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Abstract. The process of differentiation from monocytes to 
dendritic cells is critical in immune modulation. Monocyte 
apoptosis is a key regulator in balancing the immune 
response. Galectin‑1 has been reported to induce tolerogenic 
dendritic cells by the autocrine interleukin (IL)‑10 in mono-
cytes. However, IL‑10 has been found to induce apoptosis in 
IL‑4/granulocyte macrophage colony‑stimulating factor (CSF) 
stimulating and non‑stimulating monocytes, whereas galectin‑1 
has not. After analyzing the factors secreted by galectin-1-acti-
vated CD14 monocytes isolated from the peripheral blood, 
the present study revealed that galectin‑1 upregulates IL‑10 
and granulocyte (G)-CSF expression. Furthermore, G‑CSF 
inhibited IL‑10‑induced apoptosis, implying that galectin‑1 
may enhance the immune‑modulating functions of G‑CSF 
by inducing tolerogenic dendritic cells and maintaining their 
survival. Therefore, G‑CSF may be further applied in immune 
therapy, particularly in the IL‑10‑presenting microenviron-
ment.

Introduction

Dendritic cells (DCs) are specific antigen‑presenting cells 
critical for the induction of adaptive immunity and tolerance 
by interacting with T cells (1). DC differentiation from mono-
cytes is a key step in infections and numerous other conditions. 
DC turnover is similarly important for maintaining the steady 
state of the immune system. Circulating monocytes usually 
undergo spontaneous apoptosis within days  (2); however, 

the life span of monocytes is extended to weeks following 
differentiation into DCs, induced by treatment with inter-
leukin  (IL)‑4/granulocyte macrophage colony‑stimulating 
factor (GM‑CSF).

Previous studies have observed that T-helper (Th)1 cyto-
kines, including IL‑2 and IL‑12, inhibit myeloid cell apoptosis, 
whereas Th2 cytokines, such as IL‑4 and IL‑10, enhance apop-
tosis in these cells (3,4). IL‑10‑induced myeloid cell apoptosis 
is mediated through the caspase‑dependent signaling pathway, 
which is blocked by caspase‑3 inhibitors and pan‑caspase 
inhibitors (2). Galectin‑1 (Gal‑1) exhibits the ability to induce 
IL‑10 expression in T cells (5,6) and in DCs (7,8), but does not 
induce apoptosis in monocytes (9,10).

Granulocyte colony‑stimulating factor (G‑CSF, also 
termed CSF3) was identified in an attempt to define the normal 
regulators present in cell supernatants that induced terminal 
differentiation of the WEHI‑3B D+ murine myeloid leukemia 
cell line  (11). Recently, Romero-Weaver et al reported the 
ability of G‑CSF to promote the proliferation of bone marrow 
stem cells and inhibit granulocyte apoptosis (12). G‑CSF also 
improved the recovery from spinal cord injury in mice (13) and 
improved memory and neuro‑behavior in an amyloid‑β‑induced 
experimental model of Alzheimer's disease (14). However, the 
direct effects of G-CSF on differentiating monocytes have 
not been discussed. In present study, the role of G-CSF in 
galectin‑1-treated monocytes was examined, particularly its 
role in preventing cell apoptosis.

Materials and methods

Materials. Gal‑1 and G‑CSF were purchased from 
ProsPec‑Tany TechnoGene, Ltd. (Ness‑Ziona, Israel). Human 
recombinant IL‑10 was purchased from R&D Systems 
(Minneapolis, MN, USA). Human recombinant GM‑CSF and 
IL‑4 were purchased from Millipore Corp. (Billerica, MA, 
USA).

Isolation and culture of human monocytes. Human CD14+ 

monocytes were isolated from the peripheral blood mononuclear 
cells (PBMCs) of healthy donors without any known cancers or 
immunological disease. Briefly, PBMCs were collected from 
interphase subsequent to Ficoll paque plus separation (GE 
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Healthcare Bio‑Sciences, Little Chalfont, UK) and washed 
twice in phosphate‑buffered saline (PBS). CD14+ monocytes 
were isolated using the MACS® system (MACS MicroBeads; 
Miltenyi Biotec Ltd, Bergisch Gladbach, Germany) following 
the manufacturer's instructions and cultured in RPMI‑1640 
containing 10% fetal bovine serum (Invitrogen Life Sciences, 
Carlsbad, CA, USA) for five days in the presence of 20 ng/ml 
IL-4/GM-CSF with or without 1 µg/ml Gal-1, 10 ng/ml G-CSF 
and IL-10 as indicated. Monocyte viability was determined by 
trypan blue exclusion staining.

