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Abstract. The repair strategy for the healing of skin wounds 
in fetuses differs from that in adults. Proliferation and 
migration of dermal fibroblasts are the main mechanisms 
associated with skin wound healing, as well as the complex 
interactions between epidermal keratinocytes (KCs) and 
dermal fibroblasts. In order to investigate the effects of fetal 
skin epidermal KCs on fetal and adult human dermal fibro-
blasts, KCs and fibroblasts were isolated from the skin tissue 
of mid‑gestational human fetuses and adults, and co‑cultured 
using a Transwell® system. When fetal mid‑gestational KCs 
were co‑cultured with either fetal or adult dermal fibroblasts, 
the proliferative and migratory potential of the fibroblasts 
was significantly enhanced. Furthermore, these phenotypic 
changes were concomitant with the upregulation of numerous 
proteins including mouse double minute 2 homolog, cyclin B1, 
phospho‑cyclin‑dependent kinase 1, phospho‑extracellular 
signal‑regulated kinase, and phospho‑AKT, along with C‑X‑C 
chemokine receptor 4, phospho‑p38 mitogen activated protein 
kinase, matrix metalloproteinase  (MMP)‑2 and MMP‑9. 

Notably, no significant differences were observed between 
fetal and adult dermal fibroblasts in their responses to fetal 
mid‑gestational epidermal KCs, indicating that the cells from 
these two developmental stages respond in a similar manner to 
co‑culture with KCs.

Introduction

It has been well‑documented that fetuses and adults have 
different strategies for cutaneous wound repair. In adults, 
wound healing is characterized by intense inflammation and 
scar formation; whereas, in fetuses in the first two trimesters (at 
early‑ and mid‑gestation), there is a diminished inflammatory 
response, decreased angiogenesis, and the absence of contrac-
tion or scar formation during the response to tissue injury (1‑4). 
Previous research has concentrated on understanding the 
mechanisms underlying these different repair strategies, with 
the aim of providing clinical benefits for adult patients. Wound 
healing involves the recruitment of numerous cell types to the 
wound area in a temporally‑ and spatially‑defined manner (5). 
Re‑epithelialization largely coincides with the recruitment of 
dermal fibroblasts, and it is likely that the interaction between 
epidermal keratinocytes (KCs) and dermal fibroblasts is 
important during the rebuilding of tissue integrity (6). Healing 
of extensive wounds often results in excessive scarring, 
disgorging, and functional impairment of the affected area (7). 
This is particularly significant in the healing of large burns, 
and early re‑epithelialization or coverage of the wounded area 
with autologous skin grafts limits the excessive deposition of 
connective tissue. The co‑culture of KCs with fibroblasts has 
previously been demonstrated to stimulate paracrine loops 
of cytokine activation between the two cell types, which is a 
phenomenon that may also occur in vivo to regulate cellular 
function (8).

Fetal KCs are important skin cells, and numerous studies 
have indicated that they may be involved in fetal skin wound 
healing (9‑11). However, the underlying mechanisms remain 
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to be elucidated. Therefore, the aim of the present study was 
to investigate the effects of human fetal KCs, specifically the 
role of their secreted growth factors, on fetal and adult human 
dermal fibroblasts, in association with crucial parameters of 
tissue repair. The effects of human fetal epidermal KCs on 
the initial proliferative and migratory responses of dermal 
fibroblasts to injury were determined, as well as the signaling 
pathways involved.

