells. U251  cells were infected with 
Ad-Lacz, Ad-PKG I or Ad-PKG II for 48 h to establish Ad-Lacz+bFGF, 
Ad-PKG  I+bFGF and Ad-PKG  II+bFGF groups. The cells were serum 
starved overnight and, in the Ad-PKG I+bFGF and Ad-PKG II+bFGF groups, 
250 µM 8-Br-cGMP and 250 µM 8-pCPT-cGMP were added to activate 
PKG I and PKG II, respectively. Then, the cells were incubated with bFGF 
(100 ng/ml) for 12 h. The means of five independent experiments ± standard 
error are shown. *P<0.05. PKG, cGMP-dependent protein kinase; bFGF, basic 
fibroblast growth factor.
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the effect of PKG on the migration of cancer cells to date. In 
the present study, we investigated whether PKG was able to 
prevent the bFGF‑induced migration of U251 cells. Compared 
with U251 cells treated with bFGF at a concentration of 
100 ng/ml alone, cells infected with Ad-PKG II and stimulated 
with 8-pCPT‑cGMP prior to treatment with bFGF, showed a 
decreased migratory activity, while there was no clear change 
of the cells infected with Ad-PKG  I and stimulated with 
8-Br‑cGMP (Fig. 3). This indicates that PKG II, but not PKG I, 
inhibits the bFGF-induced migration of U251 cells.

PKG II, but not PKG I, prevents the bFGF‑induced activation 
of the MAPK/ERK signaling pathway in U251 human glioma 
cells. FGF receptors activate several intracellular signaling 
pathways, including the MAP kinase pathway  (31-33). 
Western blot analysis was used to detect FGFR phosphoryla-
tion. MEK1 and MEK2 are members of the dual specificity 
protein kinase family, which act as MAPK or ERK kinases. 
Phosphorylation at both Thr202/Tyr204 residues of ERK1 
and Thr185/Tyr187 residues of ERK2 is required for full 
enzymatic activation. Western blot analysis was used to detect 
MEK and ERK phosphorylation. The results indicated that 
treatment with bFGF alone at a concentration of 100 ng/ml, 
increased the phosphorylation levels of FGFR, MEK and 
ERK. The increased phosphorylation was inhibited by 
pre‑infecting the cells with Ad-PKG II and stimulating the 
enzyme with 8-pCPT-cGMP, while no significant inhibitory 
effect was achieved by pre‑infecting the cells with Ad-PKG I 
and stimulating the enzyme with 8-Br-cGMP. These results 
demonstrate that increased PKG  II activity prevents the 
bFGF‑induced phosphorylation of FGFR, MEK and ERK in 
U251 human glioma cells but increased PKG I activity does 
not (Fig. 4). Furthermore, we investigated the effect of PKG 
on the bFGF-induced nuclear translocation of p-ERK. The 
results showed that bFGF stimulated the nuclear distribution 
of p-ERK, and that the stimulatory effect was inhibited by 
pre-infecting the cells with Ad-PKG II and stimulating the 

enzyme with 8-pCPT-cGMP, while pre-infecting the cells with 
Ad-PKG I and stimulating the enzyme with 8-Br-cGMP had 
no inhibitory effect (Fig. 5). The results indicate that increased 
PKG II activity attenuated the bFGF-triggered p-ERK nuclear 
distribution whereas increased PKG I activity did not.

Discussion

The growth of solid tumors depends on the occurrence of 
neovascularization. bFGF is an important angiogenic factor, 
widely distributed in neoplastic tissues (34). Numerous angio-
genic peptides have been identified and their effects on tumor 
vascularity have also been identified (35-38). FGF receptors 
activate several intracellular signaling pathways, including 
MAP kinase pathways. MAP kinase pathways have been 
identified as the ERK/MAP kinase pathway, the JNK/SAPK 
pathway and the p38 pathway (39,40). These three pathways 
may be activated by different growth factors and mediate 
several cellular events, including cell differentiation, stress 
responses and growth. However, the activation of each type of 
MAP kinase mainly depends on the type of the stimulus and 
the cells.