The Institutional Review Board of Kaohsiung Medical 
University Hospital (Kaohsiung, Taiwan) approved the study. 
All patients provided informed consent in accordance with the 
Declaration of Helsinki.

Flow cytometry and detection of Annexin V staining and 
CD14 expression. Two‑color flow cytometry was performed 
by FACSarray™ (BD Biosciences, Franklin Lakes, NJ, USA) 
using the Annexin  V‑fluorescein isothiocyanate (FITC) 
Apoptosis Detection kit I (BD Biosciences) according to the 
manufacturer's instructions. Briefly, the treated cells were 
centrifuged at 200 x g for 5 min and washed twice with cold 
PBS. The cells were resuspended in 100 µl 1X binding buffer, 
and 5 µl Annexin V‑FITC and 5 µl propidium iodide (PI) 
were added. The cells were gently vortexed and incubated 
for 15 min at room temperature in the dark. Subsequently, 
the cells were centrifuged at 200 x g for 5 min, washed twice 
with 1X binding buffer and resuspended in 100 µl 1X binding 

buffer. The samples were analyzed using a FACSarray™ flow 
cytometer.

Measurement of secreted factors. The cultured supernatants 
from monocytes were collected following centrifugation. 
The samples were analyzed for IL‑10 and G‑CSF by multiple 
cytokine analyses using the cytometric bead array (CBA; BD 
Biosciences). The CBA technique is based on two bead popula-
tions with distinct fluorescence intensities that are coated with 
capture antibodies specific for each cytokine. The fluorescent 
dye had a maximal emission wavelength of ~650 nm (FL‑3), 
which was detectable by flow cytometry. The cytokine capture 
beads were mixed with the phycoerythrin‑conjugated detec-
tion antibodies and then incubated with recombinant standards 
or test samples to form sandwich complexes. Following the 
acquisition of sample data on the FACSarray™ flow cytom-
eter, the sample results were analyzed using  FCAP Array™ 
software version 3.0 (BD Biosciences). A standard calibration 
curve was established for each cytokine; the maximum and 
minimum limits of detection for each cytokine were 1.0 and 
5,000 pg/ml, respectively.

Statistical analysis. Data are expressed as the mean ± stan-
dard deviation. Statistical comparisons of the results were 
performed by analysis of variance and two‑sided Student's 
t‑test using Excel  2010 (Microsoft Corp., Redmond, WA, 
USA). P<0.05 was considered to indicate a statistically signifi-
cant difference between the means of the two groups.

  A   B
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Figure 1. IL‑10 induces apoptosis in IL‑4/GM‑CSF‑stimulated monocytes. (A) Different concentrations of IL‑10 (2.5, 10 and 40 ng/ml) were added to the 
culture media and cell viability was determined by trypan blue exclusion assay at various time-points. (B and C) Stimulated monocytes from different treat-
ments were placed into a 96‑well plate, stained with fluorescein isothiocyanate‑conjugated Annexin V and propidium iodide and analyzed by flow cytometry. 
The results of single experiments are shown and all the results are representative of at least three independent experiments.. GM‑CSF, granulocyte macrophage 
colony‑stimulating factor; IL, interleukin.
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Results

IL‑10 induces apoptosis in monocytes. Monocytes isolated 
from PBMCs of healthy donors usually died after several 
days due to a constitutively active cell death program (15). 
This spontaneous cell death was reduced by 20% following 
stimulation with IL‑4 and GM‑CSF for five days (Fig. 1A). The 
viability of the stimulated monocytes, determined by trypan 
blue exclusion assay, was reduced when IL‑10 was added and 
the proportion of trypan blue‑ stained cells increased following 
treatment with higher IL‑10 concentrations (Fig. 1A). Similarly, 
Annexin V‑PI staining revealed that the proportion of apop-
totic cells was elevated with increasing IL‑10 concentration 
and increased culture duration (Fig. 1B and C). The apoptosis 
induced by recombinant human IL‑10 was significantly 
increased at concentrations >2.5 ng/ml.