Materials and methods

Cell culture. Fetal KCs and fibroblasts were obtained from 
full‑thickness fetal skin specimens of miscarried fetuses 
(gestational age 20‑23 weeks; three males and two females). 
Adult fibroblasts were isolated from the dermis of adult 
donors (aged 20‑30 years; three males and two females), 
undergoing surgical debridement. The experiments of the 
present study were conducted according to the Ethical Rules 
for Human Experimentation, as stated in the 1975 Declaration 
of Helsinki, and were approved by the Ethics Committee 
of the Shengjing Hospital of China Medical University 
(Shengyang, China). Primary cultures of KCs and fibroblasts 
were prepared as described by previous methods  (12‑14). 
Briefly, the full‑thickness skin samples were incubated at 4˚C 
overnight in Dispase II (Roche Diagnostics, Indianapolis, IN, 
USA), and the dermal components were isolated by collage-
nase (1 mg/ml; Sigma‑Aldrich, St Louis, MO, USA) digestion. 
The dermal components were then minced into 2 mm pieces 
using scissors, and the isolated fibroblasts were cultured in 
Dulbecco's modified Eagle's medium (DMEM; Invitrogen 
Life Technologies, Carlsbad, CA, USA) supplemented with 
10% fetal bovine serum (FBS; Invitrogen Life Technologies). 
Following 0.25% trypsin digestion, the cultures of the released 
primary KCs from the fetal epidermis were initiated using 
tissue culture flasks coated with collagen (BD Biosciences, 
Franklin Lakes, NJ, USA) in Epilife™ growth medium (Life 
Technologies Ltd., Paisley, UK) supplemented with 1% human 
keratinocyte growth supplement (Life Technologies). At 
passage three, the KCs were co‑cultured with fetal and adult 
fibroblasts, and used for further analysis and characterization.

Co‑culture of human fetal and adult dermal fibroblasts with 
fetal epidermal KCs. The adult and fetal fibroblasts were 
co‑cultured with fetal KCs in Transwell® chambers with 3 µm 
pore filters (Costar®; Corning Incorporated, Corning, NY, 
USA) for 4 days. The fibroblasts were also cultured alone in 
DMEM supplemented with 10% FBS, this culture served as 
the control.

Cell proliferation assay. At days 2, 3 and 4 after the initiation 
of the co‑culture, the proliferation of the dermal fibroblasts was 
measured using a tetrazolium reagent WST‑1 Cell Counting 
kit (Beyotime Institute of Biotechnology, Haimen, China). The 
fibroblasts were incubated with WST‑1 for 4 h at 37˚C. The 
staining intensity in the medium was determined by measuring 
the absorbance at a wavelength of 450 nm, using a Safire2 
microplate reader (Tecan AG, Männedorf, Switzerland), and the 
data were expressed as ratios of the control value. The data were 
compiled from three independent experiments, each performed 
in duplicate.

Immunofluorescence assay. Immunostaining of the KCs and 
fibroblasts was performed according to a standard protocol 
as previously described (12). The primary antibodies used 
for immunostaining were mouse monoclonal cytokeratin 14 
(CK14; ab9220; 1:200) and mouse monoclonal vimentin (VIM; 
ab8978; 1:300) (Abcam, Cambridge, MA, USA). All of the 
samples were imaged using an Olympus FK‑40 fluorescence 
microscope (Olympus Corporation, Tokyo, Japan).

Cell cycle analysis. A cell cycle analysis was conducted 
according to standard protocols (15). Briefly, the cells were 
trypsinized with 0.05% trypsin‑EDTA (Sigma‑Aldrich) and 
fixed with 70% ethanol (Sigma‑Aldrich). The cells were then 
incubated with RNase‑A (50 µg/ml; Sigma‑Aldrich) and prop-
idium iodide (25 µg/ml; Sigma‑Aldrich) in phosphate‑buffered 
saline  (PBS) containing 0.1% Triton X‑100 at 106/ml 
(Sigma‑Aldrich), for 25 min in the dark. Analysis of the cells 
in the different phases of the cell cycle was performed using 
flow cytometry. A minimum of 10,000 cell events per assay 
were acquired using a FACSCalibur™ flow cytometer (BD 
Biosciences).

Transwell migration assay. Fibroblast migration was 
measured using a Transwell® migration assay (8 µm pore size; 
Corning Costar), as previously described by Liu et al (14). 
The cells were randomly selected from eight regions per well 
and counted.