PKG plays important regulatory roles in diverse processes 
in many cell types (15,41,42). Its expression is differently regu-
lated in tumors and in normal tissue (14,43,44). In mammalian 
cells, two different genes encode type I and II PKGs (45). 
PKG I includes two isoforms, PKG Iα and PKG Iβ, which 
differ in the first ~100 amino acids (46). PKG I has been recog-
nized as a tumor suppressor. PKG II is membrane‑anchored 
and is present at low levels in several types of human cancer 
cells (47). Previous data have indicated that PKG II is related 
to cell proliferation and apoptosis (21,22). We have also found 
that PKG II attenuates the EGF-induced proliferation and 
apoptosis of gastric cancer cells (48,49). There has been no 
data showing the relationship between PKG and migration. In 
the present study, the exact stimulative effects of bFGF on the 
proliferation and migration of U251 human glioma cells was 
confirmed. Consequently, we performed further experiments 
to investigate whether PKG I or PKG II exerted inhibitory 
effects on the bFGF-induced proliferation and migration of 
human glioma cells, and the possible underlying mechanism.

In the present study, the PKG I-selective cGMP analog 
8-Br‑cGMP and the PKG  II-selective cGMP analog 
8-pCPT‑cGMP were applied to increase PKG I or PKG II 
activity when cells were infected with Ad-PKG I or Ad-PKG II, 
respectively. After confirming the effects of bFGF on the 
proliferation and migration of U251 human glioma cells, we 
analyzed the effects of PKG I and PKG II on bFGF‑stimulated 
cell proliferation and migration. Compared with treatment 
with bFGF alone, increased PKG II activity clearly attenuated 
bFGF‑induced proliferation and migration, while increased 
PKG I activity had no effect. Then, we investigated the 
inhibitory effects of PKG I and PKG II on the bFGF‑induced 
phosphorylation of FGFR, MEK and ERK. It was found that 
increased PKG II, but not PKG I, activity was able to attenuate 
bFGF-induced phosphorylation. Furthermore, the inhibitory 
effects of PKG I and PKG II on the bFGF-induced nuclear 
distribution of p-ERK were detected. The results obtained 
showed that increased PKG II, but not PKG I, activity was able 
to attenuate bFGF-induced p-ERK nuclear distribution.

Figure 5. PKG II, but not PKG I, reverses the bFGF‑triggered nuclear dis-
tribution of p‑ERK in U251 human glioma cells. U251 cells were infected 
with Ad-Lacz, Ad-PKG I or Ad-PKG II for 48 h to establish Ad-Lacz+bFGF, 
Ad-PKG  I+bFGF and Ad-PKG  II+bFGF groups. The cells were serum 
starved overnight and, in the Ad-PKG I+bFGF and Ad-PKG II+bFGF groups, 
250 µM 8-Br-cGMP and 250 µM 8-pCPT-cGMP were added to activate 
PKG I and PKG II, respectively. The cells were then incubated with bFGF 
(100 ng/ml) for 30 min. Nuclear cell lysate was prepared as described in 
Materials and methods and subjected to western blot analysis. The results 
indicated that bFGF treatment induced a significant increase in the expres-
sion of p-ERK in the nucleus. Infection with Ad-PKG II and stimulation 
with 8-pCPT-cGMP, but not Ad-PKG I+8-Br‑cGMP treatment, efficiently 
inhibited the bFGF‑induced nuclear distribution of p-ERK. The means of five 
independent experiments ± standard error are shown. PKG, cGMP‑dependent 
protein kinase; bFGF, basic fibroblast growth factor.
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In this study it was shown that increased PKG II, but not 
PKG I, activity inhibits bFGF-stimulated cell proliferation and 
migration, bFGF-induced FGFR, MEK and ERK phosphoryla-
tion and bFGF-induced p-ERK nuclear distribution in U251 
human glioma cells. In conclusion, the inhibitory effects of 
PKG II on bFGF-induced cell proliferation and migration were 
mainly exerted by blocking the MAPK/ERK signaling pathway.
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