Gal‑1 protects monocytes from IL‑10‑induced apop‑
tosis. The percentage of apoptotic cells was determined 
by Annexin  V‑propidium iodide sta in ing of the 
IL‑4/GM‑CSF‑stimulating monocyte culture media with and 
without 1 µg/ml Gal‑1 and/or 10 ng/ml IL‑10. Stimulated 
monocyte apoptosis in the IL‑10‑only group continuously 
increased over five days. The Gal‑1‑only group exhibited no 
increase in apoptosis after three days (Fig. 2A). Furthermore, 
IL‑10+Gal‑1-stimulated monocyte apoptosis was not increased 
after three days (Fig.  2A). The same phenomenon was 
observed in monocytes isolated from five donors, although the 
percentage of apoptotic cells varied (Fig. 2B).

Gal‑1 induces IL‑10 and G‑CSF in stimulated monocytes. 
The supernatants of the Gal‑1 only group were collected after 
five days of incubation and analyzed by the CBA system. The 

Figure 2. Gal‑1 inhibits IL‑10‑induced apoptosis in stimulated monocytes. (A) The percentage of apoptotic cells was determined by Annexin V‑propidium 
iodide staining at each time-point. (B) The percentage of monocyte apoptosis following different treatments on day five was determined in five healthy 
donors. Each value signifies the mean ± standard deviation of five independent experiments. *P<0.05 vs. control; **P<0.05 vs. IL-10 group, by Kruskal‑Wallis 
non‑parametric analysis of variance. Gal‑1, galectin‑1; IL, interleukin.

  A   B

Figure 3. Galectin‑1 induces IL‑10 and G‑CSF in stimulated monocytes. (A‑C) Cytokine concentrations as determined by cytometry bead array. All results 
are representative of at least three independent experiments. G‑CSF, granulocyte colony‑stimulating factor; IL, interleukin.
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concentrations of >10 cytokines (i.e. IL‑1, -4, ‑6, ‑8, ‑10, ‑11, 
‑12, ‑17 and ‑21, interferons (IFNs), the tumor necrosis factors 
(TNFs), basic fibroblast growth factor, vascular endothelial 
growth factor and G‑CSF) were determined, with GM‑CSF 
serving as an internal control. Gal‑1 enhanced the expression 
levels of IL‑6, IL‑10 and G‑CSF, but not those of the other 
cytokines (Fig. 3A‑C).

G‑CSF inhibits IL‑10‑induced apoptosis in monocytes. When 
IL‑10 (10 ng/ml) was added to the IL‑4/GM‑CSF-stimulated 
monocyte culture media with and without Gal‑1 (1 µg/ml) and 
G‑CSF (10 ng/ml), analysis of stimulated monocyte apoptosis 
revealed that recombinant human G‑CSF or Gal-1 significantly 
inhibited IL‑10‑induced apoptosis (P<0.05 as compared with 
IL-10-only treated cells; Fig. 4A and B).

Discussion

The fate of monocytes is regulated by different signaling path-
ways, including those of NF‑κB, Fas‑Fas ligand (FasL) and the 
B-cell lymphoma 2 (Bcl-2) family. A previous study reported 
that spontaneous monocyte apoptosis was inhibited by treatment 
with inflammatory mediators, including TNF, lipopolysaccha-
ride (LPS), CD40 ligand (CD154), growth factors and cytokines, 
including GM‑CSF and IFN‑γ (16). Alone, IL‑4 does not inhibit 
spontaneous apoptosis, and may inhibit the anti‑apoptotic effects 
of IL‑1 and LPS (3,17). However, co‑treatment with GM‑CSF 
and IL‑4, according to the monocyte‑derived DC protocol, 
inhibits the spontaneous apoptosis of monocytes  (17). This 
implies that the signaling pathway involved in the anti‑apoptotic 
effect mediated by GM‑CSF may be different from the signaling 
pathway induced by IL‑1 and LPS.

Receptors of pro‑inflammatory mediators, including 
TNF receptor, IL‑1R, Toll‑like receptor 4 and CD14, activate 
the NF‑κB signaling pathway and upregulate anti‑apoptotic 
genes (18). Conversely, the GM‑CSF receptor activates the 
Janus kinase (JAK)/signal transducer and activator of tran-
scription (STAT)5 signaling pathway and upregulates Bcl‑2 
in neural progenitor cells and mouse hematopoietic precur-
sors (19,20).