Western blotting. Fibroblasts were washed three times with 
ice‑cold PBS prior to extraction of protein. Western blot 
analysis was performed according to standard protocols, 
as previously described (14). The primary antibodies used 
in the present study were: Rabbit polyclonal mouse double 
minute  2  homolog (MDM2; 1:1,000; ab58530; Abcam), 
rabbit polyclonal cyclin B1 (1:1,000; ab7957; Abcam), rabbit 
polyclonal AKT (1:1,000; #9272; Cell Signaling Technology, 
Danvers, MA, USA), mouse polyclonal extracellular 
signal‑regulated kinase (ERK; 1:1,000; #9102; Cell Signaling 
Technology), mouse monoclonal matrix metalloproteinase 
(MMP)‑2 (1:1,000; #4022; Cell Signaling Technology), 
rabbit polyclonal C‑X‑C chemokine receptor  4 (CXCR4; 
ab2074; 1:1,000; Abcam), mouse polyclonal phospho‑AKT 
(1:1,000; sc‑42940; Santa Cruz Biotechnology Inc., Dallas, 
TX, USA), rabbit polyclonal MMP‑9 (1:1,000; ab38898; 
Abcam), rabbit polyclonal phospho‑cyclin dependent kinase 
(CDK)1 (1:1,000; #9111s; Cell Signaling Technology), 
rabbit polyclonal CDK1 (1:1,000; sc‑53219; Santa Cruz 
Biotechnology), rabbit polyclonal phospho‑ERK (1:1,000; 
#9106s; Cell Signaling Technology), mouse polyclonal 
phospho‑p38 mitogen‑activated protein kinase (MAPK; 
1:1,000; sc‑7973; Santa Cruz Biotechnology Inc.), and rabbit 
polyclonal GAPDH (1:2,000; ab37168; Abcam).

Statistical analysis. Statistical analyses were performed using 
SPSS version 19.0 software (SPSS Inc., Chicago, IL, USA). The 
data represent the mean ± standard deviation. Comparisons 
between the groups were analyzed using Student's t test, and 
P<0.05 was considered to indicate a statistically significant 
difference. The data presented in the figures are representative 
of three independent experiments
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Results

Identif ication of fetal epidermal KCs. The primary 
fetal KCs formed radiation‑shaped colonies at 6‑7  days 
post‑culture (Fig. 1A). The majority of the cells acquired a 
typical “paving stone” shape and reached near‑confluence at 
14 days post‑culture (Fig. 1B). In addition, specific green fluo-
rescence was observed in the cells, indicating the expression of 
the typical KC surface marker CK14 (Fig. 1C).

Identification of fetal and adult dermal fibroblasts. At 
3‑7 days after the dermal tissue parts were plated, numerous 
triangular and spindle cells were shown to dissociate from the 
tissues (Fig. 1D). By day 10, the majority of the cells had acquired 
a long spindle shape and had reached near‑confluence (Fig. 1E). 
At passage three, the fibroblasts exhibited a spindle shape 
and, upon reaching confluence, formed a ‘whirlpool‑like’ 
pattern. Fetal and adult fibroblasts were negative for CK14, 
but positively expressed VIM (Fig. 1F), as determined by 
immunohistochemistry. These results confirm the purity of 
the isolated fibroblasts.

Fetal KCs promote the proliferation of fetal and adult dermal 
fibroblasts. To determine whether fetal epidermal KCs exhib-
ited any biological effects on the proliferation of fibroblasts, 
a WST‑1 analysis was conducted. Quantitative analysis 
showed that co‑culture of fetal and adult dermal fibroblasts 
with fetal epidermal KCs resulted in a marked acceleration 
of fibroblast proliferation at days 2, 3 and 4 of culture, as 
compared with the control cells (Fig. 2A and B). A cell cycle 
analysis of the co‑cultured fetal and adult dermal fibroblasts 
was also performed. The distribution of S and G2/M phase 
fibroblasts was higher in the fibroblasts co‑cultured with the 
fetal KCs, as compared with the control fibroblasts (Table I). 
Furthermore, western blotting was performed in order to 

determine the expression levels of cell survival and prolif-
eration regulators. The protein expression levels of MDM2, 
phospho‑AKT, phospho‑CDK1 and cyclin B1 were upregu-
lated in the co‑cultured fibroblasts, as compared with the 
control cells (Fig. 3).

Fetal KCs promote the migration of fetal and adult dermal 
fibroblasts. The migratory ability of fibroblasts was measured 

Figure 1. Identification of KCs and fibroblasts. (A and B) The morphology and growth patterns of the primary fetal KCs at days 7 and 14 after plating. (C) Cells 
following three passages, stained positively for cytokeratin 14 (green), a typical marker of KC cells. (D and E) The morphological appearance of primary 
fibroblasts on days 4 and 10 after plating. (F) Fibroblasts exhibited positive vimentin expression (green) following four passages. (A, B, D and E) Images were 
captured using a light microscope. (C and F) Images were captured using a fluorescence microscope. Scale bar, 200 µm. KC, keratinocyte.

Figure 2. Stimulation of human dermal fibroblast proliferation by fetal 
epidermal KCs. Human (A)  fetal and (B) adult dermal fibroblasts were 
co‑cultured with fetal epidermal KCs. At 2,3 and 4 days after initiation of the 
co‑culture, the fibroblasts were counted using a hemocytometer. Bar graphs 
represent the mean ± standard deviation (n=4/group). *P<0.05 vs. the control 
group. KC, keratinocyte. 
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using Transwell® assays. The fibroblasts migrated to the bottom 
chamber and were stained at 4 days after co‑culture initiation. 
Quantitative analysis confirmed that the migration of the fetal 
and adult dermal fibroblasts to the bottom chamber was greater 
in the presence of fetal KCs, as compared with the control fibro-
blasts (Fig. 4A). Furthermore, western blotting demonstrated that 
fibroblasts co‑cultured with fetal KCs had increased expression 
levels of the cell migration regulators CXCR4, phospho‑ERK, 
and phospho38MAPK, MMP‑2 and MMP‑9 (Fig. 4B).

Discussion

Numerous studies have investigated the dynamics of epidermal 
KCs and dermal fibroblasts in co‑culture, along with the influ-
ence of KCs on fibroblast proliferation and migration, two crucial 
steps in the wound healing process (10). However, in numerous 
studies, the KCs and fibroblasts used were derived from various 
species at different ages, and were sometimes tested in heter-
ologous assay systems (16‑20). In addition, previous research 

has not always focused on fetal skin healing, but on other func-
tions of KCs in wound healing. A previous study demonstrated 
that KCs from the juvenile human foreskin were not able to 
stimulate the proliferation and migration of dermal fibroblasts 
from the juvenile human foreskin (16). Conversely, human KCs 
were shown to stimulate the proliferation and migration of WS1 
human fibroblasts in a three‑dimensional extracellular matrix 
(ECM) (17). Furthermore, conditioned medium from cultured 
human KCs was shown to stimulate DNA synthesis in various 
human cell types (18,19), and it has been shown that human KCs 
have a positive effect on adult skin wound healing. In a previous 
study it was demonstrated that KCs from newborn mice have an 
overall anti‑fibrotic influence on fetal and postnatal fibroblasts 
in co‑culture conditions (10). This result is in concordance with 
the findings of the present study. 

In the present study, the co‑culture of fetal and adult dermal 
fibroblasts with human fetal leg epidermal KCs significantly 
increased the proliferation of the two types of fibroblasts. 

Figure 4. Analysis of the migration, and expression of cell migration and 
cell cycle regulators in fibroblasts alone or co‑cultured with fetal keratino-
cytes (KCs). (A and B) Cell migratory rate of co‑cultured fibroblasts, relative 
to control fibroblasts. Bar graphs represent the mean ± standard deviation 
(n=4/group). *P<0.05 vs. the control group. (C) Protein expression levels of 
cell migration and cell cycle regulators as determined by western blotting. 
CXCR4, C‑X‑C chemokine receptor ligand; ERK; extracellular signal related 
kinase; MAPK, mitogen‑activated protein kinase; MMP, matrix metallopro-
teinase; p‑, phosphorylated‑; HPF, high‑power field.

Figure 3. Protein expression levels of cell cycle regulatory molecules in 
human skin fibroblasts, alone or co‑cultured with fetal keratinocytes, as 
determined by western blotting. MDM2, mouse double minute 2 homolog; 
CDK1, cyclin‑dependent kinase 1; p‑, phosphorylated‑.

  A

  B

  C

Table  I. Cell cycle analysis of the co‑culture of human skin 
fibroblasts with fetal KCs.