Studies regarding IL‑4 and IL‑6 in monocytes support 
the hypothesis that IL‑4 inhibits IL‑6 production by 
reducing nuclear NF‑κB levels (21,22). However, the inter-
action between the IL‑4 signaling pathway and STAT5 in 
monocytes has not been reported. Notably, in the present 
study, apoptosis enhanced by another Th2 cytokine, IL‑10, 
was not inhibited by the presence of GM‑CSF, suggesting a 
difference between IL‑10‑induced apoptosis and apoptosis 
enhanced by IL‑4. Hashimoto et  al  (23) obtained similar 
results and further demonstrated that IL‑10 inhibited the 
phosphorylation of STAT5 induced by GM‑CSF. In another 
study, Schmidt et al (24) found that CD95 ligand‑neutralizing 
antibody significantly inhibited IL‑10‑induced apoptosis. In 
conclusion, IL‑10 may induce apoptosis by inhibiting STAT5 
and by activating the Fas/FasL signaling pathway.

Galectins are a family of 15  β‑galactoside‑binding 
proteins. Gal‑1 is a 14.5  kDa protein and was the first 
galectin family member to be described. Dimeric Gal‑1 
binds to glycoproteins and activates signaling pathways, 
including those of CD4, CD7, CD43 and CD45  (25‑28). 
Numerous studies have demonstrated that Gal‑1 induces 
apoptosis in T cells (25,28‑32) and macrophages (33), which 
may be involved in the regulation of immune responses. 
The signaling pathway involved in Gal‑1‑mediated T-cell 

Figure 4. G‑CSF inhibits IL‑10‑induced apoptosis in stimulated monocytes. (A‑B) The percentage of apoptotic cells on day five was determined by 
Annexin V‑PI staining and repeated in three healthy donors. *P<0.05 vs. IL‑10‑only group, as detemined by one‑way analysis of variance. G‑CSF, granulocyte 
colony‑stimulating factor; Gal-1, galectin‑1; IL, interleukin; FITC, fluorescein isothiocyanate; PI, propidium iodide.
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death requires clarification, as data remain inconclusive due 
to variations in Gal‑1 interacting proteins and concentra-
tions (34).

A study revealed that Gal‑1 regulates the T-cell immune 
response through upregulating IL‑10 expression; Gal‑1 did 
not induce apoptosis in myeloid lineage and Th cells, but 
did increase the regulatory T-cell population (35). In another 
model, recombinant Gal‑1 enhanced IL‑10 expression levels 
up to seven‑fold, but the apoptosis induced by high dosages 
of IL‑10 was not observed, implying that other signaling 
pathways activated by Gal‑1 inhibit the pro‑apoptotic effects 
of IL‑10  (36). In the present study, Gal‑1 enhanced IL‑6 
and G‑CSF expression levels up to twelve‑ and nine‑fold, 
respectively, but not the expression levels of pro‑inflamma-
tory cytokines (i.e. TNF, IFN and IL‑12; data not shown). 
Mangan and Wahl (37) reported that IL‑6 exerted no effect 
on non‑stimulating apoptosis; this was also observed in later 
studies (5,6). The present study demonstrated that IL‑6 did not 
inhibit IL‑10‑induced apoptosis in IL‑4/GM‑CSF‑stimulated 
monocytes. However, another hematopoietic growth factor 
induced by Gal‑1, G‑CSF, was found to reduce IL‑10‑induced 
apoptosis.

G‑CSF is the predominant regulator of neutrophil 
production under basal conditions of hematopoiesis. 
G‑CSF maintains neutrophil survival  (38,39) and regu-
lates the survival and mobilization of cardiomyocytes and 
neurons (40‑42). The G‑CSF receptor belongs to the cytokine 
receptor type  I superfamily, which engages the canonical 
JAK/STAT, Ras/Raf/mitogen‑activated protein kinase and 
protein kinase B signaling pathways, all of which are crucial 
for the anti‑apoptotic function of G‑CSF (43,44).

The present study demonstrated that G‑CSF not only 
exerted an anti‑apoptotic effect on monocytes, but also inhib-
ited IL‑10‑induced apoptosis without affecting the tolerogenic 
function of IL‑10 (data not shown). Examining the network 
of cytokines that regulate the fate of monocytes, this implies 
that Gal‑1 reinforces its immune modulating effects by simul-
taneously upregulating IL‑10 and G‑CSF. Therefore, G‑CSF 
may be further applied in immune therapy, particularly in the 
IL‑10‑presenting microenvironment.
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