	 Cell cycle phase
	 distribution (%)
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
	 G0/G1	 S	 G2/M

Fetal fibroblasts			 
  Control	 63.5	 19.2	 17.3
  Co‑culture with fetal KCs	 40.2	 32.4	 27.4

Adult fibroblasts			 
  Control	 72.0	 15.9	 12.1
  Co‑culture with fetal KCs	 48.7	 25.1	 26.2

One representative experiment out of three similar experiments is 
presented. KC, keratinocyte.
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Cutaneous wound repair is dependent on the proliferation of 
dermal fibroblasts, and these data suggest that mid‑gestational 
leg KCs may stimulate fibroblast proliferation by upregulation 
of genes associated with the regulation of DNA synthesis. 
The results of the present study are concordant with previous 
observations of enhanced proliferation of fibroblasts (16). 
The protein expression levels of phospho‑AKT and MDM2 
in the co‑cultured fibroblasts were markedly greater in the 
presence of fetal KCs. AKT and MDM2 are established 
key regulators of cell survival and proliferation. Activation 
of the phosphoinositide 3‑kinase (PI3K)‑AKT pathway has 
been shown to have diverse roles in fibroblasts, and the 
PI3K‑AKT signaling pathway is known to activate a survival 
signal in cells, allowing them to proliferate and counteract 
apoptotic stimuli. Activation of the AKT signaling pathway 
modulates cell proliferation by transcriptional regula-
tion of numerous genes (21,22). PI3K is partly involved in 
facilitating cell viability by β1 integrin interaction with the 
ECM, in response to mechanical forces in skin fibroblasts. 
Furthermore, the PI3K‑AKT pathway stimulates collagen 
synthesis by actively promoting cell spreading and activa-
tion of the platelet‑derived growth factor (23). The MDM2 
protein facilitates G1‑to‑S phase transition by activating E2F1 
and may enhance cell survival by suppressing the function 
of wild‑type p53. Previous studies have shown that MDM2 
activity is regulated by the NF‑κB family of transcription 
factors (24‑27).

To examine whether fetal KCs contributed to positive 
effects on the cell cycle, analysis of the cells in the different 
phases of the cell cycle was performed using flow cytometry. 
The expression levels of cell cycle regulatory components 
CDK1 and cyclin B1 were also evaluated. The results 
demonstrated that in the co‑culture group, there were more 
fibroblasts in the S and G2/M phases, as compared with the 
control group. The co‑cultured fibroblasts also exhibited 
markedly increased expression levels of phospho‑CDK1 
and cyclin B1. CDK1 is known to have a critical role in cell 
cycle regulation, through controlling the progression of G1 
to S, and G2 to M phase (28). CDKs and their corresponding 
cyclins form cyclin‑CDK complexes that regulate cell cycle 
progression (29). Specifically, cyclin B1 is a regulatory protein 
involved in mitosis that forms a complex with CDK1 to form 
the maturation‑promoting factor. Cyclin B1‑CDK1 is involved 
in the early events of mitosis, such as chromosome condensa-
tion, nuclear envelope breakdown and spindle assembly.

The migratory ability of fibroblasts is a key factor in 
determining the efficiency of skin wound healing. Therefore, 
the present study investigated the influence of fetal KCs 
on the migratory ability of fibroblasts. One of the crucial 
limitations of wound healing is attributed to poor migration 
from adjacent healthy sites to the injured regions. Therefore, 
increasing the migratory ability of fibroblasts is one of the 
most promising approaches to improve the efficiency of 
skin wound healing (30,31). The present study showed that 
co‑culture with fetal KCs induced a significant increase 
in fibroblast cell migration. Previous studies have shown 
that CXCR4 and its receptor AKT, along with ERK and 
p38 MAPK are key mediators of fibroblast migration (32‑39).

It has previously been reported that MMP‑2 and MMP‑9 
are also regulators of fibroblast migration (40). MMPs are 

members of the zinc‑dependent endopeptidase family and 
have an important role in ECM turnover. The present study 
demonstrated that co‑culture with fetal KCs also increased 
the protein expression levels of MMP‑2 and MMP‑9.

In conclusion, the present study demonstrated that fetal 
KCs may promote the proliferation and migration of fetal and 
adult fibroblasts. The authors of the present study are currently 
investigating the effects of fetal KCs on other important 
parameters of skin wound healing, such as cell migration, 
contraction, and ECM accumulation and organization; and 
aim to determine whether keratinocyte growth factor, or 
other cytokines have a role in this important physiological 
process. The identification of the cytokine components that 
may contribute to complete tissue regeneration, which is 
a characteristic of wound healing in fetuses, is of clinical 
importance for treating adult wounds.
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